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Abstract

Background—An increasing number of neuroscientific studies gain insights by focusing on 

differences in functional connectivity – between groups, individuals, temporal windows, or task 

conditions. We found using simulations that additional insights into such differences can be 

gained by forgoing variance normalization, a procedure used by most functional connectivity 

measures. Simulations indicated that these functional connectivity measures are sensitive to 

increases in independent fluctuations (unshared signal) in time series, consistently reducing 

functional connectivity estimates (e.g., correlations) even though such changes are unrelated to 

corresponding fluctuations (shared signal) between those time series. This is inconsistent with the 

common notion of functional connectivity as the amount of inter-region interaction.

New Method—Simulations revealed that a version of correlation without variance normalization 

– covariance – was able to isolate differences in shared signal, increasing interpretability of 

observed functional connectivity change. Simulations also revealed cases problematic for non-

normalized methods, leading to a “covariance conjunction” method combining the benefits of both 

normalized and non-normalized approaches.

Results—We found that covariance and covariance conjunction methods can detect functional 

connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional 

MRI datasets.

Comparison with Existing Method(s)—We verified using a variety of tasks and rest in both 

clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, 

covariance, or covariance conjunction methods are used.
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Conclusions—These results demonstrate the practical and theoretical utility of isolating 

changes in shared signal, improving the ability to interpret observed functional connectivity 

change.
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functional connectivity; functional MRI; task functional connectivity; resting-state functional 
connectivity; schizophrenia

INTRODUCTION

Extensive neuroscientific research has identified consistent patterns of brain activity 

associated with a variety of behavioral processes. In trying to understand the systems-level 

mechanisms underlying these activation patterns, researchers have increasingly relied on 

functional connectivity – the statistical dependence among brain activity time series. 

Functional connectivity has been used across a wide variety of systems and a wide variety of 

neuroscientific approaches, such as functional MRI (fMRI), electroencephalography (EEG), 

and multi-unit recording (Nolte et al. 2004; Smith et al. 2011b; Buschman et al. 2012). 

Much of this research has focused on identifying the basic systems-level architecture of the 

brain via the detection of functional connections during resting state (Biswal et al. 2010; 

Brookes et al. 2011; Power et al. 2011; Yeo et al. 2011; Craddock et al. 2013). In order to 

link functional connectivity to cognition and behavior, however, researchers are increasingly 

focusing on functional connectivity differences. Such differences can be between groups 

(e.g., patients vs. healthy controls), individuals (e.g., correlating with IQ), temporal windows 

(i.e., functional connectivity dynamics), or task conditions. We focus here on measuring and 

interpreting such functional connectivity differences.

Despite the common statistical definition of functional connectivity stated above, functional 

connectivity results are typically interpreted in terms of neural interactions. This is likely 

due to the distinction between what is of underlying theoretical interest – true neural 

interactions – and methodological reality. Therefore, we suggest that one can make progress 

here by reducing the gap between methods and the phenomena of theoretical interest. In 

other words, we suggest that any functional connectivity measure that more closely reflects 

true neural interactions is a better functional connectivity measure.

Here we developed a simulation framework to systematically characterize relationships 

between functional connectivity measures and ground truth interactions. We designed the 

framework 1) to involve signals (neurons/regions) influencing one another, and 2) to be as 

simple as possible to facilitate interpretation and to make as few assumptions about the true 

nature of brain region interactions as possible. Briefly, the framework involves simply 

summing Gaussian random time series consisting of shared signal (time series copied 

between source and target), unshared signal (time series that are not copied between source 

and target), and noise. The simulations allowed us to identify measures that better reflect 

neural interactions, highlighting the appropriateness of some functional connectivity 

measures over others when neural interaction changes are of primary interest.
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The most common statistical measures used to estimate functional connectivity across a 

wide variety of neuroscientific approaches are Pearson correlation and related methods (e.g., 

coherence, partial correlation). These and many other common statistical measures utilize 

the concept of “percent variance explained” – dividing an estimate of shared variance by 

overall variance (i.e., variance normalization) – to produce standardized estimates of 

association. While these measures are frequently useful in other contexts, it was recently 

suggested that they are inappropriate for estimating functional connectivity differences 

(Friston 2011)1. If true, this would have major implications for the study of brain network 

function, as an increasing number of studies use Pearson correlation and related measures 

when studying functional connectivity differences across groups, individuals, or conditions 

(Zalesky et al. 2012a; 2012b).

As an illustration of a limitation of Pearson correlation, it has been shown that increased 

noise in neuronal recordings decreases correlations between neuronal time series, even when 

the underlying neuronal interactions are unchanged (Behseta et al. 2009). The sensitivity of 

correlations to unshared signal (rather than noise per se) may be especially problematic, 

however, as this would reduce the interpretability of any detected functional connectivity 

difference. For instance, a significant change in inter-region correlation could be driven 

solely by increased neural processing by only one of the two tested brain regions. Thus, we 

use the term “unshared signal” to emphasize that these effects could be driven by 

functionally important neural processes. The same conclusions also apply to the more 

general concept of “unshared variance”, which encompasses both signal and noise.

We used simulations to ground our systematic exploration of shared and unshared signal 

changes. These simulations revealed a functional connectivity method (covariance) immune 

to systematic bias from unshared signal. However, simulations also revealed that this 

method is sensitive to possible increases in overall variance/power that may be unrelated to 

true brain interaction change. We therefore developed a conjunctive method, in which a 

functional connectivity change is only considered significant if it is detected using both a 

variance normalized measure (e.g., correlation) and covariance. We then applied this method 

to empirical data, determining that it not only provides increased interpretability of results 

but also often provides results distinct from current methods in practice. These findings 

validate a new theoretical and methodological framework for characterizing functional 

connectivity differences, improving interpretability of brain network dynamics.

Due to the complex and potentially counterintuitive nature of the results, we encourage 

readers to run the simple simulations themselves, available here: https://github.com/

ColeLab/simplesims/. Seeing and running the code may facilitate development of an 

improved intuition for the nature of these functional connectivity measures. Modifications of 

the code, including testing of other functional connectivity measures and different 

conditions, are encouraged as well.

1Friston emphasized the inadequacy of Pearson correlations in terms of estimating indirect influences, undirected influences, and their 
tendency for changing due to changes in noise. We focus here on the last criticism, and touch upon the other criticisms in the 
Discussion.
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MATERIALS AND METHODS

Functional connectivity estimation

Estimates of time series association were calculated using either MATLAB (version 

R2012a) or R (version 2.15.1). Covariance was the simplest measure we used, and was 

calculated as:

Where X and Y are brain activity time series, n is the number of time points, and X̄ and Ȳ are 

the time series means.

Pearson correlation was calculated as:

Where S is the time series standard deviation. Most analyses also involved the Fisher’s z-

transform of the resulting Pearson correlation, which increases the dynamic range of 

correlation values to go beyond ±1.0. This is critical when investigating changes in 

functional connectivity, as forgoing the Fisher’s z-transform would result in artificial 

restrictions in dynamics. The Fisher’s z-transform:

Psycho-physiological interaction (PPI) was estimated using simple linear regression, which 

was calculated using the lm function in R, equivalent to:

Where var is the time series variance. The beta for each condition was estimated separately 

for each condition and subtracted, consistent with generalized PPI (McLaren et al. 2012). 

The additional step of including task regressors in the regression model was not included 

here because we did not simulate mean task activity amplitude changes (such that they were 

already effectively removed from the simulated time series).

Partial correlation was computed as the inverse covariance matrix (i.e., the inverse variance-

covariance matrix). This is a standard procedure, which computes the correlations between 

pairs of time series after the variances from all other time series have been linearly removed. 

This procedure also normalizes the resulting statistic by the tested time series’ variance (the 

diagonal in the variance-covariance matrix), thus implementing variance-based 

normalization like standard Pearson correlation.
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Basic simulations

Simulations were conducted using R (version 2.15.1) (R Development Core Team 2009). 

Two brain region time series (X and Y) were simulated as linear mixtures of shared signal 

(sharedXY; identical across regions), unshared signal (unsharedX and unsharedy), and 

unshared noise (noiseX and noisey):

Data for each variable were created using the function rnorm, which produced 200 normally 

distributed time points. The original amplitudes were modified only in the case of the noise 

variables, which were multiplied by 0.25 such that noise accounted for proportionally less of 

the variance than the signal variables. This was repeated 25 times, producing 25 distinct 

time series per simulated region.

Manipulations of shared and unshared signals consisted of scaling the relevant component 

(i.e., multiplying each time point by a constant) prior to mixing with the other component to 

produce the relevant time series. For instance, when increasing shared variance in both 

regions, these formulas apply:

Functional connectivity estimates were then applied to the manipulated time series, and 

compared to the estimates from the original time series. Statistical significance was assessed 

using t-tests (two-tailed, independent samples) on the functional connectivity estimates 

across simulated subjects. R and MATLAB code implementing these simulations can be 

found at: https://github.com/ColeLab/simplesims/

Phase locked value simulations—We carried out a standard PLV analysis using 

publically available software (available at the time of publication at: https://

praneethnamburi.wordpress.com/2011/08/10/plv/). The software implements the standard 

PLV algorithm (Lachaux et al. 1999). The simulation data were generated in the same 

manner as for the other simulations, except that each simulated subject contributed 50 trials. 

