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Abstract

Principal component analysis (PCA) is widely used in genome-wide association studies (GWAS), 

and the principal component axes often represent perpendicular gradients in geographic space. The 

explanation of PCA results is of major interest for geneticists to understand fundamental 

demographic parameters. Here, we provide an interpretation of PCA based on relatedness 

measures, which are described by the probability that sets of genes are identical-by-descent (IBD). 

An approximately linear transformation between ancestral proportions (AP) of individuals with 

multiple ancestries and their projections onto the principal components is found.

In addition, a new method of eigenanalysis “EIGMIX” is proposed to estimate individual 

ancestries. EIGMIX is a method of moments with computational efficiency suitable for millions of 

SNP data, and it is not subject to the assumption of linkage equilibrium. With the assumptions of 

multiple ancestries and their surrogate ancestral samples, EIGMIX is able to infer ancestral 

proportions (APs) of individuals. The methods were applied to the SNP data from the HapMap 

Phase 3 project and the Human Genome Diversity Panel. The APs of individuals inferred by 

EIGMIX are consistent with the findings of the program ADMIXTURE.

In conclusion, EIGMIX can be used to detect population structure and estimate genome-wide 

ancestral proportions with a relatively high accuracy.
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Introduction

Principal component analysis was introduced for the study of genetic data almost thirty 

years ago by Menozzi et al. (1978), and has since become a standard tool. Population 

differentiation can be inferred from multivariate statistical methods such as PCA of allele 

frequencies (Menozzi et al., 1978; Cavalli-Sforza and Feldman, 2003). In a new approach, 

Correspondence to: Bruce S. Weir.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Theor Popul Biol. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
Theor Popul Biol. 2016 February ; 107: 65–76. doi:10.1016/j.tpb.2015.09.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patterson et al. (2006) applied PCA to SNP genotypic data for individuals rather than 

populations. Their method, implemented in a software package “EIGENSTRAT”, has been 

widely used to correct for population stratification in genome-wide association studies 

(GWAS) (Price et al., 2010). Although PCA is not based on a population genetics model, 

and may seem like a “black box” method, principal component axes often represent 

perpendicular gradients in geographic space (Cavalli-Sforza and Feldman, 2003; Price et al., 

2006; Novembre et al., 2008). The relationship of PCA results to fundamental demographic 

parameters is of major interest to geneticists.

Novembre and Stephens (2008) showed that the gradient and wave patterns of principal 

components do not necessarily reflect migration events in history. From the perspective of 

coalescent theory, McVean (2009) provided a genealogical interpretation of PCA. He 

showed that the projection of samples onto the principal components could be obtained from 

the pairwise coalescence times between study individuals. Ma and Amos (2010) proposed a 

formulation of PCA based on the variance-covariance matrix of the sample allele 

frequencies.

We now provide an alternative interpretation of PCA based on relatedness measures: 

probabilities that sets of genes have descended from a single ancestral gene and so are 

identical by descent (ibd). The ibd concept is essential for genetic analyses such as linkage 

studies for mapping disease genes and forensic DNA profiling (Weir et al., 2006; 

Thompson, 2013). In population genetics, Weir and Hill (2002) extended the work of Weir 

and Cockerham (1984) by allowing different levels of coancestry for different populations, 

and by allowing non-zero coancestries between pairs of populations. Our further extension is 

to allow different coancestries between pairs of individuals and different inbreeding 

coefficients for individuals. The coancestry coefficient between two populations defined in 

the model of Weir & Hill is now replaced by the average kinship coefficient among pairs of 

study individuals from these two populations respectively, relative to a single ancestral 

population, so that the assumption of random rating can be relaxed. These individual-

perspective measures of population structure can be used to explain the behavior of PCA.

Ancestral proportions (AP) of an individual refer to the fractions of the genome derived 

from specific ancestral populations (Pritchard et al., 2000; Falush et al., 2003; Tang et al., 

2005; Alexander et al., 2009). The early approach for estimating AP can track back to Hanis 

et al. (1986), and the ancestral allele frequencies should be known to allow estimating allele 

admixture in this method. However, ancestral allele frequencies are usually estimated from 

surrogate ancestral samples in practice and later studies took into account in describing the 

uncertainty of estimated ancestral information.

