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Abstract

Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are 

highly dependent on interactions with the tissue microenvironment for their survival and 

proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells 

(NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells 

through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor 

(TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms 

activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic 

tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the 

Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta 

(PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new 

therapeutics in this disease. We here review the cellular and molecular characteristics of CLL 

cells, and discuss the cellular components and key pathways involved in the cross-talk with their 

microenvironment. We also highlight the relevant novel treatment strategies, focusing on 

immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-

microenvironment interactions.
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1. Background

Chronic Lymphocytic Leukemia (CLL) is the most frequent leukemia in the Western World, 

with an estimated incidence of about 4.5 new cases per 100.000 individuals annually and a 
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median age at diagnosis of 72 years. CLL is characterized by the clonal expansion and 

accumulation of mature CD19+CD5+ B lymphocytes in the peripheral blood, bone marrow 

and secondary lymphoid organs. CLL cells are phenotypically similar to antigen-

experienced B cells, and express high levels of surface molecules (such as CD23, CD25, 

CD69 and CD71) that are up-regulated after antigen encounter, and low levels of markers 

down-regulated following cellular activation, such as CD22, Fc gamma receptor IIb and 

CD79b [1]. In addition, they express the memory B-cell marker CD27 [2] and show gene 

expression profiles similar to memory B cells [3]. The cellular origin of CLL is still debated, 

although transcriptome analyses of CLL and normal B-cell subsets from human blood and 

spleen revealed that CLL cells carrying unmutated immunoglobulin heavy chain variable 

region (IGHV) genes (U-CLL) derive from unmutated mature CD5+ B cells and CLL cells 

carrying mutated IGHV genes (M-CLL) derive from a distinct, previously unrecognized 

CD5+CD27+ post-germinal center B-cell subset [4].

2. Biological and genetic features of CLL cells

CLL has a very heterogeneous clinical course; some patients experience very stable disease 

without requirement for therapy, while others show more aggressive disease and require 

early treatment. Clinical and biological prognostic factors have been identified that help to 

define the risk for disease progression in individual patients and to develop personalized 

treatment strategies. The most important prognostic factors are the clinical staging systems 

developed by Rai [5] and Binet [6], serum markers including β2 microglobulin levels [7], 

thymidine kinase levels [8], and soluble CD23 levels [9], cellular markers including CD38 

[10] and ζ chain associated protein kinase 70 (ZAP70) [11, 12], and genetic parameters 

including the mutational status of IGHV genes [10, 13], and cytogenetic aberrations [14].

CD38 is a transmembrane protein that supports B-cell interaction and differentiation through 

the binding of CD31 [15], a cell-adhesion molecule expressed by cells of the CLL 

microenvironment, including nurselike cells (NLCs) [16] and T lymphocytes [17]. Patients 

with high CD38 expression have a faster progression and a shorter life expectancy [10]. 

ZAP70 is a key signaling molecule in T and NK cells, and is structurally homologous to 

spleen tyrosine kinase (SYK). ZAP70 enhances BCR signaling [18] and patients whose cells 

express high levels of ZAP70 protein have a more aggressive disease course [11, 12]. The 

mutational status of IGHV genes has a very strong prognostic significance. U-CLL cases 

carry BCRs with ≥98% homology with the corresponding germline sequence and show a 

more aggressive disease and a shorter median survival time compared to M-CLL (<98% 

homology) [10, 13]. Additional categorization of CLL into “subsets” based on common 

IGHV gene expression and shared BCR structure has been described (reviewed in [19]). 

There is a significant correlation between selected cytogenetic abnormalities and CLL 

patients’ survival. In previously untreated CLL patients, frequently found aberrations are 

13q deletions (55%), chromosome 12 trisomy (15%), 11q deletions (12%) and 17p deletions 

(8%) [14, 20]. Patients carrying 13q deletions generally have low-risk disease and a 

favourable outcome [14]. The deleted region comprises two miRNAs, miR-15-a and 

mir-16-1, that are highly expressed in normal CD5+ B cells, where they may act as negative 

regulators of the anti-apoptotic molecule B-cell lymphoma 2 (BCL2) [14]. A mouse model 

with a targeted deletion of miR-15-a and mir-16-1 locus has been generated and 
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recapitulates many features of CLL [21]. 17p and 11q deletions, comprising the p53 and the 

ataxia telangiectasia mutated (ATM) genes, respectively, are predictors of poor clinical 

outcome [14]. Whole genome/exome sequencing analyses of CLL samples identified 

additional recurrent mutations (> 5% cases at diagnosis) (reviewed in [22]) affecting 

NOTCH1 [23, 24], splicing factor 3B subunit 1 (SF3B1) [25, 26], baculoviral IAP repeat 

containing 3 (BIRC3) [27] and myeloid differentiation primary response (MYD88) genes 

[23]. These mutations are generally enriched in CLL patients that have transformed to 

Richter’s syndrome [24], or in progressive/refractory CLL cases [25, 26]. Recent studies 

[28, 29] have provided insight into the accumulation of subclonal variants in the CLL clone 

overtime, including ATM [28], TP53 [28, 29], SF3B1 [29] and NOTCH1 mutations [29], 

which depends both on the ability of each mutation to provide survival advantage to the cells 

in terms of proliferation and/or protection from apoptosis, as well as on the accumulation of 

selected high-risk mutations after treatment.