This was necessary for the software, which required multiple trials to estimate PLV. Each 

trial consisted of 200 time points, and PLV was implemented as though they were collected 

at a 100 Hz sampling rate, with a filter order of 50 and frequency range of 10–20 Hz. The 

first 25 PLV time point estimates were discarded to exclude the initial transient (a common 

artifact of the PLV approach) and the remaining values were averaged for each trial. Note 
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that the final z-normalization step often recommended for PLV was not applied, since this 

would more clearly necessitate that PLV results would look similar to Pearson correlation 

and related measures (due to dividing by the standard deviation of the time series, like 

Pearson correlation).

Biophysical computational model simulations—In addition to the simpler 

conceptual simulation we used a well-validated computational model of resting-state 

functional connectivity (Deco et al. 2013), extending a local circuit model (Wong and Wang 

2006), to incorporate biologically plausible mechanisms for multiple interacting brain 

regions, with their activity translated to BOLD signal fluctuations. We recently applied this 

model to investigate specific synaptic parameters in relation to clinical effects. Here we 

explicitly studied the effects of shared versus unshared signal alterations in the simulated 

network. The network is composed of 66 nodes and is a dynamic mean-field model (Wong 

and Wang 2006), coupled through a large-scale anatomical connectivity matrix, which was 

derived from diffusion tractography in humans as reported in Hagmann et al. (Hagmann et 

al. 2008). For our simulations, we extracted the anatomical connectivity matrix from Figure 

1 of Deco & Jirsa (Deco and Jirsa 2012), described in detail in our prior work (Yang et al. 

2014). BOLD signals were simulated via the Balloon-Windkessel model, as done previously 

(Deco et al. 2013). All model parameter values were set to those used in our prior work 

(Yang et al. 2014). Specifically, default values were set to w=0.531, G=1.25, and 

sigma=0.0004 (amplitude of unshared noise or signal), with remaining values set to those of 

Deco et al.

Next, we introduced a common input to all nodes – that is “shared” signal 

(amplitude=0.0005). The amplitude of unshared signal specific to each node was represented 

by sigma. We parametrically varied both shared and unshared signal parameters across the 

entire network. Finally, to compute a measure of model-derived connectivity we used a 

measure of connectivity across the entire network termed global brain connectivity (GBC) 

(Cole et al. 2010). To compute the GBC of each node, we first generated a correlation 

matrix of each node’s signal with signals from all other (65) nodes. Values in the correlation 

matrix were then converted using a Fisher’s r-to-z transform. Next, for each node, GBC was 

computed as the mean value of each of the 65 columns (corresponding to the other 65 

nodes) in this transformed matrix. To compute the average GBC of the network, we took the 

mean GBC value across the 66 nodes. This effectively yielded a GBC index of the model 

across parameters. We also repeated the same calculation using covariance (rather than 

correlation) prior to calculating GBC, to examine the functional connectivity of the model as 

derived using covariance instead of correlation.

7-task fMRI data collection

The 7-task fMRI dataset was collected as part of the Washington University-Minnesota 

Consortium Human Connectome Project (Van Essen et al. 2013). Participants were recruited 

from Washington University (St. Louis, MO) and the surrounding area. All participants gave 

informed consent. The data used were from the first and second quarter releases, consisting 

of data from 139 participants. Data from 21 subjects were not used because one or more of 

the data runs was not collected for these subjects, such that data from 118 subjects were 

Cole et al. Page 6

J Neurosci Methods. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



included in the final analyses. Whole-brain echo-planar imaging acquisitions were acquired 

with a 32 channel head coil on a modified 3T Siemens Skyra with TR = 720 ms, TE = 33.1 

ms, flip angle = 52°, BW = 2290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices, 2.0 mm 

isotropic voxels, with a multi-band acceleration factor of 8 (Ugurbil et al. 2013). Data were 

collected over two days. On each day 28 minutes of rest (eyes open with fixation) fMRI data 

across two runs were collected (56 minutes total), followed by 30 minutes of task fMRI data 

collection (60 minutes total). Each of the 7 tasks was completed over two consecutive fMRI 

runs. Resting-state data collection details for this dataset can be found elsewhere (Smith et 

al. 2013), as can task data details (Barch et al. 2013).

7-task fMRI dataset analysis

The 7-task dataset preprocessing consisted of standard functional connectivity preprocessing 

(typically performed with resting-state data), with several modifications given that analyses 

were also performed on task-state data. Resting-state and task-state data were preprocessed 

identically in order to facilitate comparisons between them. Spatial normalization to a 

template, motion correction, intensity normalization (normalized to a 4D whole brain mean 

of 10,000) were already implemented in a minimally processed version of the 7-task dataset 

described elsewhere (Glasser et al. 2013), so we began preprocessing with this version of the 

data. With the volume (rather than the surface) version of the minimally preprocessed data, 

we used AFNI (Cox 1996) to additionally remove nuisance time series (motion, ventricle, 

whole brain, and white matter signals, along with their derivatives) using linear regression, 

remove the linear trend for each run, and spatially smooth the data (4mm full width at half 

maximum). Note that the main results were broadly similar with and without whole brain 

(global) signal regression, though this question is outside the scope of the present study. 

This preprocessing step was included to reduce potential motion and other artifacts (Power 

et al. 2014). Unlike standard resting-state functional connectivity preprocessing a low-pass 

temporal filter was not applied. This was done due to the possible presence of task signals at 

higher frequencies than the relatively slow resting-state fluctuations. In order to make this 

dataset comparable to most other current fMRI datasets, however, the data were temporally 

down-sampled (as the last step of preprocessing) by averaging data from every three 

consecutive volumes (making a 2160 ms TR, close to the 2000 ms TR in most ‘legacy’ 

single-band fMRI datasets). This had an effect similar to a mild low-pass temporal filter on 

the data (removing frequencies above 0.46 Hz). We found that effects were similar with and 

without this down-sampling step, however.

Data were sampled from a set of 264 brain regions (rather than individual voxels) in order to 

make inferences at the region and systems level. We used an independently identified set of 

putative functional brain regions (Power et al. 2011) so as to reduce any potential circularity 

in analyses (Kriegeskorte et al. 2009). This particular set of regions was also used rather 

than anatomically defined sets of regions in order to reduce the chance of combining signal 

from multiple functional regions (Wig et al. 2011). These brain regions were identified using 

a combination of resting-state functional connectivity parcellation (Cohen et al. 2008) and 

task neuroimaging meta-analysis (Power et al. 2011). Data were summarized for each region 

by averaging signal in all voxels falling inside each region.
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Preprocessing was carried out using Freesurfer, AFNI (Cox 1996), and custom code in 

MATLAB 2012b (Mathworks) for the 7-task dataset (using the minimally preprocessed 

version of the data (Glasser et al. 2013)). Further analysis was carried out with MATLAB 

and R.

We estimated functional connectivity using Pearson correlations and covariances between 

time series from all pairs of brain regions using MATLAB (version R2012a). For Pearson 

correlations, all computations used Fisher’s z-transformed values. Functional connectivity 

estimation was straightforward for resting-state data, as there were no additional steps after 

preprocessing prior to calculating these values.

For task data, we sought to suppress or remove influences of (across-trial mean) task-related 

activations on task-related changes in functional connectivity. Therefore, we ran a standard 

fMRI general linear model analysis, and calculated functional connectivity based on the 

residuals. Specifically, each region’s task time series was modeled using a standard general 

linear model with one regression coefficient per task. To improve removal of task-related 

activation variance, a separate regressor was included for each major 7-task dataset 

condition (e.g., face stimuli vs. tool stimuli in the N-back task; 24 regressors total). Note that 

regressing out task events using general linear modeling primarily removes the across-trial 

signal means, retaining trial-to-trial and sub-trial fluctuations in time series such that these 

sources of variability likely contribute the most to task FC estimates (Truccolo et al. 2002; 

Rissman et al. 2004). The residuals from this regression model were used for FC estimation, 

restricted to time points corresponding to the current task (including a standard 

hemodynamic lag). Note that results were similar with and without task activation 

regression.

Functional connectivity differences were assessed using two-way t-tests paired by subject. 

Multiple comparisons were corrected for using false discovery rate (Genovese et al. 2002).

Schizophrenia fMRI dataset analysis

To test the clinical relevance of shared signal analyses, we examined functional connectivity 

in a large sample of patients diagnosed with chronic schizophrenia (SCZ). Specifically, we 

studied 71 SCZ patients and 74 demographically matched HCS obtained from a publicly-

distributed dataset provided by the Center for Biomedical Research Excellence (COBRE) 

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). All the processing and analyses 

procedures followed our recently published work (Yang et al. 2014). Briefly, SCZ patients 

were excluded if they had: i) history of neurological disorder, ii) history of mental 

retardation, ii) history of severe head trauma with more than 5 minutes loss of 

consciousness; iv) history of substance abuse or dependence within the last 12 months. 