A Bayesian approach, STRUCTURE, was developed to infer population substructure using 

unlinked genotypes (Pritchard et al., 2000). Later, it was extended to model linked markers 

(Falush et al., 2003) through admixture linkage disequilibrium (LD). STRUCTURE is 

computationally intensive and not likely to be suitable for large-scale studies, like GWAS, 

involved with thousands of individuals and hundreds of thousands of SNPs. SNP pruning 

has to be done before applying STRUCTURE, and this can introduce selection bias with 

respect to different SNP sets. A maximum-likelihood estimation method, frappe, has also 
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been proposed to estimate AP with much less computation than STRUCTURE, but it 

assumes the markers are unlinked (Tang et al., 2005). The ADMIXTURE method was 

developed to analyze thousands of markers – it adopts the likelihood model embedded in 

STRUCTURE with an assumption of linkage equilibrium among the markers (Alexander et 

al., 2009).

Instead of estimating global ancestry via genome-wide markers, detection of local ancestry 

from chromosomal segments in admixed populations becomes of great interest. Recently, 

HAPMIX and MULTIMIX were proposed to infer local ancestry from dense SNP markers 

based on approximate coalescent models modeling linkage disequilibrium with two or more 

ancestries (Price et al., 2009; Churchhouse and Marchini, 2013). However, their methods 

require a fine genetic map.

The potential connection between ancestral proportions and principal components in the 

eigenanalysis has been investigated by the previous studies with a limited number of 

numerical simulations (Patterson et al., 2006; Engelhardt and Stephens, 2010). McVean 

(2009) indicated it is possible to identify relative admixture proportions from principal 

components. Ma and Amos (2012) showed how to estimate two-way admixture proportions 

with a proof under their framework of variance-covariance matrix. They also observed that 

an admixed population could divide the triangle of three parental populations in the PC plot 

into three small triangles with areas according to the three-way admixture proportions. 

However, none of these studies provided a sufficient proof for inferring admixture fractions 

from the principal components under their theoretical framework in the cases of more than 

two ancestral populations.

In our study, an approximately linear transformation between ancestral proportions (AP) of 

individuals with multiple ancestries and their projections onto the principal components is 

revealed, and a proof is given under the framework of identity by descent. This linear 

transformation could explain the perpendicular gradients in geographic space, and it also 

justifies the observation that the ratios of triangle areas correspond to admixture fractions in 

the study of Ma and Amos (2012). We also propose a new method of eigenanalysis 

“EIGMIX” to estimate individual ancestries. EIGMIX uses method of moments estimation 

with computational efficiency suitable for millions of SNP data, and it is not subject to the 

assumption of linkage equilibrium. Ancestral proportions can be estimated by making 

assumptions of surrogate samples for ancestral populations, but inferring ancestral allele 

frequencies is not necessary. The calculation uses all study individuals simultaneously 

without projecting the remaining individuals onto the existing axes of surrogates.

We applied various methods to the SNP data of 1,198 founders from the HapMap Phase 3 

project and 938 unrelated individuals from the Human Genome Diversity Project (HGDP). 

The ancestral proportions of individuals inferred by PCA and EIGMIX are consistent with 

the findings of the program ADMIXTURE. All eigenanalysis in the study are implemented 

in the R package “SNPRelate” (Zheng et al., 2012), allowing users to apply our method to 

their SNP data.
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Methods

We develop our approach with a series of indicator variables xijkl for the kth allele, k = 1, 2, 

at the lth locus, l = 1, 2, …, L, in the jth individual sampled from the ith population, j = 1, 2, 

… ni; i = 1, 2 …, N. The total sample size is n = Σi ni. The variables take the value 1 for 

alleles of a specific type, e.g. the reference allele, at a locus, and the value 0 otherwise. 

Genotypes are indicate by gijl = xij1l + xij2l, and these take the values 0,1,2.

Population Coancestry Framework of Weir & Hill (2002)

Under the framework of Weir & Hill (2002), the expectations for first and second moments 

of the x’s are

Here expectation is over both repeated samples from the population and over evolutionary 

replicates of the populations. These expressions introduce the total inbreeding coefficient 

Fij, the within-population coancestries θi, and the between-population-pair coancestries θii′. 

The quantities pl are the overall, or ancestral, frequencies of the reference alleles if all study 

individuals can be traced back to a single reference population. This reference population 

could be common ancestors at a point in time of the past. The equal values for ℰ[xij1l xij2l] 

and ℰ[xijkl xij′k′l] require an assumption of random mating.

The coancestry coefficient θi refers to the ibd probability for a random pair of alleles in 

population i, and the pair of alleles can come from the same individual. The coancestry 

coefficient θii′ refers to the ibd probability for a random pair of alleles, one from population i 

and the other is from population i′. Note that we implicitly assume θi and θii′ are the same at 

each locus, and in practice θi and θii′ are actually the average inbreeding and coancestry 

coefficients over all L loci.