3. The CLL microenvironment

CLL cell interactions with the supportive tissue microenvironment play a critical role in 

disease pathogenesis [30]. CLL cells recirculate between peripheral blood and secondary 

lymphoid organs, where they proliferate in distinct tissue areas, termed “pseudofollicles”, at 

a daily birth rate of approximately 1–2% of the entire clone, as determined by deuterated 

water labeling [31]. Homing to tissues is dependent on a tightly regulated interaction 

between chemokines that are secreted by stromal cells within the tissues, which attract and 

retain CLL cells to tissues sites via corresponding chemokine receptors, in cooperation with 

adhesion molecules on the leukemia cells and respective tissue ligands. Over the years, 

several cellular components of the CLL microenvironment have been described, along with 

the signaling pathways involved in CLL homing, survival and proliferation, which now 

provides a rationale for targeting the CLL microenvironment.

3.1 Nurselike cells and mesenchymal stromal cells

NLCs represent a critical component of the CLL microenvironment (Figure 1 and Table 1). 

NLCs are cells of monocytic origin, which spontaneously differentiate in vitro from 

monocytes in high-density cultures of CLL peripheral blood mononuclear cells [32] and 

which can be found in situ in lymphoid organs from CLL patients [33, 34]. Gene expression 

profile analyses of CLL cells after CLL-NLC co-culture showed that NLCs activate the 

BCR and nuclear factor kappa B (NF-κB) signaling pathways in CLL cells [35]; similar 

gene signatures were identified in CLL cells isolated from lymph nodes of patients [36], 

demonstrating that NLCs are a valid model for studying the CLL microenvironment. NLCs 

induce chemotaxis and promote survival of CLL cells through secretion of chemokines C-X-

C motif ligand 12 (CXCL12) [32] and CXCL13 [34], and expression of TNF family 

members B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) [37], 

and they promote CLL disease progression in vivo in mouse models of CLL [38, 39]. NLCs 

express antigens that can activate the BCR on CLL cells, including vimentin and calreticulin 

[40]. They also express CD31, the ligand for CD38, which is expressed on CLL cells [16]. 

The mechanism through which NLCs differentiate in vitro remains incompletely defined; a 

recent study demonstrated that high mobility group box 1 (HMGB1) released by CLL cells 
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can stimulate NLC differentiation through activation of the receptor for advanced glycation 

end-product (RAGE)- toll like receptor 9 (TLR9) pathway [41]. Gene expression profile 

analyses have shown that NLCs exhibit an M2-like phenotype of tumor associated 

macrophages (TAMs) [42, 43] and it was recently demonstrated that the M2-phenotype 

skewing is further promoted by nicotinamide phosphorybosiltransferase (NAMPT), the 

enzyme responsible for nicotinamide adenine dinucleotide (NAD) biosynthesis, which is 

produced at high levels by CLL cells [44]. Additional studies have shown that monocytes, 

protect CLL cells from in vitro apoptosis by secreting soluble CD14, which activates NF-κB 

in CLL cells [45], and induce gene expression profile changes in CLL including 

inflammatory cytokine production [46].

Mesenchymal stromal cells, such as bone marrow stromal cells (BMSCs), are “feeder” 

layers for normal hematopoietic progenitor cells and contribute to normal bone marrow 

architecture. Mesenchymal stromal cells are also commonly found in secondary lymphatic 

tissues of CLL patients [47], where they provide survival and migration signals to CLL cells 

(Figure 1 and Table 1). CLL cells are protected from spontaneous and drug-induced 

apoptosis by direct contact with BMSCs [48, 49], and they are able to co-opt and disrupt 

normal bone marrow architecture [50]. Stromal cells constitutively secrete chemokines, 

which organize CLL-cell trafficking and tissue homing [51], and provide additional signals 

that support CLL survival and promote drug resistance. BMSCs induce up-regulation of 

aggressive disease markers in CLL cells, including ZAP70 and CD38, as well as down-

regulation of C-X-C motif receptor 4 (CXCR4) [52]. BMSCs have also been recently shown 

to down-modulate CD20 expression from the surface of CLL cells [53], with implications 

for resistance to anti-CD20 antibody treatment. In addition, stromal cells promote 

glutathione synthesis in CLL cells [54], and induce glycolysis through NOTCH-mediated c-

MYC activation, thus promoting cell survival and drug resistance [55]. Not only CLL cells 

benefit from bone marrow stroma contact, the stromal cells in turn also become activated by 

CLL cells, with induction of protein kinase C beta II (PKCβII) expression and NF-κB 

pathway activation [56]. CLL cells are also able to release microvesicles, which are enriched 

in activated signaling proteins [57] and can activate the AKT pathway in BMSCs [58], 

supporting the relevance of a bidirectional cross-talk between CLL cells and stromal cells.