Diagnostic decisions were reached using the SCID interview for the DSM-IV. SCZ patients 

(N=71) and their respective HCS (N=74) underwent data collection at Center for Biomedical 

Research Excellence using a Siemens Tim-Trio 3T scanner. Full acquisition details for the 

SCZ replication sample and HCS is detailed previously (Mayer et al. 2013). Briefly, BOLD 

signal was collected with 32 axial slices parallel to the AC-PC using a T2*-weighted 

gradient-echo, echo-planar sequence (TR/TE=2000/29ms, flip angle=75°, acquisition 

matrix=64×64, voxel size=3×3×4mm). The acquisition lasted 5 minutes and produced 150 

Cole et al. Page 8

J Neurosci Methods. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html


volumetric images per subject. Structural images were acquired using a 6 minute T1-

weighted, 3D MPRAGE sequence (TR/TE/TI=2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900, flip 

angle=7°, voxel size [isotropic]=1mm, image size=256×256×176 voxels), with axial slices 

parallel to the AC-PC line. All the described parameters were provided via the publically-

distributed website (http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html).

The processing of this dataset was completed independently of the other fMRI dataset in 

order to test if the specific processing steps included in the other dataset were necessary for 

the reported results (distinct effects with correlation versus covariance). All BOLD data 

underwent the following processing steps: i) slice-time correction, ii) first 5 images removed 

from each run, iii) rigid body motion correction, iv) 12-parameter affine transform of the 

structural image to the Talairach coordinate system, and v) co-registration of volumes to the 

structural image with 3×3×3mm re-sampling, ensuring all BOLD images across both 

scanners were interpolated to the same resolution.

In addition, all BOLD images for the clinical analyses had to pass stringent quality 

assurance criteria to ensure that all functional data were of comparable and high quality: i) 

signal-to-noise ratios (SNR) > 100, computed by obtaining the mean signal and standard 

deviation for a given slice across the BOLD run, while excluding all non-brain voxels across 

all frames. Furthermore, all image frames with possible movement-induced artifactual 

fluctuations in intensity were identified via two criteria: First, frames in which sum of the 

displacement across all 6 rigid body movement correction parameters exceeded 0.5mm 

(assuming 50mm cortical sphere radius) were identified; Second, root mean square (RMS) 

of differences in intensity between the current and preceding frame was computed across all 

voxels divided by mean intensity and normalized to time series median. Frames in which 

normalized RMS exceeded the value of 3 were identified. The frames flagged by either 

criterion were marked for exclusion (logical or), as well as the one preceding and two 

frames following the flagged frame. Collectively, these quality assurances add confidence 

that typical neuroimaging confounds (i.e. SNR or movement) are not driving present effect. 

Lastly, to remove spurious signal in resting-state data we completed additional 

preprocessing steps, as is standard practice (Cordes et al. 2001): all BOLD time-series 

underwent high (>0.009 Hz) and low (<0.08 Hz) pass temporal filtering, removal of 

nuisance signal extracted from anatomically-defined ventricles, white matter, and the 

remaining brain voxels (i.e. global signal) (all identified via individual-specific FreeSurfer 

segmentations (Desikan et al. 2006)), as well as 6 rigid-body motion correction parameters, 

and their first derivatives using in-house MATLAB tools.

RESULTS

Simulating neural interactions with minimal assumptions

We conducted a series of simulations that modeled changes in brain region interactions. We 

designed these simulations to be as simple as possible so as to make as few assumptions 

about the true nature of brain region interactions as possible. Each brain region was modeled 

as a mixture of shared signal (sharedXY; identical across regions), unshared signal 

(unsharedX; distinct across regions), and unshared noise (noiseX; also distinct across 

regions). Each region’s time series was composed of 200 time points, with equal parts of 
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shared and unshared signals and one-quarter part noise (see Methods for details). Changes in 

brain region activity consisted of differential scaling of each of these components (e.g., 

multiplying the shared signal by 2) (Figure 1A). Each simulation was run 25 times, each 

with two conditions. These simulations could be considered as simulating 25 subjects during 

two brain states each (e.g., a cognitive manipulation, or spontaneous changes across time), 

or differences between two groups of 25 subjects (e.g., patients versus healthy controls, 

during a resting-state experiment). Note that we focus primarily on brain region interactions 

but conclusions are likely identical for interactions between individual neurons as well as 

other forms of brain interaction, though (as we address with the spectral covariance 

approach) in many scenarios it will be necessary to account for temporal lag between time 

series.

There are multiple possible underlying physiological changes that could result in the 

simulated functional connectivity changes (i.e. changes in coupling). For instance, the 

simulated increases in shared variance could result from increased synaptic strengths (e.g., 

due to short-term or long-term plasticity (Zucker and Regehr 2002; Yao et al. 2007)) or 

increased synchrony due to entrainment of neural populations to the same oscillations (Fries 

2005). One mechanism for this type of change could be mediated via pre-synaptic glutamate 

release along with an action potential from the presynaptic neuron activating the N-methyl-

D-aspartate glutamate receptor (NMDAR) (Krystal et al. 2003). Alternatively, a change in 

coupling may reflect elevated dopamine tone in the same cortical circuit (Vijayraghavan et 

al. 2007). Importantly, we remain agnostic with regard to these types of assumptions in our 

simple model, allowing generalizability of our conclusions across a spectrum of biological 

mechanisms. In contrast to shared variance, the simulated increases in unshared variance 

could result from increased neural activity unrelated to shared signals communicated to/from 

the regions of interest. For instance, there could be increased processing in one of the two 

tested regions, or more interaction between one of the tested regions and another unrelated 

region (e.g., increased communication between regions Y and another region Z, rather than 

between X and Y; Figure 2A). There are likely other scenarios involving changes in shared 

and/or unshared signals not mentioned here that these simulations nonetheless account for.

We compared covariances (cov) and Fisher’s z-transformed Pearson correlations (corr) 

before and after manipulating the amount of shared and/or unshared signals. Note that we 

applied the Fisher’s z-transform so changes among high correlations were not restricted as 

they approached ±1.0, but conclusions were the same without this transform. We found that 

both correlations (mean corrdiff=+0.52, t(24)=28, p<0.00001) and covariances (mean 

covdiff=+2.9, t(24)=30, p<0.00001) increased when the shared signal was increased (Figure 

1, left side), consistent with the mathematical formulation described below. This reflected a 

larger effect of region X’s activity on Y’s activity, and vice versa (a 2× increase in each 

direction). This result is consistent with common notions of functional connectivity 

differences as a change in the amount of inter-region communication.

We next sought to simulate circumstances in which correlation and covariance would differ. 

We found that an increase in unshared signal significantly decreased correlations (mean 

corrdiff=−0.33, t(24)=−15, p<0.00001), while covariances (mean covdiff=+0.01, t(24)=0.1, 

p=0.9) were unchanged (Figure 1, center). Critically, only covariance tracked the shared 
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variance (which was left unchanged), whereas correlation was decreased by amplification of 

signal unassociated with inter-region communication.

Simulations also demonstrated that the results differed when both shared and unshared 

signals were increased (Figure 1, right side). With this manipulation correlation changes 

could be significantly positive, negative, or show no difference, depending on the amount of 

unshared signal change. We focused on the simple case in which there was a 2× increase in 

both shared and unshared signals: There was no difference between correlations (mean 

corrdiff=−0.01, t(24)=−0.4, p=0.7), but there was a difference between covariances (mean 

covdiff=+2.8, t(24)=29, p<0.00001).

Again, only covariance tracked changes in the shared signal, consistent with increased 

influence of the regions’ activities on each other. However, the correlation result could be 

considered correct if there was some confound affecting both shared and unshared variances 

in a similar manner. For example, there could be an increase in overall variance/power that 

would result in apparent increases in shared signal along with unshared signal. In the 

absence of a confound, however, the simulated scenario seems quite plausible, as increased 

inter-region communication could result in increased shared signal along with increased 

unshared signal due to greater within-region computation (e.g., information received in a 

region that needs to be processed but is unshared with the other region).

Taken together, these simple simulations suggest that covariance differences are associated 

with shared signal differences, reflecting true inter-region communication differences (in the 

absence of confounds). Given that overall variance/power confounds are possible with all 

neuroscientific methods, the conservative approach would be to use both correlation and 

covariance in conjunction: those changes in functional connectivity detected using both 

correlation and covariance are more likely to be true changes in functional connectivity.

We constructed a flowchart to illustrate this logic (Figure 3). Simulation results of all 

possible combinations of shared and unshared variance changes are reported in Figure 4. We 

also found that interactions with a third region Z can produce similar effects as a change in 

unshared signal when investigating regions X and Y (Figure 2), suggesting correlation-like 

measures are also sensitive to a wider variety of interactions irrelevant to the interactions 

between the two regions being tested. This was not the case for partial correlations, due to 

linear removal of the third region’s variance. However, like Pearson correlations, partial 

correlations normalize by overall variance such that results were virtually identical to 

Pearson correlation in the simulations reported in Figure 1. This suggests partial correlations 

retain many of the limitations of standard Pearson correlations.

Mathematical formulation

We next examined a simple mathematical formulation to verify and illustrate the problem 

that arises when assessing changes in functional connectivity based on the measure of 

correlation. We consider two time series, X and Y, which could be physiological signals 

from two brain areas (or neurons). Covariance (cov) provides a measure of how strongly X 

and Y change together: cov(X,Y) = ((X − (X))(Y − (Y))), where (…) is the average over 

time. Correlation (corr) is a rescaled measure that normalizes covariance by the variances of 
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X and Y: corr(X,Y) = cov(X,Y)/sqrt(var(X)var(Y)). This normalization in correlation 

complicates interpretation of changes in functional connectivity, because a change in 

correlation can reflect a change in covariance or a change in variance.