Now consider an individual perspective measures of population structure, i.e., a special case 

of Weir & Hill’s model where each population i has only one sampled individual (ni = 1) so 

j = 1 for each population. The assumption of random mating is relaxed, and the sample size 

n is also the number of populations r.

Therefore,
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(1)

where , the average inbreeding coefficient among all study individuals, and 

, the average kinship coefficient among all study individuals. 

The individual perspective measures do not account for familial data and the relatedness of 

individuals is established from evolutionary history.

Each study individual is assigned to one population, thereby the genetic covariance matrix 

defined by Patterson et al. (2006) at the individual level can be expressed using an index i, 

:

(2)

The expected values of the numerator in Equation 2 is:

where  (setting θii = θi).

When the number n of study individuals is large,

(3)

Eigen-decomposition in PCA

If we are interested in individual inbreeding coefficients (1 + θj)/2 (the coancestry of an 

individual with itself) and individual-pair coancestries θii′, the factors (1 − θT) and (θT − ψj − 

ψj′)/(1 − θT) in Equation 3 will confound the estimates when  is used. This may explain 
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why a large proportion of  are negative, whereas the true θj and θjj′ are always between 

zero and one.

The Population Perspective

PCA conducts eigen-decomposition on the stochastic matrix P, and it is possible to 

investigate the structural features of P with its expectation. To illustrate what eigen-

decomposition does, we introduce a genetic model consisting of populations at three points 

in time as shown in Figure 1. The alleles of all study individuals at tnow can be tracked to a 

single reference population at t0 through at least one of distinct ancestral populations at t1. 

The study samples S1, …, SN are directly inherited from the ancestral populations A1, .., AN 

without admixture, and the sample Sadmixture is admixed from N ancestral populations.

What we can observe are the genomes of study individuals at tnow. It could be appropriate to 

assume there are N ancestral populations at t1 which is between t0 and tnow, and the samples 

S1, …, SN are good candidates (or pseudo-ancestors) to represent the ancestral populations. 

For example, in the initial phase of the HapMap Project, genetic data were gathered from 

four populations (CEU, YRI, CHB and JPT) with European, African and Asian ancestry 

respectively. Here, N = 3, S1 represents CEU individuals, S2 for YRI and S3 for CHB+JPT.

A coancestry matrix ΘA is used to describe the relationships among N ancestral populations 

at t1 based on population perspective measures, where

(4)

That is,  is the average IBD probability for a pair of alleles randomly sampled with 

replacement from the hth ancestral population, and  is the coancestry coefficient for 

random pairs of individuals from the hth and h′th ancestral populations respectively. Since 

we track all individuals back to the reference population at t0, the sample allele frequencies 

at t1 are treated as random variables over a probability space, which starts from the reference 

population at t0 and arrives at t1 with the coancestry state ΘA.

Ancestral Proportions

In practice individuals may have recent ancestors in more than one population, and an 

admixture model is introduced in which each individual is assumed to have inherited some 

proportion of its ancestry from each population. For an individual j, let the ancestral 

proportions be a vector aj = (ai,1, …, ai,N)T, where  and 0 ≤ ai,h ≤ 1. Let Ziklh = 

1 when the kth allele of individual i at SNP l is inherited from the hth ancestral population at 

t1, and Ziklh = 0 otherwise. The vector Zikl = {Zikl1, …, ZiklN}T is modeled as a random 

variable with probabilities ai, i.e., ℰ[Ziklh] = ai,h. Further,
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(5)

represent the genomic ancestral proportions. Note that Equation 5 still holds even if loci are 

correlated due to linkage disequilibrium. We assume that the two alleles in individual i at 

SNP l are independently derived from ancestral populations, since pairs of chromosomes of 

an individual are independently inherited from two parents respectively. Then the expected 

value of the inbreeding coefficient at SNP l for individual i is , the 

same for each SNP. The average inbreeding coefficient over L loci is , 

assuming the coancestry matrix of ancestral populations is identical at each locus.

For a pair of individuals i and i′, we assume that any pair of alleles, one from i and the other 

from i′ are independently derived from ancestral populations. Then the expected value of the 

kinship coefficient at SNP l is , and the average kinship 

coefficient over L loci is also . This assumption is appropriate to model 

relatedness in structured population with admixture, with  as background 

relatedness due to evolutionary history. However, the validity of the assumption could be 

violated if individuals i and i′ are in a family, e.g., parent and offspring.