3.2 Endothelial cells and follicular dendritic cells

Additional cellular elements in the CLL microenvironment include endothelial cells and 

follicular dendritic cells (FDCs) (Figure 1 and Table 1), which are essential for tissue 

homing and CLL retention to tissues. Adhesion to microvascular endothelial cells promotes 

CLL survival, activation and drug resistance [59–63]. CLL cells bind to β1 and β2 integrins 

[62] and to BAFF and APRIL on the surface of microvascular endothelial cells [60]. In 

addition, endothelin 1 (ET-1) engagement on CLL cells by endothelin subtype A receptor 

(ETAR) on endothelial cells promotes CLL survival and drug resistance, which can be 

blocked by ETAR inhibition [63]. In vitro culture with FDCs rescues CLL cells from 

spontaneous apoptosis by direct cell contact, dependent on ligation of CD44 on CLL cells 

and subsequent up-regulation of myeloid cell leukemia 1 (MCL1), a member of the BCL2 

family of anti-apoptotic proteins [64]. The CD100/plexinB1 cross-talk also appears to be 

involved in this context [65]. Reciprocal cross-talk between CLL cells and FDCs via the 
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CXCR5-CXCL13 and the lymphotoxin beta receptor (LTβR)/lymphotoxin alpha beta 

(LTαβ) signaling pathways is essential for CLL positioning within lymphoid follicles and 

for leukemia progression in vivo in the EμTCL1 mouse model of CLL [66].

3.3 T and NK cells

Interactions between CD40-expressing B cells and CD40 ligand (CD40L) on activated 

CD4+ T cells are critical in the context of antigen presentation and induction of normal B-

cell responses [67]. Similarly, activation of malignant B cells by CD40 ligation promotes 

survival of CLL cells [68] (Figure 1 and Table 1). In CLL, the overall number of circulating 

T cells, oligoclonal in both the CD4+ and the CD8+ compartment, is increased, though their 

functionality appears to be compromised [69]. Increased numbers of effector memory CD4+ 

cells and terminally differentiated CD8+ lymphocytes associate with a more advanced 

disease stage [70]. CD4+ and CD8+ cells fail to form functional immune synapses [71, 72], 

show reduced Rho GTPase mediated T-cell motility [73] and display higher expression of 

exhaustion markers including programmed cell death protein 1 (PD-1) [70, 74, 75]; 

accordingly, CLL cells express high levels of PD-1 ligand (PD-L1) [70, 72]. Interference 

with the PD-1/PD-L1 axis by PD-L1 blocking antibodies prevents CLL development and 

restores immune effector functions, including those of T cells and macrophages, in the 

EμTCL1 adoptive transfer model of CLL [76]. T cells from CLL patients additionally show 

increased expression of the inhibitory receptor cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4) [77] and increased proliferation when CTLA-4 is blocked with anti-CTLA-4 

antibodies [77]. Over the years, several studies have also reported defective NK-cell 

function. Human leukocyte antigen G (HLA-G) molecule overexpression in the plasma of 

CLL patients [78] induces NK-cell apoptosis and impairs NK-cell mediated cytotoxicity. 

Reduced NK-cell cytotoxicity has been associated to low expression levels of the activating 

receptors natural killer cell p30-related protein (NKp30) [79, 80] and natural killer group 2 

member D (NKGD2) [81]; NK cells can also produce soluble BAFF, which interferes with 

NK-cell mediated CLL cell lysis after rituximab administration [82], and show reduced 

responses to the activating soluble BCL2-associated athanogene 6 (BAG6) ligand produced 

by CLL cells [79]. Taken together, these findings indicate that both the T and NK-cell 

compartments have overall reduced effector activities, which can explain the evasion of 

CLL cells from immune-mediated destruction.

3.4 Chemokines and adhesion molecules

CLL cell trafficking and homing to tissue microenvironments is tightly regulated, involving 

activation of chemokine receptors and adhesion molecules on the CLL cells. CLL 

chemotaxis towards stromal cells is promoted by the chemokine CXCL12 (previously called 

stromal cell derived factor 1 or SDF-1), which is secreted both by BMSCs [83] and by NLCs 

[32] (Figure 1 and Table 1). Additionally, NLCs secrete the chemokine CXCL13 [34], 

which attracts CLL cells through interaction with its receptor, CXCR5 [34]. High levels of 

CXCR4+ cells have been associated with higher risk of lymphoid organ infiltration and 

poorer disease outcome [84], as well as higher responsiveness to BCR stimulation [85]. 

CXCR4 surface expression is stabilized through hyper-phosphorylation mediated by proviral 

integration site for moloney murine leukemia virus (PIM) kinase [86] and regulated by 

receptor endocytosis after CXCL12 binding [87]; consequently, CXCR4 surface levels are 
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low in lymph nodes and bone marrow of CLL patients, where CXCL12 levels are high [88]. 

CXCR4 is in close proximity to CD38 on the surface of CLL cells, and CD38 synergizes 

with CXCR4 signaling to promote homing and chemotaxis to CXCL12 [89]. CLL cells 

expressing high levels of ZAP70 [90], CD38 [15] and very late antigen-4 (VLA-4) integrins 

[91] show higher chemotaxis towards CXCL12, and a higher degree of extravasation in an 

in vitro model of CLL migration [92]. CXCR4 stimulation is associated to prolonged CLL 

cell survival in vitro [32, 37] and activation of extracellular signal-regulated kinase (ERK) 

kinase and signal transducer and activator of transcription 3 (STAT-3) signaling [93, 94]. 