We framed this problem by considering that changes in correlation-based estimates of 

functional connectivity can be driven by both shared and unshared brain signals. We 

considered the case where X and Y can each be decomposed into two components: a signal 

that is shared between X and Y with variance σs
2, and a signal that is unshared between X 

and Y with variance σU
2. Then cov(X,Y) = σs

2, and corr(X,Y) = σs
2/(σs

2 + σU
2). Thus 

covariance reflects the shared signal and is not systematically altered by the unshared signal. 

In contrast, correlation depends on both shared and unshared signals due to the 

normalization step. This formulation illustrates the difficulty in interpreting changes in 

connectivity based on correlation rather than covariance. For instance, a decrease in 

covariance purely reflects a decrease in shared signal. In contrast, a decrease in correlation 

could reflect a decrease in shared signal or an increase in unshared signals. We next turn to a 

numerical demonstration of this problem with simulated neural data.

Other regression-based methods such as psycho-physiological interaction are similar to 
correlations

In the original review suggesting correlations may be problematic when testing for 

functional connectivity differences, it was suggested that the psycho-physiological 

interaction (PPI) method does not suffer from the hypothesized issues with correlation 

(Friston 2011). PPI is essentially the regression of one time series on another (with 

simultaneously fit nuisance variables) (McLaren et al. 2012), such that changes in which 

time series is the “source” and “target” can give different estimates. Mathematically, the 

regression beta estimates are equivalent to covariance divided by the source time series 

variance (see Methods). Thus, we predicted that manipulations to the source time series 

would appear similar to correlations, whereas manipulations to the target time series would 

appear similar to covariances. Consistent with this, we found that increasing region X’s 

unshared signal (the source) decreased the beta estimate (mean betadiff=−0.29, p<0.00001), 

while increasing region Y’s unshared signal (the target) did not change the beta estimate 

(mean betadiff=+0.01, p=0.7). Thus, PPI and related regression approaches are similar to 

correlation with regard to the source time series, but reflect covariance with regard to the 

target time series. When manipulating both time series (as in Figure 1), the regression/PPI 

approach results were the same as correlations. Note that some of the sensitivity to unshared 

variance may be reduced by including task timing estimates as nuisance regressors (as 

typically done with PPI, and as done with the empirical analyses below), yet this would only 

account for across-trial mean activity such that much of the unshared variance (e.g., of 

moment-to-moment and trial-to-trial signals) would remain.

Overall, these results are mostly inconsistent with the previous claim regarding PPI (Friston 

2011). Specifically, contrary to the original claim, there can be a change in a PPI estimate 

even when shared signal does not change: when unshared signal changes in both (or just the 

target) time series. We found that a variety of other common functional connectivity 

measures also showed similar results to Pearson correlation, such as coherence – a 
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commonly used method for investigating functional connectivity using electrophysiological 

signals (see results below, and Figure 4B).

Preliminary extension of approach to lag-invariant methods

Correlation is the most common functional connectivity approach with fMRI, likely because 

its low temporal resolution results in only minimal lags between time series. In contrast, 

methods such as electroencephalography (EEG) and intracranial recording obtain data at 

high temporal resolution, resulting in lagged correspondence between time series (e.g., 10 to 

100 ms delays in inter-region signal propagation). Therefore, one of the most common 

functional connectivity measures with these methods has been coherence, which is robust to 

lags. This is possible because coherence measures the correspondence between each time 

series’ power across frequencies (i.e., the spectral density distribution). Importantly, 

coherence is similar to Pearson correlation in that it is normalized by overall variance. We 

therefore hypothesized that coherence would be sensitive to changes in unshared signal, just 

like correlation.

We tested this hypothesis using identical simulations as used in Figure 1, but tested using 

coherence and with a 5 time point lag between the time series. Confirming our hypothesis, 

we found that coherence showed the same pattern of results as correlation (in contrast to 

covariance). Specifically, there was an increase in coherence when shared signal was 

increased (mean cohdiff = 0.40, t(24)=49, p<0.00001), a decrease when unshared signal was 

increased (mean cohdiff = −0.07, t(24)=−7, p<0.00001), and no change when both shared 

and unshared signals were increased (mean cohdiff = 0.007, t(24)=0.7, p=0.46). Note that 

there were no significant changes detected using correlations or covariance with the 5 time 

point lag.

We next developed a new spectral measure based on covariance, which we hypothesized 

would be unchanged by temporal lags or differences in unshared signal. We call this 

measure “spectral covariance” (scov). This measure is computed by estimating the spectral 

density distribution (i.e., a periodogram) for each time series, followed by measuring the 

covariance between these distributions. Intuitively, this is the same covariance approach 

used above, but now on the pattern of power across frequencies rather than the raw time 

series. Consistent with our hypothesis, we found that this measure matched covariance even 

with a temporal lag between the time series. Specifically, there was an increase in spectral 

covariance when shared signal was increased (mean scovdiff = 1.4, t(24)=28, p<0.00001), no 

change when unshared signal was increased (mean scovdiff = 0.003, t(24)=0.03, p=0.98), 

and an increase when both shared and unshared signals were increased (mean scovdiff = 

0.71, t(24)=5, p=0.00002). It therefore appears possible to implement a covariance 

conjunction approach that is lag invariant, combining results from coherence and spectral 

covariance to increase confidence in a detected functional connectivity change.

We next tested if this method would work when only a small subset of frequencies are 

altered, rather than all frequencies. Spectral covariance was not robust to unshared signal 

changes in this case. Specifically, there was a decrease in spectral covariance when unshared 

signal was increased in a single frequency (mean scovdiff = −0.9, t(24)=−10, p<0.00001). 

This suggests this new approach is limited to cases in which broad sets of frequencies are 
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altered. It will be important for future research to investigate ways to overcome this 

limitation in spectral covariance. One possibility may be the use of lagged covariance 

(testing covariance at various lags between time series), though this could result in 

overfitting data due to multiple comparison testing across many lags. Overall, these results 

demonstrate a proof of principle for a way to estimate lag-invariant functional connectivity 

change that is robust to changes in unshared signal. More generally, these results suggest it 

may be possible to modify a variety of other functional connectivity measures to be robust to 

changes in unshared signal.

Extension to phase locked value

Some characterizations of functional connectivity have focused on phase synchronization of 

oscillations (Lachaux et al. 1999; Engel et al. 2001; Aydore et al. 2013). One prominent 

method for isolating phase synchronization is phase locked value (PLV) (Lachaux et al. 

1999). PLV characterizes time series in terms of oscillations at a particular frequency range, 

quantifying how close the phase is between two time series. Unlike correlation, coherence, 

and the other measures, PLV removes fluctuation amplitudes to focus exclusively on the 

timing of the fluctuations. One might therefore assume that PLV would be immune to the 

changes in signal amplitude implemented by our simulations. We carried out a standard 

PLV analysis using publically available software (see Methods) to test this possibility.

Surprisingly, we found that PLV acted very similarly to Pearson correlations and related 

measures. We found that PLV significantly increased when shared signal was amplified 

(mean PLVdiff=+0.29, t(24)=64, p<0.00001), significantly decreased when unshared signal 

was amplified (mean PLVdiff=−0.21, t(24)=−42, p<0.00001), and showed no significant 

change when both shared and unshared signals were increased (mean PLVdiff=0.01, 

t(24)=1.85, p=0.07). Note the marginally significant effect for the last simulation, hinting at 

a possible difference from Pearson correlations and related measures (but not as initially 

expected).

It is beyond the scope of the present study to fully characterize why these simulations 

resulted in PLV changes. However, one possibility is that PLV can be conceptualized as 

counting the number of identified shared fluctuations in two time series, with added 

unshared signal reducing the number of identified shared fluctuations. This may be due to 

greater corruption of the perfectly in-phase oscillations present in the shared signal by larger 

unshared oscillations. In particular, cases in which a shared oscillation would be nearly 

canceled out by an anti-phasic unshared oscillation may be completely canceled out with 

greater unshared signal amplitude. This is all despite there actually being true phase 

synchronization underlying the signals, given the presence of the shared signal across both 

time series. It will be important for future research to explore this and other possibilities, as 

well as developing alternative phase locking estimates that are not systematically biased by 

changes in unshared signal.
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Biologically realistic simulations illustrate relationships between brain network dynamics 
and functional connectivity measures

We next utilized a previously developed biophysically based computational model (Deco et 

al. 2013; Yang et al. 2014) to (1) test if the effects identified above are present in a model 

that captures neurobiologically realistic neuronal dynamics in a larger network, and (2) to 

explore the effect of many possible brain region activity changes on functional connectivity 

measures using plausible neuronal dynamics. Population spiking activity in 66 nodes was 

simulated by a dynamical mean-field model (Wong and Wang 2006), coupled through 

structured long-range projections derived from diffusion-weighted imaging in humans 

(Hagmann et al. 2008). Simulated electrophysiological signals were then converted to 

simulated fMRI blood-oxygen level dependent (BOLD) signals using the Balloon-

Windkessel hemodynamic model (Friston et al. 2003) to mimic empirical BOLD 

connectivity data presented below. We quantified effects across the entire simulated network 

by utilizing a simple graph theoretical measure known as global brain connectivity (GBC) 

(Cole et al. 2010). GBC involves averaging of a given region’s functional connectivity 

estimates with the rest of the brain (i.e., connectivity with all other regions). In this case we 

compared GBC using correlation versus covariance. We examined each measure in response 

to systematically manipulating the amount of unshared and shared signal between all nodes 

in the model (Figure 5).