Matrix Decomposition

For a study sample, there are n unrelated individuals. Each individual i has AP ai with 

respect to N ancestral populations. Let A = [a1, a2, …, an]T be a n-by-N matrix with rows 

representing ancestral proportions of individuals. Then the coancestry matrix of study 

individuals ΘS can be expressed as

(6)

We rewrite Equation 3 in matrix notation for large n,

(7)

where Jn is a matrix of dimension n × n with entries equal to one, since
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The diagonal  is considered as a bias term in the PCA with respect 

to ancestral proportions.

Note that  because we lose a dimension by forcing each column to 

sum to zero. The eigenvectors corresponding to the largest N − 1 eigenvalues of ΘM form a 

new coordinate with N − 1 dimensions while AP form an old N-dimensional coordinates. 

The mapping from the old coordinate to the new one is a linear transformation, and the proof 

is given in the appendix A1. In addition, this mapping is actually an affine transformation 

equivalent to a (N − 1)-dimensional linear transformation followed by a translation, and the 

affine transformation can be represented as an linear transformation on the higher 

dimensional space.

For example, assume there are three ancestral populations and seven individuals, in which 

individuals 1, 2, 3 are inherited from the ancestral populations without admixture, 

individuals 4, 5, 6 have two ancestral populations with equal contributions and individual 7 

has three ancestral populations with equal contributions. The matrix A of ancestral 

proportions is

and ΘA is assumed to diag(0.05, 0.05, 0.05). The AP coordinates are shown in Figure 2a, 

and the new eigen-decomposition coordinates are shown in Figure 2b.

EIGMIX – Inferring Ancestral Proportions

The mapping in Figure 2 suggests an approach to estimate ancestral proportions using the 

largest principal components. Let S1, …, SN be the observed surrogate samples for the 

ancestral populations, as shown in Figure 1. Now we look at the largest (N − 1) principal 

components, and identify each location of pseudoancestor i ∈ {1, …, N} in the eigen 

coordinates, by averaging the locations of the sample Si. So we have N positions in the eigen 

coordinates, which corresponds to N independent components in the AP coordinates. Then a 

linear transformation can be made to reverse the original mapping, i.e., the principal 

components of all study individuals are reversed to the AP coordinates by a linear 

transformation. In addition, the property of linear mapping makes the inferred ancestral 

proportions unique if N surrogate samples are specified and their locations in the eigen 

coordinates are distinct.

For example, the positions of individuals 1, 2 and 3 with ancestral proportions (1,0,0), 

(0,1,0) and (0,0,1) in the eigen coordinate of Figure 2(b) are denoted by es1, es2 and es3 

respectively. Let T2×2 be a linear transformation and L be a translation operator. A 

transformation from the AP coordinates to the eigen coordinates is:

Zheng and Weir Page 8

Theor Popul Biol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(8)

Therefore, L3×2 = [es3, es3, es3]′ (moving every point a constant distance) and T2×2 = [es1 − 

es3, es2 − es3]′.

The inverse transformation is:

(9)

where eadmix is an arbitrary point in the eigen coordinate.

Note that there is a bias term in the diagonal shown in Equation 7. A scheme for bias 

removal is to define a new genetic covariance matrix, the EIGMIX coancestry matrix 

, EIGMIX coancestry matrix:

(10)

Then ℰ[ *] = ΘM/(1 − θT) without any bias when there are a large number of individuals. 

We have previously (Weir and Cockerham, 1984) suggested the simple modification of 

taking the ratios of the sums over loci of the numerators and denominators instead of 

averaging the ratios to reduce the variance, in part by reducing the impact of rare variants. 

Since the ratio of expected values is an approximation for the expected value of an ratio of 

two random variables, our modification tends to have an advantage of bias correction due to 

division compared to the original PCA.

In practice, the matrix * of real data could have more than N − 1 significant eigenvalues 

when we assume the number of ancestral populations N to be a specific number (e.g., N = 3 

for Europe, Asia and Africa). The largest N − 1 eigenvalues with their eigenvectors form a 

low-rank approximation of * (a real symmetric matrix), which minimizes the Frobenius 

norm with respect to a n-by-n matrix M with rank(M) ≤ N − 1:

where * − M = [mj,j′]n×n. The closest matrix to * is , as measured in the 

Frobenius norm, where |λ1| ≥ |λ2| ≥ … ≥ |λn| are the eigenvalues of * and ei is the 

eigenvector corresponding to λi, and
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* is not necessarily a nonnegative definite matrix, i.e., its eigenvalues are not necessarily 

all nonnegative. Here “largest eigenvalues” refer to the absolute values of eigenvalues in 

descending order.