The integrin VLA-4 interacts with CD38 molecule [95], is involved in CLL-cell adhesion to 

stroma [96] and its expression is associated with inferior clinical outcome of patients [97]. 

Another layer of complexity is added by chemokines secreted by the CLL cells themselves. 

Activated CLL cells secrete high levels of the chemokines C-C motif ligand 3 (CCL3) and 

CCL4 following BCR stimulation or after co-culture with NLCs [35] and higher plasma 

levels of CCL3 and CCL4 in CLL patients are associated with an inferior clinical outcome 

[98]. CCL3 and CCL4 presumably recruit T cells and monocyte/macrophages to tissue sites 

for interactions with CLL cells [99, 100]. In addition, CLL cells activated via CD40 secrete 

CCL17 and CCL22 [101, 102], which also can recruit T cells [101].

3.5 Angiogenic factors

In the normal bone marrow, balanced expression of pro- and anti-angiogenic factors, in 

concert with chemokines and cytokines, supports stable tissue maintenance and tissue 

homeostasis; imbalances between pro- and anti-angiogenic factors result in pathological 

angiogenesis. There is now more than circumstantial evidence supporting a role for 

angiogenesis in CLL pathogenesis. Microvessel density is increased in bone marrow 

biopsies of CLL patients [103] and angiogenic factors are expressed by CLL cells, including 

vascular endothelial growth factor (VEGF) [104], which is also a negative prognostic 

indicator [105]. CLL cells express VEGF receptors [106], and high levels of neuropilin-1 

(NRP1), a VEGF coreceptor [107]. The levels of two other important angiogenic factors, 

basic fibroblast growth factor (bFGF) [108] and platelet-derived growth factor (PDGF) 

[109] are increased in CLL patients and correlate with disease stage and chemotherapy 

resistance. Interaction of mesenchymal stromal cells with CLL cells increases the production 

of VEGF and PDGF [110]; in turn, PDGF binding activates the AKT pathway in stromal 

cells with subsequent secretion of additional VEGF [109]. High levels of angiogenic factors 

may decrease the stability of the endothelial cell layer, thus allowing neo-angiogenesis and 

transendothelial migration of CLL cells. Neo-angiogenesis can be targeted with 

immunomodulatory agents including lenalidomide, which reduces both VEGF and bFGF 

levels and increases the stability of the endothelium [111].

4. B-cell receptor signaling in CLL

The B-cell receptor is a multimeric complex composed by the antigen-specific surface 

immunoglobulin (sIg) and the Ig-α/Ig-β hetero-dimers (CD79A, CD79B) (Figure 2). 

Antigen binding to the sIg induces activation of upstream kinases, including SYK and the 

Src kinase LYN, which phosphorylate immunoreceptor tyrosine-based activation motifs 

(ITAMs) in the cytoplasmatic tails of CD79A and CD79B. This, in turn, activates the 
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cytoskeleton, including hematopoietic cell-specific LYN substrate-1 (HS1) protein [112, 

113] and the related F-actin polymerization, as well as other upstream kinases, including 

BTK and PI3Ks and downstream pathways, including phospholipase C gamma 2 (PLC-γ2), 

calcium signaling, PKC, NF-κB signaling, mitogen-activated protein kinases (MAPKs) and 

nuclear transcription. Activation of phosphatases, including Src homology 2 (SH2) domain 

containing protein tyrosine phosphatase-1 (SHP1) and SH2 domain containing inositol 5-

phosphatases 1/2 (SHIP1/2), and of negative co-receptors (e.g. CD22, CD5) contributes to 

negative regulation of the BCR signaling response. There is increasing evidence that BCR 

signaling plays a relevant role in CLL pathogenesis [114, 115]. CLL-BCRs show differential 

degrees of somatic mutations, which correlate with the clinical prognosis of patients [10,13] 

and one third of CLL patients express quasi-identical (“stereotyped”) BCRs [116], 

suggesting that common antigens may be relevant to disease pathogenesis across patients 

subsets. CLL cells show features of mature B cells [3, 4], and most of them express surface 

immunoglobulins of both IgM and IgD isotypes [117, 118]. Cells expressing high levels of 

CD38 [10, 117], ZAP70 [119] and carrying unmutated IGHV genes [10, 120] are generally 

more responsive to IgM stimulation. On the other hand, M-CLL cells usually show 

constitutive phosphorylation of signaling proteins, including ERK kinase [121, 122] and 

reduced levels of responsiveness to BCR stimulation, generally referred to as “anergy”. 