The modeling simulations converged with the simpler conceptual illustration: only 

covariance matched the changes in shared signal (Figure 5A, diagonal). Specifically, 

covariance was unchanged from the central “baseline” point in Figure 5A as unshared signal 

was changed (horizontally). However, covariance was highly sensitive to changes in shared 

signal (vertically). In contrast, correlations interacted with both shared and unshared signals, 

remaining unchanged when shared and unshared signals changed equally (diagonally). 

However, correlations increased (upper left) or decreased (lower right) depending on the 

relative dominance of shared versus unshared signal changes. Note that these manipulations 

were implemented at the neural level, and fMRI related BOLD signals were simulated from 

the resulting neural activity prior to functional connectivity estimation. Thus, these results 

support the possibility that covariance analysis of fMRI data may more accurately reflect 

changes in shared signal across brain regions as opposed to artifacts of non-shared signal 

changes.

One potential concern with using covariances (rather than correlations) for functional 

connectivity is the possibility that the entire signal (shared and unshared) could be amplified 

artificially. Correlations are unaffected by such scaling due to normalization by the time 

series’ standard deviations. It is unclear how this could occur in neural populations, 

however. This could reflect a change of scale in the data recording equipment (e.g., scale 

shifts with fMRI), suggesting a potential advantage of correlation over covariance in 

practice. Further along this line of reasoning, it remains unclear how often correlation and 

covariance changes diverge in practice. We evaluate the feasibility of using covariance to 

measure functional connectivity further below, both in terms of providing reasonable 

estimates given the possibility of scale shifts and also in terms of whether it actually matters 

which method is used in practice.
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Empirically validating covariance as a functional connectivity measure

We next sought to test for the general feasibility of using covariance as a functional 

connectivity measure based on empirical data. We used the publicly available WU-Minn 

Human Connectome Project fMRI dataset (118 subjects) (Van Essen et al. 2013). One way 

correlation has been empirically validated as a functional connectivity measure is via its 

consistency with known neural systems. For instance, regions in the visual system are 

especially correlated with each other relative to other brain systems during resting state, and 

the same is true of other known systems as well (Power et al. 2011; Yeo et al. 2011). We 

used this approach with covariance, with the expectation that covariance would also be 

higher within than between neural systems, validating covariance as a functional 

connectivity measure. Importantly, we observed correlation and covariance effects relative 

to zero (i.e., their ability to detect the presence of functional connectivity) rather than 

differences between brain states or individuals, such that both methods should provide 

similar results.

We used a set of 264 brain regions (Figure 6A) that were previously identified using fMRI 

meta-analysis and an approach for identifying areas of locally homogeneous functional 

connectivity (Power et al. 2011). These regions were used because they were identified in a 

distinct dataset – reducing potential statistical biases in the present results (Kriegeskorte et 

al. 2009) – and because these regions have an associated regional community partition 

(Power et al. 2011) that is consistent with known brain systems.

We computed all pairwise correlations (Figure 6B) and covariances (Figure 6C) across the 

264 regions. The regions were ordered based on previous community partition results 

(Power et al. 2011), such that connectivity clusters are apparent by visualizing the functional 

connectivity matrices (i.e., blocks of red along the diagonal in Figure 6). T-tests relative to 

zero were used to put the two functional connectivity measures on the same scale. Note that 

other measures of effect size could have been used as well (e.g., z values, Cohen’s d). We 

found that covariances revealed a large-scale brain network organization consistent with 

known systems, validating covariance as a functional connectivity measure. See the “Details 

regarding empirically validation of covariance as a functional connectivity measure” section 

below for more details.

These results suggest that while covariance and correlation give quite similar functional 

connectivity patterns generally, correlations may be better for detecting the absolute 

presence of functional connectivity. This is primarily due to generally higher t-values for 

correlations (mean absolute value t=5.4 for correlation, t=4.4 for covariance), associated 

with 10999 significant (P<0.05, FDR corrected for multiple comparisons) connections with 

correlation and 10120 with covariance – an advantage of 879 connections with correlation. 

We used simulations to confirm this advantage of correlations for detecting functional 

connections relative to 0 (though this was only true at low levels of noise; see the 

“Simulating the advantage of Pearson correlations for detecting shared signal relative to 0” 

section below). In contrast, the above simulations predict that covariance will be better than 

correlation when testing for functional connectivity change. We test this possibility next.
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Does it matter in practice?: Testing for functional connectivity changes using empirical 
data

We next sought to test if correlation and covariance estimates of functional connectivity 

change differ in a meaningful way across a large set of tasks across a large set of brain 

regions. We estimated functional connectivity using both correlation and covariance during 

each of seven task brain states collected as part of the Human Connectome Project (Barch et 

al. 2013). These were the same subjects as in the resting-state results above (Figure 6), so we 

tested for task-driven changes in functional connectivity from the results above. Focusing on 

one of the tasks as a test case – the “Emotion” task versus rest (Figure 7A) – we found that 

there were 4% more significant functional connectivity differences using covariance than 

correlation, suggesting changes in unshared signal can often cancel out changes in shared 

signal with correlation (consistent with the white diagonal in Figure 5A). Further, we found 

that 37% of the results differed between the methods (e.g., a connection that was 

significantly decreased with covariance but significantly increased with correlation). This 

result strongly suggests that it matters in practice which method is used to estimate 

functional connectivity differences.

Focusing further on the whole-brain “Emotion” task versus rest results (Figure 7A), there 

was general similarity between the results using both methods. For instance, there was a 

general tendency toward reduced functional connectivity within brain systems (i.e., blue 

along the diagonal) and increased functional connectivity across brain systems (i.e., red off 

the diagonal). Notably, however, many increases within the default-mode system with 

correlations were not present with covariance, suggesting reductions in unshared signals 

drove these correlation results (as opposed to an actual increase in shared signals). Further, 

there were increases with covariance between the default-mode and visual systems that 

appeared as significant reductions with correlation. Thus, conclusions regarding these large 

systems-level interaction changes differ across the methods in meaningful ways.

We next quantified these patterns comprehensively across the seven task brain states. We 

found that covariance identified more functional connectivity changes for five of the seven 

tasks (Figure 7B). We used simulations to confirm the generally greater sensitivity of 

covariances (relative to correlations) for detecting shared signal differences (see the 

“Simulating the advantage of covariance for detecting shared signal differences” section 

below). Further, greater than 20% of results differed across the methods for every task 

(Figure 7C). These results again suggest – in a more comprehensive manner – that it matters 

in practice whether correlation or covariance is used when estimating functional 

connectivity differences between brain states.

We next applied the covariance conjunction approach (see Figure 3), in which results are 

only considered to be statistically significant if they agree across both Pearson correlation 

and covariance. As expected, results were both similar and distinct from correlation and 

covariance (Figure 8). The Emotion task differed the most between correlation and 

covariance conjunction at 20% of the results being distinct, while the Gambling task differed 

the most between covariance and covariance conjunction at 27% of the results being 

distinct. While results differed more with covariance, both approaches involved a similar 

order of magnitude difference with covariance conjunction. These results suggest there may 
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have been false positives in both correlations (likely from spurious changes in unshared 

signals) and covariances (possibly from scale/variance changes), which the conjunction 

approach controlled for.

Beyond purely practical implications for which method is used, the above simulations 

suggest the observed effects with correlation have a clearer interpretation when combined 

with covariance (i.e., covariance conjunction). This logic applies not only to the effects that 

differ across the methods, but also to effects that are similar across the methods, since only 

covariance is diagnostic of whether shared signal (rather than unshared signal alone) 

changed in any given comparison.

Explaining empirical differences between correlation and covariance: changes in 
unshared brain activity variance

A key assumption of the mathematical formulation and computational models is that 

unshared variance can change across groups or time, such as when brain processing 

increases or decreases in a neuron (e.g., a change in spike frequency) or a brain region (e.g., 

an increase in fMRI activity amplitude variance). As a first pass at empirically testing this 

assumption, we assessed changes in overall time series variance between each of the 7 tasks 

and rest. We found that the variance of the following percentages of the 264 regions were 

significantly changed from rest for each of the 7 tasks (t-tests paired by subject, p<0.05, 

Bonferroni corrected for multiple comparisons): 97.3%, 98.9%, 73.1%, 56.8%, 79.6%, 

74.2%, 97.7%. Note that because this analysis involved overall variance it did not isolate 

unshared variance changes, but rather indicates a combination of both shared and unshared 

variance changes. We next better isolated unshared variance by regressing out all other 

regions’ time series prior to estimating the variance for each region. This revealed the 

following percentages of regions (analyzed identically to the previous analysis other than the 

additional regressions): 82.2%, 92.0%, 73.5%, 78.4%, 74.6%, 75.4%, 93.9%. Thus, there 

were significant changes in variance unshared between the 264 regions investigated in the 

above analyses, which likely drove the differential results observed between correlation and 

covariance measures reported above. Note that all of these analyses were conducted after 

removing task regressor variance, such that trial-averaged mean amplitude effects are 

unlikely to explain the observed changes in unshared variance. This suggests moment-to-

moment and/or trial-to-trial fMRI signal variability changes between rest and task 

performance – a proof of principle for unshared variance changes due to brain activity 

changes in other contexts (e.g., between groups, individuals, temporal windows).