In addition, the estimates of EIGMIX given an arbitrary number of ancestral populations are 

not always bounded from 0 to 1, although we force the proportions to sum to one. If the 

inferred ancestral proportions lie much outside the range [0,1], signaling outliers, we could 

conclude that the assumption of N ancestral populations with their surrogates is not 

appropriate or that the SNP markers have no power to distinguish ancestral populations.

According to PCA, we might expect the eigen-decomposition of  and ℰ[ *] could 

result in similar eigenvectors corresponding to a few most significant eigenvalues when 

there are true structural feature in data, since the difference between  and ℰ[ *] 

depends only on the diagonal. The average difference per entry in the term of Frobenius 

norm becomes small when the total number of study individuals n is large:

A few largest eigenvalues and eigenvectors could capture the similar structure information 

of  and ℰ[ *]. Here, “similar” means similar relative positions in the eigen 

coordinates, since numerical calculation does not guarantee that the resulting eigenvectors 

will have the same absolute positions in the coordinate, e.g., if a vector v is an eigenvector 

then −v is also the eigenvector according to the same eigenvalue. A further numerical study 

is shown in the appendix A2.

Results

Materials

The Phase 3 HapMap data consist of SNP genotypes generated from 1,397 samples in total, 

collected using two platforms: the Illumina Human1M (by the Wellcome Trust Sanger 

Institute) and the Affymetrix SNP 6.0 (by the Broad Institute) (International HapMap 3 

Consortium et al., 2010). Data from the two platforms have been merged for the release. The 

PLINK format of HapMap 3 data were downloaded from http://hapmap.ncbi.nlm.nih.gov/

downloads/genotypes/hapmap3_r3/plink_format/. The consensus and polymorphic data set 

of 1198 founders were used in the study analyses, which include only SNPs that passed 

quality control in all populations, as shown in Table 1.

The Human Genome Diversity Panel data consists of 1043 individuals from 51 populations 

over the world: sub-Saharan Africa, North Africa, Europe, the Middle East, Central & South 
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Asia, East Asia, Oceania and the Americas (Cann et al., 2002). The study individuals were 

genotyped on the Illumina 650K platform, and the SNP data could be downloaded from 

http://www.hagsc.org/hgdp/files.html. The dataset contains a small number of relatives, and 

938 individuals were remained in the analysis after filtering out first and second degree 

relatives of which were suggested by Rosenberg (2006).

To reduce potential effects of linkage disequilibrium, SNP pruning was conducted by 

randomly selecting autosomal SNPs for which each pair was at least as far apart as 200kb: 

9,949 remaining SNPs for HapMap Phase 3 and 9,790 for HGDP. All analyses were 

performed on both of the pruned and full SNP sets, and the unbound estimates of ancestral 

proportion are reported. In the full sets, there are 1,423,833 and 644,258 autosomal SNPs for 

HapMap3 and HGDP respectively.

Analyses of HapMap Phase 3 Data

To avoid the confounding effect of relatives, 1,198 founders were selected for the PCA 

analysis by removing the offspring. The first two principal components are the focus, since 

more eigenvectors provide little additional information for inferring primary population 

structure. As shown in Figure 3a, the samples from CEU, YRI and CHB+JPT correspond to 

three vertices of a triangle, and the other populations tend to be admixtures from these three 

ancestries. Inferring ancestral proportions was conducted by a coordinate transformation, 

assuming three ancestral populations with surrogate samples: CEU, YRI and CHB+JPT. The 

X and Y axes in Figure 3b represent the proportions of genome from African and Asian 

ancestries respectively. Gujarati Indians in Houston (GIH, yellow) and Mexican ancestry in 

Los Angeles (MEX, green) appear to be admixtures between Europeans and Asians. ASW, 

MKK and LWK tend to be more related to African ancestry with some admixture, while 

CHD and TSI are quite close to the surrogate samples of Asia. The PCA plot with the largest 

two principal components generated by the full SNP set is shown in Supplemental Figure 

S1, which is similar to Figure 3.

The population admixture proportions are estimated by averaging ancestral proportions of 

individuals using the full SNP set. African Americans (ASW) are a typically admixed 

sample, estimated with ~78% of genome from YRI and 21% from CEU, and approximately 

no genome from CHB+JPT. The result confirms the estimates of 78% African and 22% 

European ancestry shown in the supplementary materials of the HapMap Phase 3 report 

(International HapMap 3 Consortium et al., 2010). The HAPMIX algorithm (Price et al., 

2009) was used in HapMap Phase 3 project, the optimal linear combination of 74% YRI and 

26% CEU was observed for MKK, and a combination of 94% YRI and 6% CEU for LWK. 