Despite one single study, which identified mutations in the CD79B gene [123], there is 

general consensus on the absence of somatic mutation on both CD79A and CD79B, which 

may lead to constitutive activation of BCR signaling, a phenomenon observed in the ABC 

subtype of diffuse large B-cell lymphoma [124]. The role of IgD signaling in CLL is less 

defined [118, 125, 126]. IgD stimulation can cause CLL-cell apoptosis [125] or survival and 

plasma cell differentiation [126] and differential responsiveness to IgD stimulation has been 

linked to clinical outcome [127]. Although the nature of the antigens stimulating CLL-BCRs 

in patients is still poorly defined, some reports have shown that U-CLL BCRs are 

polyreactive and mostly recognize autoantigens and other environmental antigens [40, 128–

137] including cytoskeletal non-muscle myosin heavy chain IIA (MYHIIA), vimentin, 

cofilin-1, Fc tail of IgG, single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), 

lipopolysaccharide (LPS), apoptotic cells, oxidized low-density lipoprotein (ox-LDL), 

lupus-associated ribonuclear protein Smith (Sm), human immunodeficiency virus 1 and 

hepatitis C viral antigens and bacterial antigens (Figure 3). In contrast, affinity-matured 

BCRs from M-CLL cases bind to a restricted set of more specific antigens, including β-

(1,6)-glucans from yeast and fungi [138] and the Fc tails of rheumatoid factors [131–133, 

139] (Figure 3). Binder et al., also demonstrated that recombinant CLL-BCRs from U-CLL 

patients are able to recognize vimentin and calreticulin proteins exposed on the surface of 

NLCs and these interactions are responsible for stroma-mediated anti-apoptotic effects [40]. 

Interestingly, when M-CLL BCR sequences are reverted to their germline equivalent, the 

CLL-BCRs regain polyreactivity [130]. In addition to antigen-dependent signaling 

responses, autonomous signaling capacity of CLL-BCRs due to self-recognition of epitopes 

within the BCR third complementarity-determining region of the heavy chain (HCDR3) has 

been described [140, 141] and has been recently reported to be involved, together with BCR 

responses to low-affinity autoantigens, in leukemia development in vivo in the EμTCL1 

mouse model of CLL [115]. Therefore, both antigen-dependent and antigen-independent/

autonomous signaling responses appear to be involved in CLL pathogenesis.
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4.1 Targeting the microenvironment: lenalidomide and CXCR4/CXCL12 inhibitors

Lenalidomide is an immunomodulatory agent, which interferes with multiple components of 

the CLL microenvironment. Lenalidomide only induces mild apoptosis of leukemic cells, 

but reduces CLL proliferation through a cereblon/p21 dependent mechanism [142] and 

interferes with NLC-mediated [143] and endothelium-mediated [111] survival support. 

Lenalidomide has pleiotropic effects on the CLL microenvironment: it increases CD4+ T-

mediated antigen presentation, proliferation and activity [144, 145], and enhances NK and 

CD4+ T-cell mediated anti-tumor immune responses [146, 147]. Lenalidomide restores 

functional immune synapse formation between T and CLL cells, down-regulates the 

immunosuppressive axis PD-1/PD-L1, and enhances T-cell motility [71, 73]; it also causes 

B-cell activation [148], and interferes with the activity and proliferation of T-regulatory cells 

[149]. Lenalidomide is active alone, in CLL relapsed/refractory patients [150, 151], or as 

initial treatment for elderly patients [152, 153] or in combination with rituximab [150, 154] 

and is currently tested in combination with ibrutinib [155].

The CXCR4/CXCL12 signaling axis represents another important therapeutic target in CLL. 

CXCR4 antagonists have been developed, including peptide CXCR4 antagonists (BKT140), 

small molecule CXCR4 antagonists (AMD3100, now called plerixafor), and antibodies to 

CXCR4 (MDX-1338/BMS 93656) [156]. Plerixafor inhibits CXCL12-mediated signaling 

activation on CLL cells, along with chemotaxis and F-actin polymerization and interferes 

with CLL-NLC and CLL-BMSC interactions [157]. Mobilization of CLL cells to the 

peripheral blood was observed in a phase I clinical trial of plerixafor used in combination 

with rituximab in relapsed CLL patients [158]. CXCL12 targeting has been achieved 

through the use of RNA oligonucleotides, such as NOX-A12, which inhibit CLL-cell 

migration in vitro and sensitize CLL cells towards cytotoxic agents [159]. NOX-A12 is 

currently tested in a phase II trial in combination with bendamustine and rituximab in 

relapsed CLL patients [160].

4.2 Targeting BCR-associated kinases BTK, PI3K, and SYK: ibrutinib, idelalisib, 
fostamatinib and novel small molecule inhibitors

Several small molecule BCR signaling inhibitors, mainly targeting BTK, PI3K and SYK 

kinases, have been generated and have shown excellent clinical activity (Figure 4 and Table 

2). BTK is a non-receptor tyrosine kinase of the Tec family, and is rapidly phosphorylated 

by both LYN and SYK kinases upon BCR engagement, resulting in the activation of PLCγ2, 

AKT and ERK kinases, and NF-κB signaling [161]. BTK mutations in humans are 

associated to X-linked agammaglobulinemia, a primary immunodeficiency characterized by 

the absence of peripheral blood B cells and decreased levels of serum immunoglobulins 

[161]. In addition, BTK is also involved in the regulation of migration and adhesion via 

CXCR4/CXCR5 and integrin signaling [162]. Ibrutinib is an orally bioavailable inhibitor 

which was approved in 2014 for the treatment of mantle cell lymphoma and CLL; it blocks 

BTK kinase activity by forming a covalent bond with cysteine-481 residue [163, 164]. 