Details regarding empirically validation of covariance as a functional connectivity measure

The distribution of functional connectivity measures across subjects must be approximately 

normally distributed in order to utilize standard parametric tests to test hypotheses at the 

second (group) level. Fisher’s z-transform is used to allow Pearson correlation to have this 

property. We verified this empirically using a standard test of normality, the Kolmogorov-

Smirnov test. None of the 34716 correlations in Figure 6B significantly deviated from a 

normal distribution (p<0.05, Bonferroni corrected for multiple comparisons). Only 0.3% of 

the 34716 covariance in Figure 6C significantly deviated from a normal distribution 
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(p<0.05, Bonferroni corrected for multiple comparisons). This suggests that it is likely 

appropriate to use second-level parametric tests (e.g., t-tests) with covariances.

The whole-brain pattern of covariances appeared similar to those of correlations. However, 

there were some large deviations in the raw value covariance matrix that were not present in 

the correlation matrix, which were controlled for using group-level t-tests (Figure 6C). 

These deviations reflect the fact that unlike correlations (and group-level t-values) each raw 

covariance value is in units dependent on the regions being tested (region X variance * 

region Y variance units). Thus, if some regions have substantially different activity variance 

amplitudes than most regions they will appear as large deviations in covariance. The 

identified deviations represented only a small fraction of the total number of connections: 36 

covariances above a value of 2000, representing 0.1% of connections. Most of these 

deviations were covariances among subcortical regions. Note that this particular dataset is 

known to have lower subcortical signal-to-noise than most fMRI datasets, given that a 32-

channel head coil was used (Van Essen et al. 2013). Correlations do not show these 

deviations because they standardize their values by dividing by the time series standard 

deviations – a solution to this problem but the cause of the problems identified in the 

simulations. These deviations were eliminated by standardizing covariances at the group 

level using t-tests, which involves dividing each connection’s across-subject mean value by 

its across-subject standard deviation (in contrast to dividing by the standard deviations of the 

time series with correlations).

Simulating the advantage of Pearson correlations for detecting shared signal relative to 0

We found that t-values tended to be higher for correlations than covariances when detecting 

connections (relative to 0) in the empirical data (Figure 6). We next sought to test if this 

effect was present in the simulations. Identifying this effect in the simulations would help 

generalize the result beyond the particular empirical tests we conducted.

We used the same simple simulation setup as used in Figure 1. We found that with small 

amounts of time series noise (0.25; the same as in Figure 1) group analysis t-values (testing 

vs. 0) were consistently much larger with correlations than covariances. To illustrate this we 

ran 100 simulations, finding that the mean correlation-based t-value was 126, while the 

mean covariance-based t-value was 52. We ran a t-test comparing the distributions of 

correlation-based and covariance-based t-values, to establish the consistency of this result: 

t(99)=29, p<0.00001. Importantly, however, this effect went away with high amounts of 

time series noise (4× the amplitude of the shared signal). In this scenario mean correlation-

based t-value was 4.19, while the mean covariance-based t-value was 4.18 (t(99)=0.16, 

p=0.9). This suggests that correlations only have an advantage over covariances at low 

levels of noise. Generally, we found – using both empirical data and simulations – that 

correlations are more sensitive than covariances for detecting shared signal relative to 0.

Simulating the advantage of covariance for detecting shared signal differences

We found with most brain state comparisons that there were more significant differences in 

connectivity when using covariances than correlations (Figure 7) – the opposite of the result 

found when testing for connections relative to 0. We next sought to test if this effect was 
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present in the simulations. Identifying this effect in the simulations would help generalize 

the result beyond the particular empirical tests we conducted.

We found that covariances showed consistently larger t-values when comparing large to 

small amounts of shared signal (the same test as in Figure 1, left side). To illustrate this 

consistency we ran 100 simulations: Mean covariance t-value: 38.83, mean correlation t-

value: 34.82 (difference t(99)=5.05, p<0.00001). Unlike the advantage of correlation for 

detecting effects vs. 0, this result was stable at high levels of noise (4× the amplitude of the 

shared signal). Mean covariance t-value at high noise: 8.23, mean correlation t-value at high 

noise: 7.35 (difference t(99)=5.93, p<0.00001).

In summary, we found – using both empirical data and simulations – that correlations are 

more sensitive for detecting shared signal relative to 0, while covariances are more sensitive 

for detecting differences in shared signal. In most cases, however, we recommend using the 

covariance conjunction approach, which will only be as sensitive as the least sensitive 

measure (in this case correlation). We next examine a case in which one might choose to 

forgo this recommendation in order to take advantage of increased sensitivity of covariance 

to detect functional connectivity change.

Measuring functional connectivity differences across groups: Application to 
schizophrenia

Above we demonstrated the impact of using covariance (versus correlation-like measures) as 

a functional connectivity measure with both simulated and empirically-derived data in 

healthy adults. We next examined if using covariance can have an impact on clinical 

between-group connectivity analyses where it is expected that one group would differ in 

connectivity patterns. To test this hypothesis, we analyzed a large sample of patients with 

schizophrenia (N=71) relative to a group of healthy matched controls (N=74). We focused 

on the statistical relationship between two large-scale neural systems that have been 

repeatedly implicated in schizophrenia – the default-mode network (DMN) and the 

frontoparietal control network (FPCN) (Baker et al. 2014). The networks were defined using 

a voxelwise partition previously identified in healthy adults (Power et al. 2011). We found 

that patients exhibited significantly increased covariance between the DMN and FPCN 

(Figure 9A). Interestingly, the effect was attenuated and no longer significant when using 

correlations (Figure 9C). This discrepancy occurred because of elevated variance within 

both DMN and FPCN for patients relative to controls (Figure 9B). Illustrating the reason for 

this effect, we present the full correlation equation in relation to these data (Figure 9, bottom 

panel). This illustrates that dividing the covariance by a relatively larger variance for 

patients will by definition result in a reduction of the correlation (Yang et al. 2014). 

Collectively, these clinical effects show how use of correlations can obscure a possible 

clinically-relevant difference in connectivity due to alterations in unshared signals. In 

contrast, covariance remained sensitive to the connectivity difference between the DMN and 

FPCN, a hypothesis suggested by recent work (Baker et al. 2014). Note, however, that even 

if there were no differences between covariance and correlation results, the above 

simulations demonstrate that we would gain additional insight into these effects by using 

covariance (e.g., confidence that results were not driven by unshared variance differences 

Cole et al. Page 20

J Neurosci Methods. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between patients and healthy controls). Further, it should be noted that this effect could 

plausibly (but not necessarily) be caused by an overall increase in variance/power, such that 

the increase in functional connectivity is apparent rather than actual. We recommend the 

covariance conjunction approach (Figure 3) in order to help rule out erroneous conclusions.

DISCUSSION

Despite decades of neuroscience research our basic understanding of what constitutes 

functional connectivity change (and how to measure it) is still evolving. Attention has 

recently been drawn to the issue of increased noise in one condition or group producing 

reductions in correlations (and related measures) (Behseta et al. 2009; Friston 2011), 

potentially resulting in false positives and false negatives across a range of studies. We 

postulated that the broader concept of “unshared signal” change is even more problematic 

for correlation-like measures. We reasoned that changes in independent neural processing 

would likely alter correlations despite no change in interactions among the tested regions/

neurons. We verified this concern using a simple and generalizable simulation (Figure 1), 

mathematical theory, as well as a more complex biologically plausible simulation of large-

scale neural dynamics (Figure 5). Across these analyses, we demonstrate that correlation 

changes were difficult to interpret due to their sensitivity to changes in unshared signal. In 

contrast, we demonstrate that covariance was sensitive to shared signal alone, increasing the 

interpretability of observed functional connectivity change. This was especially true for 

cases in which both covariance and correlation agree: the covariance conjunction approach. 

Following these simulations, we applied this method to empirical datasets, finding that it 

mattered in practice which functional connectivity measure was used, and that covariance 

provided robust results for both within-subject and across-group functional connectivity 

changes. Even if results had been less robust with covariance, however, we would still 

recommend its use as our comprehensive characterization of the relevant parameter space 

(Figure 4) indicates this measure – especially when combined with more standard measures 

– yields increased interpretability of functional connectivity effects generally.

Our findings suggest results reported by most previous studies of functional connectivity 

change (even most that did not use correlations, such as those using PPI) are difficult to 

interpret because of ambiguity concerning shared versus unshared signal contributions. This 

includes any studies involving a difference in functional connectivity estimates, such as 

across groups (e.g., clinical studies), tasks, individuals (e.g., individual difference 

correlations), or dynamics (e.g., resting-state dynamics across temporal windows). Note that 

correlation-based studies seeking to simply identify any difference (e.g., between groups) 

are likely valid in their identification of differences. However, due to the ambiguity of 

correlation-like measures, such studies may have misinterpreted results in terms of brain 

interaction change. The ability to accurately interpret observed differences will be important 

moving forward, given the ultimate neuroscientific goal of increasing mechanistic 

understanding of brain processes (rather than, e.g., simply identifying ambiguous group 

differences).