In our analyses, the PCA-inferred combinations are 74% YRI + 24% CEU for MKK and 

94% YRI + 5% CEU for LWK. Our results are consistent with the admixture proportions 

previously estimated.

The supervised ADMIXTURE and EIGMIX methods were applied to the HapMap3 SNP 

data assuming three ancestral populations with surrogate samples CEU, YRI and CHB+JPT. 

ADMIXTURE is a model-based method with an assumption of markers in linkage 

equilibrium, therefore a pruned SNP set was used to avoid the strong influence of SNP 

clusters. The pseudo-ancestors (YRI, CHB+JPT and CEU) are specified in the analyses of 
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ADMIXTURE according to the AP (1, 0, 0), (0, 1, 0) and (0, 0, 1). As shown in Figure 4, 

the AP inferred by PCA tend to be consistent with those estimated by ADMIXTURE using 

the same SNP set. However, the offsets are observed for admixed populations, such like 

GIH and MKK. The PCA-based proportions of genome from CEU are lower than 

ADMIXTURE for GIH, and those are higher for MKK. Actually, our inference on MKK 

was actually consistent with what HapMap Phase 3 has reported. Note that PCA is a 

dimension reduction technique and may lose information if we look only at the largest two 

principal components, and the assumption of pseudo-ancestors (CEU, YRI, CHB+JPT) 

might not truly represent the ancestors in human evolution.

The EIGMIX coancestry matrix was used in the eigenanalysis instead of the PCA 

covariance matrix. As shown in Table 2, the differences of ancestral proportions at the 

individual level between ADMIXTURE and PCA/EIGMIX were calculated to evaluate the 

potential biases compared to the estimates of ADMIXTURE. The estimated proportions of 

EIGMIX tend to be less biased than PCA’s except Chinese in Metropolitan Denver (CHD), 

whereas the differences are relatively small overall for the HapMap3 data. The variances of 

EIGMIX are comparable to PCA if the ADMIXTURE estimates are assumed to be true 

values.

Analyses of HGDP

As suggested by Rosenberg (2006), a standardized subset of HGDP data consisting of 938 

unrelated individuals was employed in the admixture analyses with a pruned set of 9,790 

SNPs. The number of ancestral populations is suggested by geographic regions, the 

worldwide human relationship inference (Rosenberg et al., 2002; Li et al., 2008) and the 

plots of eigenvectors (shown in Supplementary Figure S2), and we used six ancestries in our 

primary analyses. The surrogate samples are suggested by the previous inferred regional 

ancestry (Li et al., 2008) and relative positions in the plots of eigenvectors: Sardinian for 

Europe (n = 28), Chinese Han for East Asia (n = 44), Kalash for Central & South Asia (n = 

22), Pygmy for Africa (n = 34), Karitiana for America (n = 14) and Papuan for Oceania (n = 

16).

The supervised ADMIXTURE and EIGMIX methods were both applied to the HGDP SNP 

data with six ancestral populations. The estimated ancestral proportions of individuals are 

shown in Figure 5. Overall the estimates of EIGMIX are consistent with what 

ADMIXTURE does, however a difference of 10% admixture proportion is observed for 

samples from Africa and Middle East when the percents of Europe are inferred. In Figure 

5e, the samples of America are also observed to be off the diagonal line. PCA was applied to 

the same study individuals and SNP set: the PCA-inferred admixed ancestries are shown in 

Figure 6 and Supplementary Figure S3. The PCA method is observed to have higher 

variance than EIGMIX, especially for the samples from Africa and Middle East. The 

variance reduction in EIGMIX is primarily due to the modification of taking the ratios of the 

sums over loci, rather than diagonal bias removal.
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Discussion

In this study, we provide an interpretation of principal components analysis (PCA) based on 

relatedness measures, i.e., the probability that sets of genes are identical-by-descent. The 

expected values of pairwise estimates in the genetic covariance matrix of PCA are relative 

kinship coefficients with an additional term with respect to a single reference population in 

the past. An approximately linear transformation between ancestral proportions of 

individuals with multiple ancestries and their projections onto the principal components is 

revealed. A new method “EIGMIX” is proposed to estimate ancestries, allowing both linked 

and unlinked genetic markers regardless of linkage disequilibrium. The ancestral proportions 

can be estimated by making assumptions of surrogate ancestral samples. EIGMIX is a 

method of moments with high computational efficiency compared to existing MLE and 

Bayesian methods such like ADMIXTURE and STRUCTURE, and it is suitable to large-

scale GWAS data with thousands of individuals and millions of SNPs. We applied the PCA, 

EIGMIX and supervised ADMIXTURE methods to the real SNP data from the HapMap 

Phase 3 project and the Human Genome Diversity Panel. The ancestral proportions inferred 

by PCA and EIGMIX are consistent with the findings of ADMIXTURE, but EIGMIX 

proportions are observed to be less biased and more robust than PCA.