Ibrutinib is capable of overcoming pro-survival signals derived from the CLL 

microenvironment in vitro, including those from NLC- contact, CD40 ligation, BAFF, 

fibronectin (FN), IL-6, IL-4, TNFα [165] and BCR stimulation [166]. Ibrutinib inhibits 

CLL-cell proliferation [166], chemotaxis towards CXCL12 and CXCL13 [166, 167], 
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integrin-mediated adhesion [167], CLL-cell release of exosomes [168] and of CCL3 and 

CCL4 chemokines, in vitro and in CLL patients receiving ibrutinib therapy [166]. Ibrutinib 

has been tested either alone [169, 170], or in combination with chemo-immunotherapy, 

including rituximab [171] or bendamustine and rituximab, or fludarabine cyclophosphamide 

and rituximab [172]. High rates of durable remissions in patients with relapsed refractory 

disease, including patients with high-risk genetic lesions (e.g. del17p and del11q) [169, 171, 

173, 174], as well as in previously untreated older patients (>65 years) have been reported 

[173, 175]. Early lymphocytosis and organomegaly reduction followed by lymphocyte count 

normalization are typical effects of ibrutinib treatment [176, 177, 178], linked to CLL-cell 

inhibition of proliferation and induction of cell death in vivo. Mutations in BTK and PLCγ2 

were identified through whole-exome sequencing of peripheral blood samples from patients 

experiencing relapse after ibrutinib treatment, including a cysteine-to-serine mutation at 

position 481 in BTK (C481S) leading to a protein product with reduced kinase activity, that 

is only partially inhibited by ibrutinib [179, 180], and three putative gain-of-function 

mutations in PLCγ2, including arginine-to-tryptophan at position 665 (R665W), leucine to 

phenylalanine at position 845 (L845F) and serine to tyrosine at position 707 (S707Y) [179]. 

In addition to ibrutinib, novel small molecules inhibitors of BTK kinase have been tested 

and are currently under early clinical development, including ACP-196 and ONO-4059 

[181].

PI3Ks are divided into 3 classes (I through III) and class I is further composed by four 

different isoforms (α,β,γ,δ). PI3Ks are responsible for the activation of AKT kinase along 

the BCR signaling pathway, as well as they exert effects on cell metabolism, migration, 

proliferation, and survival [182]. The predominant form expressed by hematopoietic cells is 

PI3Kδ, which plays a critical role in B-cell homeostasis and function. Idelalisib is a PI3Kδ 

inhibitor, which was approved by the FDA in 2014 for the treatment of previously treated 

CLL patients when used in combination with rituximab. Idelalisib is a highly selective 

PI3Kδ inhibitor [183], which antagonizes CLL-survival signals coming from the 

microenvironment, such as NLC-contact [184], CD40 ligation, TNFα, fibronectin and BCR 

stimulation [165, 183]. Idelalisib reduces CLL-cell chemotaxis towards CXCL12 and 

CXCL13 [184], CCL3 and CCL4 release by CLL cells in vitro and in patients receiving 

idelalisib therapy [184], and synergizes with ibrutinib in reducing CLL adhesion to vascular 

cell-adhesion molecule-1 (VCAM-1) and fibronectin [185]. Idelalisib has been tested as 

single agent [186, 187], or in combination strategies [188–191]. Similar to patients receiving 

ibrutinib, idelalisib induces early lymphocytosis followed by lymphocyte count 

normalization. Additional PI3K inhibitors are currently under development, including 

duvelisib, also called IPI-145, a potent PI3K γ–δ inhibitor, which antagonizes BCR and 

microenvironment interactions in vitro [192], even in cells carrying the BTK C481S 

mutation [193], and has been tested either alone [194, 195] or in combination with anti-

CD20 antibodies. Additional small molecule inhibitors in early clinical development include 

the pan-PI3K inhibitor pilaralisib, also called SAR245408 [196], the PI3K β,δ inhibitor 

GS-9820, and the PI3Kδ inhibitors ACP-319 and TGR-1202 [197, 198].

SYK kinase belongs to the SYK/ZAP70 family of non-receptor kinases, and activates 

signaling pathways downstream of the BCR, chemokine and integrin receptors, suggesting 
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that SYK participates in tissue homing and retention of activated B cells [199]. Fostamatinib 

(FosD, R788) is an orally available inhibitor of SYK, which induced partial responses in 

relapsed CLL patients in phase I/II study [200], but further development of this drug focused 

on rheumatoid arthritis [201]. Additional SYK-specific inhibitors are under development, 

including GS-9973, which has been tested alone [202] or in combination with idelalisib, and 

PRT-2070.

5. Conclusions and perspective

A plethora of cellular and molecular components shape the CLL microenvironment, and the 

mechanisms involved in CLL proliferation and survival have been progressively unraveled. 

The CLL microenvironment has gained extensive attention during the last few years, thanks 

to the introduction of small molecule inhibitors, which target the CLL-microenvironment 

cross-talk. The BCR signaling pathway is central to CLL activation and likely to be 

triggered by antigens expressed in the tissue microenvironment. Inhibitors targeting BCR-

associated kinases, including ibrutinib and idelalisib, have changed the landscape of 

treatment for CLL patients, inducing durable remissions in relapsed/refractory patients, 

including those carrying unfavorable genetic alterations (e.g. del17p, del11q). Recently, 

point mutations in one of the drug targets, BTK kinase, and activating mutations in closely 

related BCR pathway molecules (i.e. PLCγ2) have been linked to resistance [179]. 