To further illustrate the difficulty of interpreting changes in correlation-like measures, 

consider the possible range of distinct interpretations (as established by the simulations 
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above) of an observed increase in correlation between two regions’ time series: (1) 

decreased independent activity in region X and/or Y, (2) decreased interaction between Y 

and another region Z resulting in less unshared signal in region Y (Figure 2), (3) increased 

interaction between X and Y. Covariance is also problematic, though less so, as an increase 

in covariance would have only two viable interpretations: (1) increased interaction between 

X and Y, or (2) increased overall variance/power in either X and/or Y. In contrast, an 

increase in the covariance conjunction measure (combining correlation and covariance) 

would have only a single viable interpretation: increased interaction between X and Y.

Correlations have been historically favored over covariance in many scientific applications 

because correlations are normalized by variance, making them insensitive to changes in 

scale and facilitating comparison across studies. These constitute major advantages in some 

cases, but we found that normalization by variance has unintended consequences when 

estimating functional connectivity differences. Rather than simply estimating change in an 

abstract measure of association, differences in correlation can be driven by changes in the 

unshared variance component, such that the very aspect we are trying to “control for” (the 

overall variance) actually drives the measured effect. This is not an issue only for 

correlation, but any measure that normalizes by some form of variance (or entropy), such as 

coherence, regression, and mutual information (Figure 4). We found that simply removing 

variance normalization from correlation (i.e., using covariance) circumvented these issues. 

We suggest that removing variance normalization from other measures may help solve this 

problem in other cases when estimating connectivity change (see Results for preliminary 

evidence with coherence). Such measures without variance normalization could then be 

combined with the original measures to allow implementation of the covariance conjunction 

approach – ruling out spurious changes in functional connectivity due to either changes in 

unshared variance or overall variance/power.

Limitations

As outlined above, there are several issues to consider when using covariance. First, since 

covariance is sensitive to changes in scale, care should be taken to ensure no scale shifts 

have occurred across conditions/groups/individuals that are being compared. Note, however, 

that this same issue is often present when comparing brain activity magnitudes across 

conditions/groups/individuals, such that this issue may be no worse here than in most 

existing neuroscientific studies of brain function (which have tended to test for activation 

magnitude changes rather than functional connectivity changes). Our recommendation is to 

sidestep this issue using the conservative “covariance conjunction” approach (Figure 3).

Another potential issue with covariance is its non-standard units: each covariance estimate is 

in units of region X activity * region Y activity. This reflects the non-normalized nature of 

covariance relative to correlation. This is not an issue in the case of functional connectivity 

change for a given pair of regions since the compared conditions/groups/individuals always 

have the same units (i.e., region X activity * region Y activity). This is problematic for 

performing across-connection comparisons, however, just as across-region activity 

comparisons are problematic with some methods (e.g., fMRI (Handwerker et al. 2004)) due 

to potential differences in activation scale across regions. However, we found that 
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covariances could be normalized at the group level (using inter-subject variance) with t-

tests, which eliminated scale differences across covariances (Figure 6). Note that having 

distinct units across connections may be an issue for some graph theoretical (Bullmore and 

Bassett 2011) analyses (especially at the single-subject level) that focus on network 

topology (e.g., community detection) but potentially not for others (e.g., degree centrality).

Using covariance does not eliminate all issues present when using correlation-like measures 

to estimate functional connectivity change. For instance, like correlations (Smith et al. 

2011b), covariances do not estimate directionality of functional connectivity changes. It will 

be important to determine which of the existing directional/effective connectivity methods 

(Friston et al. 2003; Roebroeck et al. 2005; Nolte et al. 2008; Ramsey et al. 2011; Smith et 

al. 2011b) involve variance normalization, and if all of them do, then it will be important to 

develop new approaches that do not involve this analysis step for studies examining 

effective connectivity change. Importantly, there is already evidence of advantages when 

using an unnormalized version of a popular form of effective connectivity, Granger causality 

(Angelini et al. 2010; Stramaglia et al. 2015).

Another limitation is that, like correlations and most other functional connectivity measures 

(Smith et al. 2011b), covariances do not indicate if two regions are interacting directly or 

indirectly via a third (or fourth, fifth, etc.) region(s). This affects interpretation, but is often 

not problematic as long as it is taken into account. It may be possible, however, to estimate 

direct functional connectivity change using some form of partial correlation (or multiple 

regression) (Marrelec et al. 2006; Liang et al. 2011; Smith et al. 2011b; Ryali et al. 2012). It 

is important to note that partial correlation involves variance normalization and therefore 

faces limitations similar to standard correlations with respect to changes in unshared 

variance. Also note that, despite its name, inverse covariance also involves variance 

normalization. In the future it may be useful to identify partial correlation-like approaches 

that are adapted to not include variance-based normalization. One promising possibility is to 

use multivariate Granger causality without variance-based normalization (Angelini et al. 

2010; Stramaglia et al. 2015), which estimates all time series simultaneously to achieve the 

main benefits of partial correlation in the context of directional connectivity. Note, however, 

that potential issues with using Granger causality with fMRI have been identified (Smith et 

al. 2011a; 2011b), such that this approach may be best applied to other modalities such as 

EEG. The inability to infer whether two regions are interacting directly notwithstanding, the 

present results suggest using covariances provides increased confidence that a change in 

connectivity between two regions reflects their shared signal change (irrespective of whether 

this occurred via a 3rd region; see Figure 2).

We recommend the use of covariance conjunction, in which the results of correlation and 

covariance analyses are combined, in order to remain conservative. This combines the 

benefits of both correlation (insensitivity to overall variance scaling) and covariance 

(insensitivity to changes in unshared variance) in terms of reducing Type I errors (false 

positives). However, as illustrated in Figures 4 and 5, this comes with the possibility of 

increased Type II errors (false negatives). For instance, a real increase in interaction may be 

accompanied by increases in independent processing in each tested region (unshared signal), 

resulting in an increase in covariance but not correlation. This would lead to a false negative 
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when using the conjunction approach. We nonetheless recommend this approach given the 

possibility that an increase in both shared and unshared signal may also reflect an overall 

variance increase. It will be important for future work to look for ways to maintain all the 

benefits of covariance without its potential drawbacks.

We found that, in contrast to functional connectivity changes, correlations may be better for 

detecting the absolute presence of functional connections relative to zero. This supports the 

use of correlations to detect the absolute presence of functional connectivity, as performed 

by many resting-state functional connectivity studies (Biswal et al. 1995; Power et al. 2011; 

Yeo et al. 2011). Importantly, however, we reached the opposite conclusion in the case of 

detecting functional connectivity change.

Interpreting covariance differences in the empirical datasets

We specifically focused on functional connectivity differences between an emotion task and 

rest (Figure 7A), identifying numerous differences between the measures. There were 

similarities between the methods as well, however. For instance, there were within-network 

decreases for motor, auditory, and visual systems across both methods, consistent with 

recent findings (Cole et al. 2014). Notably, these decreases were more robust when using 

covariance, even extending the within-network decreases to other systems. This suggests 

that such within-network decreases in functional connectivity are either more widespread 

than indicated by correlations or, alternatively, that these decreases are largely due to 

decreases in overall variance/power. It will be important for future research to investigate 

the possible mechanisms underlying such widespread within-network decreased covariance. 

One possible interpretation is that task-focused attention (“cognitive set”) (Duncan 2013) 

requires reduced interactions within most brain systems to facilitate selection of task-

relevant regional interactions, possibly including primarily inter-system interactions (e.g., 

visual-to-motor system interactions in a visual-motor task). This possibility is consistent 

with our recent study demonstrating extensive intersystem interaction changes across a 

variety of tasks (Cole et al. 2013). Note that in addition to using correlation and PPI we also 

found those effects using covariance differences (see that paper’s supplementary results) 

(Cole et al. 2013).

There is growing interest in establishing functional connectivity differences across different 

groups and clinical states to characterize dysfunctional neural dynamics. Functional 

connectivity has become a particularly powerful and widely used approach to characterize 

large-scale neural dynamics in severe neuropsychiatric illnesses such as schizophrenia 

(Anticevic et al. 2013; 2014). Use of correlation in such cases could be problematic for the 

same reasons articulated above: correlation differences can be driven by changes in 

unshared signal in one group relative to another, resulting in false positives or false 

negatives. To provide evidence for this, we examined functional connectivity differences 

between patients diagnosed with chronic schizophrenia and healthy controls. We focused on 

two well-characterized systems with known disruptions in schizophrenia (Baker et al. 2014): 

DMN and FPCN. As predicted, we found that covariance revealed a connectivity alteration 

in patients relative to controls that was not evident when using correlations – consistent with 
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our network simulations and demonstrating that covariance can reveal a distinct set of 

functional connectivity differences from correlation in a clinical context.

Practical recommendations for the use of covariance as a functional connectivity measure

We have demonstrated the complexity of interpreting changes in correlation (and a variety 

of other measures), and the relatively improved clarity of interpreting changes in covariance. 

This suggests covariance may be preferred when testing for brain interaction changes. 

Despite this, caution suggests the use of more typical functional connectivity measures in 

addition to covariance. As outlined above (Figure 3 and Figure 8), one possibility would be 

to conduct both correlation and covariance analyses, assigning the most confidence to results 

that are consistent across both approaches. In addition, there may be cases in which 

correlation is more sensitive than covariance, such as when each subject’s data are scaled 

differently. In such cases there would be additional irrelevant inter-subject variance that 

would reduce statistical confidence in effects of interest. In cases where within-subject 

manipulations are used, subtracting covariances prior to the group analysis (as in a paired t-

test) can reduce such inter-subject variance concerns. Alternatively, after subtracting 

covariances at the single subject level the resulting difference can then be divided by the 

standard deviation (aggregate across both conditions) to rescale the result prior to group 

analysis. Finally, it may be possible in some cases to rescale time series based on the time 

series mean – a percent signal change normalization approach often used with fMRI that is 

unlikely to be biased by changes in unshared variance.