Novembre et al. (2008) showed that SNP profiles of individuals within Europe can be used 

to infer their geographic origin with relatively high accuracy by PCA. The reason why the 

PC axes often represent perpendicular gradients in geographic space can be explained by 

ancestral proportions with two or more ancestries. In our genetic model (see Figure 1), the 

time t0 of single reference population is not specified explicitly, and it could be many 

generations ago – even the time before modern humans’ ancestors migrated out of Africa. 

The repeated migration in the history of Europe could create gene frequency clines as 

suggested by isolation-by-distance models (Wright, 1943). Starting from the single reference 

population at t0, such as the population at the time before humans migrated out of Africa, it 

would be possible to treat the observed alleles and the hidden pattern of ibd in the current 

generation as a sample from the probability space of a long-term evolutionary process. 

However, this strategy could be confounded by the unknown allele frequencies in the 

reference population. To avoid this problem, the derivation of the formulas in PCA and 

EIGMIX have removed explicit use of the allele frequencies.

Ma and Amos (2012) observed that a three-way admixed population could divide the 

triangle of parental populations in the PC plot into three small triangles with areas according 

to their admixture proportions. They also tried to extend this observation to the general case 

of more than three parental populations. A closed-form estimator of ancestral proportion is 

difficult to find so they solved the eigenequation numerically to confirm the observation. 

Our mathematical derivation of the linear transformation between ancestral proportions and 

eigenvectors can be used to confirm the observation of Ma and Amos (2012). Here, we 

adopt an three-way admixed example with four populations (P1, P2, P3 and P4) shown in 

Figure 5 of the paper of Ma and Amos (2012), where P4 is an admixed population. It is 

shown in Supplementary Figure S4. The mapping from the two-dimensional coordinate in 

Figure S4 (a) to that of (b) is an affine transformation. Sets of parallel lines remain parallel 

after an affine transformation, and it also preserves ratios of distances between points lying 

Zheng and Weir Page 13

Theor Popul Biol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on a straight line. Therefore, the ratio of heights in the triangles remain the same. Ma and 

Amos’s observation can be confirmed theoretically under their framework with our linear 

transformation proof.

It is important to realize the potential limitations and our findings should be interpreted with 

caution. The assumption of ancestral populations used in inferring admixture fractions from 

the largest principal components could be confounded by the fact that human evolution is 

complex and has involved repeated migration and admixture from and out of Africa 

(Cavalli-Sforza and Feldman, 2003; Abi-Rached et al., 2011). Therefore, the selection of 

surrogate samples could be biased due to lack of historical knowledge or true unknown 

ancestries. For example, it is known that Mexicans have mainly Native Americans and 

European ancestry, with a small African contribution (Price et al., 2007). The ancestral 

proportions of MEX in HapMap Phase 3 data are confounded by an unknown link between 

Amerindians and CHB+JPT, although Amerindian seems closely related to Asian rather 

than European and African in genetics. Also, CHB+JPT and Native Americans represent 

two evolution branches from their common ancestors, and it may not be appropriate to 

assume a simple linear combination to reflect genetic difference in Native Americans.

The number of ancestral populations N is another important issue when we infer admixture 

proportions. A statistical test for how many significant eigenvalues in SNP data has been 

proposed, which is based on the approximate Tracy–Widom distribution (Patterson et al., 

2006). The potential impacts on this test include linkage disequilibrium and categorical 

genetic data, since the Tracy–Widom distribution was originally developed for the case of 

independent Gaussian matrix entries. The MLE method for selecting N based on AIC 

(Akaike information criterion) and BIC (Bayesian information criterion) statistics was also 

introduced with ADMIXTURE (Alexander et al., 2009). However, we suggest that the 

choice of N should rely on the knowledge of the history of a population, with limited advice 

from statistical significance.