Randomized trials comparing new drugs and/or their combinations with standard chemo-

immunotherapy regimens are ongoing and will allow a better definition of optimal treatment 

strategies. The complexity of the cross-talk between CLL cells and their microenvironment, 

as well as the mechanisms of drug resistance and treatment failure still need to be better 

defined and are currently investigated.
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Abbreviations

APRIL a proliferation-inducing ligand

ATM ataxia telangiectasia mutated

BAFF B-cell activating factor

BAFFR BAFF receptor

BAG6 BCL2-associated athanogene 6

BCMA B-cell maturation antigen

BCL2 B-cell lymphoma 2

BCR B cell receptor

bFGF basic fibroblast growth factor
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BIRC3 baculoviral IAP repeat containing 3

BMSC bone marrow stromal cell

BTK Bruton’s tyrosine kinase

CCL C-C motif ligand

CD40L CD40 ligand

CLL Chronic Lymphocytic Leukemia

CTLA-4 cytotoxic T-lymphocyte-associated protein 4

CXCL C-X-C motif ligand

CXCR C-X-C motif receptor

dsDNA double-stranded DNA

ERK extracellular signal-regulated kinase

ET-1 endothelin 1

ETAR endothelin subtype A receptor

FDC follicular dendritic cell

FN fibronectin

HCDR3 third complementarity-determining region of the heavy chain

HLA-G human leukocyte antigen G

HMGB1 high mobility group box 1

HS1 hematopoietic cell-specific LYN substrate-1

IGHV immunoglobulin heavy chain variable region

IL interleukin

ITAM immunoreceptor tyrosine-based activation motif

LPS lipopolysaccharide

LTαβ lymphotoxin alpha beta

LTβR lymphotoxin beta receptor

MAPK mitogen-activated protein kinase

MCL1 myeloid cell leukemia 1

M-CLL mutated IGHV-gene carrying CLL

MYD88 myeloid differentiation primary response

MYHIIA non-muscle myosin heavy chain IIA

NAD nicotinamide adenine dinucleotide

NAMPT nicotinamide phosphorybosiltransferase
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NF-κB nuclear factor kappa B

NKGD2 natural killer group 2 member D

NKp30 natural killer cell p30-related protein

NLC nurselike cells

NRP1 neuropilin-1

ox-LDL oxidized low-density lipoprotein

PD-1 programmed cell death protein 1

PDGF platelet-derived growth factor

PD-L1 PD-1 ligand

PI3K phosphoinositide-3-kinase

PIM proviral integration site for moloney murine leukemia virus

PKC protein kinase C

PLC-γ2 phospholipase C gamma 2

RAGE receptor for advanced glycation end-product

SDF-1 stromal cell derived factor 1

SF3B1 splicing factor 3B subunit 1

SH2 Src homology 2

SHP1 SH2 domain containing protein tyrosine phosphatase-1

SHIP1/2 SH2 domain containing inositol 5-phosphatases 1/2

sIg surface immunoglobulin

Sm lupus-associated ribonuclear protein Smith

ssDNA single-stranded DNA

STAT-3 signal transducer and activator of transcription 3

SYK spleen tyrosine kinase

TACI transmembrane activator and calcium modulator and cyclophilin ligand 

interactor

TAM tumor associated macrophage

TLR toll like receptor

TNF tumor necrosis factor

U-CLL unmutated IGHV-gene carrying CLL

VCAM-1 vascular cell-adhesion molecule-1

VEGF vascular endothelial growth factor
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VLA-4 very late antigen-4

ZAP70 ζ chain associated protein kinase 70
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Highlights

• CLL cells are dependent on interactions with their microenvironment for 

survival

• Nurselike cells, T and stromal cells are key components of the CLL 

microenvironment

• B-cell receptor signaling has a central pathogenetic role in CLL

• BCR signaling inhibitors are the most successful new therapeutics for CLL
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Figure 1. Cellular and molecular components of the CLL microenvironment
Contact between CLL cells and nurselike cells (NLCs) is established and maintained by 

chemokine receptors and adhesion molecules expressed on CLL cells and corresponding 

ligands on NLCs, which show phenotypic features similar to M2-like TAMs [42, 43]. BCR 

signaling is activated in CLL cells after co-culture with NLCs [35], possibly by direct 

recognition of CLL-BCR ligands expressed by NLCs [40]. Pro-survival pathways activated 

by the NLC-CLL interaction include the CD38-CD31 axis [15, 16] and the TNF family 

members APRIL and BAFF, which interact with corresponding receptors BCMA, TACI and 

BAFF-R [37]. Extracellular release of eNAMPT by CLL cells further promotes M2-skewing 

of TAMs, with associated release of tumor promoting (i.e. IL-6, IL-8) and 

immunosuppressive (i.e. IL-10) cytokines [44]. Differentiation of NLCs is promoted by 
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HMGB1-RAGE) interactions [41]. NLCs attract CLL cells by secreting CXCL12 [32, 83, 