Conclusion

We used mathematical and biologically realistic simulations to arrive at a theoretically 

important conclusion: variance normalization (as performed by most commonly used 

measures) can obscure estimates of functional connectivity change. This applies primarily to 

cases that involve unshared signal alterations, though even cases without such alterations are 

obscured for the investigator due to uncertainty whether such unshared signal alteration 

occurred (e.g., in Figure 7A decreased correlations were only interpretable due to similar 

decreases in covariance). This theoretical insight, corroborated by empirical evidence, has 

implications for a wide variety of previous and future studies, as estimating functional 

connectivity change is central to understanding the functional relevance of brain connections 

(by associating them with task conditions, individual differences, and group differences) and 

for characterizing brain connectivity dynamics. Removing variance normalization from 

other measures may similarly improve clarity in other context as well (e.g., lag-invariant 

functional connectivity using coherence). Generally, these findings suggest a need to 

reconceptualize functional connectivity change in terms of shared signal differences, rather 

than in terms of abstract measures of association that may obscure effects of interest.
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Highlights

• Interpretability limits of functional connectivity measures identified with 

modeling

• Most connectivity measures can change with no brain region interaction change

• Decomposition of correlation reveals covariance as an important check on 

results

• Empirical tests demonstrate that covariance and correlation often differ in 

practice

• Even when results are identical between methods covariance provides an 

important check
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Figure 1. Differences between correlations and covariances for estimating functional 
connectivity differences
A) Diagrams and equations illustrating simulated communication changes between brain 

regions (or neurons) X and Y. Left, only the portion of the time series shared across both 

regions is amplified relative to the unshared and noise portions. Center, only the unshared 

portion is amplified. Right, both the shared and unshared portions are amplified. B) A single 

subject’s simulated data are shown for illustration across the three conditions. Results of the 

group simulation are shown in the upper left of each panel. The correlation (corrdiff) and 

covariance (covdiff) results are in agreement when only shared signal is increased, but not 

for the other two cases.
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Figure 2. Differences between correlations and covariances for estimating functional 
connectivity differences, due to interaction with a third region
Interaction between region Y and Z can stand in for “unshared signal” (in Figure 1) when 

testing for functional connectivity differences for regions Y and X. A) Diagrams and 

equations illustrating simulated communication changes between brain regions (or neurons) 

X, Y, and Z. Left, only the portion of the time series shared between regions X and Y is 

amplified in region Y. Center, only the portion shared between regions Z and Y is amplified 

in region Y. Right, the XY shared and ZY shared portions are both amplified in region Y. B) 

A single subject’s simulated data are shown for illustration across the three conditions. 

Results of the group simulation are shown in the upper left of each panel. The correlation 

(corrdiff) and covariance (covdiff) results are in agreement when only XY shared signal is 

increased, but not for the other two cases. This suggests correlation-like measures are 

sensitive to a wider variety of interactions irrelevant to the interactions between the two 

regions being tested.
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Figure 3. 
A flowchart illustrating a “covariance conjunction” approach to interpreting functional 

connectivity differences. A similar line of reasoning would also work for most functional 

connectivity measures (not just correlation; e.g., PPI). Note that simply using covariance 

would result in a simpler line of reasoning: a significant covariance difference signifies a 

shared variance difference. However, as noted, a potential confound related to a change in 

overall variance could invalidate a result significant for covariance only. We suggest that the 

most conservative approach involves conducting both covariance and correlation analyses, 

assigning the most confidence to results that are consistent across both approaches (the 

upper-most route in the flowchart).
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Figure 4. All possible shared and unshared variance change combinations
A) The full parameter space is shown for changes in shared and unshared variance relative 

to a central point (in white). The correlation and covariance values were calculated using the 

simple mathematical formulation described in the Results section (not the simulations, 

though note the similarity to results with the realistic neural simulations presented in Figure 

5). The boxed numbers refer to the combinations listed in part B. B) Group simulation 

results (using the same methods as Figure 1) are shown across all possible manipulations of 

shared variance and unshared variance (p<0.05). Figure 1 illustrates cases 2, 4, and 1. Note 

that correlation and covariance give different answers in 4 out of the 8 cases, and that 

covariance matches shared variance changes in all cases. The suggested covariance 

conjunction approach results are highlighted in green. A variety of other common functional 

connectivity measures are also included to illustrate how general these results are.

Code for these simulations can be found at: https://github.com/ColeLab/simplesims/ + 

increase, 0 no change, - decrease, cov=covariance, scov=spectral covariance, corr=Pearson 

correlation, coh=coherence, MI=mutual information, reg=regression, PPI=psycho-

physiological interaction, spcorr=Spearman correlation.

Cole et al. Page 34

J Neurosci Methods. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ColeLab/simplesims/


Figure 5. Neurobiologically realistic simulations reveal the relationship between network 
changes and functional connectivity measures
A) Shared and unshared neural signals were systematically manipulated across 66 simulated 

brain regions. The two-dimensional parameter space illustrates the effects of these 

manipulations for correlations (corr, squares, far right color bar) and covariances (cov, 

circles in each square, the adjacent color bar), averaged across all connections for parsimony 

(i.e., global connectivity across the entire set of simulated regions). The color scales indicate 

increases (red) and decreases (blue) relative to the central point in the parameter space 

(white, marked with gray border). The approximate portion of the parameter space in which 

both correlation and covariance gave the same results (i.e., the conjunction) is highlighted 

by green triangles in the upper left and lower right corners. Note that these large-scale neural 

network dynamics are nearly isomorphic to the pure mathematical solution (see Figure 4A), 

supporting the theoretical formulation. B) The same simulations for each variable in one 

dimension, indicating that simulations of a neurobiologically realistic network are consistent 

with the simpler simulations in Figure 1. Note that correlation here (as throughout this 

article) is the Fisher’s Z-transformed Pearson correlation, which can exceed 1.
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Figure 6. Validating covariance by estimating functional connectivity relative to zero
A) A set of 264 previously identified regions were used because of an associated partition 

consistent with known neural systems (e.g., visual, auditory, default-mode). B) Standard 

resting-state functional connectivity estimation with fMRI was carried out with 118 subjects 

using Pearson correlation. Group t-tests versus 0 are reported for each connection, placing 

correlation results on the same scale as covariances. Labels are indicated on the right for the 

putative systems that the regions group into based on functional connectivity (Power et al. 

2011). C) The analysis was repeated using covariance, resulting in a virtually identical 

whole-brain functional connectivity pattern (r2=0.98, p<0.00001 between the correlation and 
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covariance t-value matrices). Results were similar for raw correlation and covariance 

matrices, and without global signal regression. These results validate covariance as a 

functional connectivity measure, while the following results focusing on functional 

connectivity change demonstrate distinctions between the measures.
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Figure 7. Correlation versus covariance across major brain systems and diverse cognitive 
domains
A) T-tests compared all 34716 connections for an example task (the Emotion task) versus 

rest (p<0.05, corrected for multiple comparisons), separately using correlation and 

covariance. There was a rough similarity in the pattern of results, but also noticeable 

differences. Generally, there were many differences across methods that would alter 

interpretation of functional connectivity effects. Further, the above simulations suggest any 

observed difference with covariance has a clearer interpretation (i.e., results are unlikely to 

be driven by unshared signal changes). B) The percentage of connections significantly 

changed (each task versus rest) was computed when using covariance and correlation, then 

subtracted. Results from all seven tasks are shown. C) The percentage of the time that 

covariance and correlation gave different answers. For each task, the total number of 

differences in results (e.g., a connection that was significantly increased with covariance but 
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significantly decreased with correlation) divided by the total number of significant results 

across both covariance and correlation approaches.
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Figure 8. The covariance conjunction approach
A) The statistically significant correlation (p<0.05, FDR corrected) and statistically 

significant covariance (p<0.05, FDR corrected) results from Figure 7A were combined via 

conjunction to implement the “covariance conjunction” approach. Conjunctions were 

calculated separately for increases and decreases from 0. B) The percentage of different 

results between covariance conjunction and correlation are shown. C) The percentage of 

different results between covariance conjunction and covariance are shown.
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Figure 9. Detected disruptions across functional networks in schizophrenia differ between 
covariance and correlation
A) Here we show altered covariance structure between large-scale associative networks in 

schizophrenia (SCZ), similar to recent findings (Baker et al. 2014) [t(143)=2.37, p=0.019, 

Cohen’s d=0.4]. B) We recently discovered elevated variance across the entire brain in 

chronic SCZ, which was particularly evident for associative networks (Yang et al. 2014). C) 
Based on this elevated non-shared variance, it follows that the difference in correlations 

between SCZ and healthy control subjects (HCS) across the two networks will be attenuated 

and no longer reveal a significant clinical effect [t(143)=1.48, p=0.14, Cohen’s d=0.25]. The 

equation on the bottom is presented for illustrative purposes, to highlight the importance of 

carefully decomposing the final correlation into variance and covariance components 

(Figure 3). FPCN, fronto-parietal control network; DMN, defaultmode network.
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