87, 89] and CXCL13 chemokines [34, 66], which interact with their cognate receptors 

CXCR4 and CXCR5, which are expressed at high levels on CLL cells. BCR stimulation 

induces CCL3 and CCL4 chemokine secretion [35], which recruit T cells and monocytes to 

tissue microenvironments. The CD40/CD40L axis favors survival and proliferation of CLL 

cells [68, 101, 102], and interaction of PD-L1 ligand with PD-1, which is expressed at high 

levels on the surface of T cells from CLL patients, favors immune evasion of CLL cells 

from T-cell cytotoxicity [70, 72, 76]. Several factors contribute to reduced NK-cell 

cytotoxicity, including low expression of NK-cell activating receptors, such as NKp30 [79, 

80], soluble BAFF release by NK cells [82], and soluble BAG6 release by CLL cells [77]. 

Adhesion to bone marrow stromal cells (BMSCs) is mediated by VCAM-1 or FN interaction 

with VLA-4 integrins [96], and chemotaxis towards BMSCs involves the CXCR4-CXCL12 

axis [85]. Cross-talk between CLL cells and follicular dendritic cells (FDCs) through the 

CXCR5-CXCL13 and LTαβ-LTβR axis is essential for CLL positioning within lymphoid 

follicles and leukemia progression in vivo [66]. CLL cells additionally secrete ET-1, which 

interacts with ETAR receptor on endothelial cells and promotes survival and drug resistance 

[63].
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Figure 2. The BCR signaling pathway
BCR triggering by an antigen induces activation of early kinases, including LYN and SYK 

[199], which then transduce the signal to cytoskeletal activators, including HS1 protein [112, 

113], and to other early effectors of the signaling response, including BTK kinase [161]. 

Through the BLNK adaptor, BTK activates PLCγ2, and subsequent downstream responses, 

including calcium signaling (Ca2+), PKC, NFκB and ERK kinase [121, 122], and nuclear 

transcription factors (TF). The positive co-receptor CD19 contributes to the activation of the 

PI3K-AKT pathway and to survival induction [182]. The signaling response ultimately 

promotes activation of nuclear transcription, including CCL3 and CCL4 chemokine genes, 

which are then produced and secreted [35]. The signaling response is tightly modulated by 

negative coreceptors (e.g. CD22, CD5) and phosphatases, including SHP1 and SHIP1/2.

ten Hacken and Burger Page 31

Biochim Biophys Acta. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Differences between M-CLL and U-CLL signaling pathways
M-CLL cells show constitutive phosphorylation of signaling proteins and reduced activation 

of the signaling response after BCR triggering by external antigens [121, 122], including β-

(1,6)-glucans [138] and rheumatoid factors (RF) [131–133, 139]. U-CLL cells express BCRs 

specific for autoantigens, including non-muscle myosin heavy chain IIA (MYHIIA), 

vimentin, lupus associated ribonuclear protein Smith (Sm), single-stranded DNA (ssDNA), 

double-stranded DNA (dsDNA), oxidized low-density lipoprotein (oxLDL) as well as 

microbial antigens, including lipo-polysaccaride (LPS) [40, 128–137]. U-CLL are generally 

highly responsive to antigenic stimulation [10, 120], as well as those expressing high levels 

of CD38 [10, 117] and ZAP70 [119].
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Figure 4. BCR signaling inhibitors
Interference with the BCR signaling axis can be obtained with inhibitors of SYK kinase, 

including fostamatinib [200], GS-9973 [202], and PRT-2070, of BTK kinase, including 

ibrutinib [163–180], ACP-196 and ONO-4059 [181], and of PI3K kinases, including 

idelalisib (δ inhibitor) [165, 183], duvelisib (also called IPI-145, γ,δ inhibitor) [192], 

pilaralisib (also called SAR245408, pan-PI3K inhibitor) [196], GS-9820 (β,δ inhibitor), 

TGR-1202 (δ inhibitor) [197], and ACP-319 (δ inhibitor).
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Table 1

Signaling axes in the CLL microenvironment: cellular interactions and functions.

Receptor Ligand CLL interaction partner Function References

BCR Antigen NLC BCR signaling activation, chemotaxis, CCL3 and CCL4 
chemokine secretion, survival

[35, 40]

CXCR4 CXCL12 NLC
BMSC

Chemotaxis [32, 83, 87, 89]

CXCR5 CXCL13 NLC
FDC

Chemotaxis, CLL positioning within lymphoid follicles [34, 66]

BAFFR BAFF NLC Survival [37]

BCMA/TACI APRIL NLC Survival [37]

CD31 CD38 NLC Adhesion, survival, proliferation [15, 16]

RAGE HMGB1 NLC NLC differentiation [41]

LTβR LTαβ FDC CXCL13 release by FDC [66]

VCAM-1 VLA-4 BMSC Adhesion [96]

PD-1 PD-L1 CD4+ T
CD8+ T

T-cell dysfunction, impaired immune synapse formation [70, 72, 76]

CD40 CD40L CD4+ T Survival, CCL17 and CCL22 chemokine secretion [68, 101, 102]

ETAR ET-1 Endothelium Survival, drug resistance [63]
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