In summary, we provide a genetic interpretation of PCA, and propose EIGMIX to infer 

ancestral proportions with relatively high accuracy. EIGMIX could help us better understand 

population structure for isolated and admixed populations.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

A1 Proof of Eigen-decomposition

Here, we perform eigen-decomposition on  in Equation 7, 

and the mapping from A to the eigenvectors of ΘM is a linear transformation, where A is a 

n-by-N matrix with rows representing ancestral proportions of individuals and ΘA is a N-by-

N coancestry matrix. Let , where In is an identity matrix and Jn 

is a matrix n × n with entries equal to one, then ΘM = Y ΘAYT.

Proof

Note that ΘM and ΘA are not necessarily non-negative definite matrices, and some of the 

eigenvalues could be negative. To avoid a complex matrix, we perform eigen-decomposition 

on , since  and ΘM have the same eigenvectors and the square of eigenvalues of ΘM 

correspond to the eigenvalues of .

Note that rank(Y) ≤ N − 1, then rank(ΘM) ≤ N − 1. Let the eigenvalues of ΘM be |v1| ≥ |v2| ≥ 

… ≥ |vN−1| ≥ |vN| = … = |vn| = 0, and Q(M),i be the ith eigenvector with respect to vi. [Q(M),1, 

…, Q(M),n] forms an orthogonal matrix.

(11)

We perform singular value decomposition on Y,

Since rank(Y) ≤ N − 1, at least one of the singular values of Y is ZERO. Replace Y in 

Equation 11 by :

where  forms an N × N diagonal matrix.
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Let , where . SVD on . 

Again, at least one of the singular values of Z is ZERO.

Since

UZ is the eigenvector matrix of , i.e., [Q(M),1, …, Q(M),n] = UZ and the eigenvalue |vi| is 

the singular value of ZY (non-negative).

Note that

or,

(12)

The left hand side of Equation 12 is an n×N matrix where the last column is ZERO since vN 

= 0, where as the right hand side is the AP matrix times ( ) and 

. Note that this transformation matrix  is a 

function of A. Given an AP matrix A, the transform matrix is determined, so each data point 

(ancestral proportion) in A maps to a new coordinate by a linear transformation.

A2 Numerical Evaluation of Diagonal Bias in PCA

To demonstrate the similarity of relative positions in the eigen coordinates of  and 

ℰ[ *], two pseudo-ancestor populations (N = 2) and three admixed populations (admixture 

fractions 25%, 50%, 75%) with equal sample sizes were utilized here. As shown in Table 

A1, as the sample size of each population grows, the bias for estimating the true admixture 

fraction 25% and 75% declines from 0.0424 to 0.0004. Another example is a spatially 

continuous admixed population, i.e., individuals with ancestral proportions uniformly 

distributed from 0 to 1. E.g, if n = 11 is the total number of study individuals, there are 11 

individuals with admixture fractions of 0%, 10%, 20%, …, 90% and 100%. The maximum 

bias of the estimated ancestral proportions is shown in Table A2, and it decreases from 

0.02270 to 0.00057 as the total number of individuals n increases.
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Table A1

The bias of estimating population admixture proportions in the example of two ancestral 

populations and three admixed populations with equal sample size npop.

True ancestral proportion 0 0.25 0.5 0.75 1

Inferred population ancestral proportion from 1:

 npop = 1 0 0.20758 0.50000 0.79242 1

 npop = 25 0 0.24849 0.50000 0.75151 1

 npop = 50 0 0.24925 0.50000 0.75075 1

 npop = 100 0 0.24962 0.50000 0.75038 1

1
calculated by averaging admixture proportion of individuals.

Table A2

The bias of estimating ancestral proportions in the example of a spatially continuous 

admixed population with n individuals in total1.

# of individuals n 11 51 101 251 501

The maximum bias of inferred ancestral proportions of 

individuals from 

0.02270 0.00548 0.00281 0.00114 0.00057

1
ancestral proportions are uniformly distributed from 0 to 1 derived from two ancestral populations.
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Figure 1. 
A genetic model at a single locus for observed samples. The alleles of all study individuals 

at tnow can be tracked to a single reference population at t0, and there are N distinct ancestral 

populations at t1. The relationships among ancestral populations are described by a 

coancestry matrix ΘA.
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Figure 2. 
The relationship between ancestral proportions and eigen-decomposition: a) seven 

admixture fractions from three ancestral populations are plotted in the figure; b) the first and 

second eigenvectors of matrix , where the ancestral 

coancestry matrix ΘA is assumed to diag(0.05, 0.05, 0.05), A is an n-by-N matrix with rows 

representing admixture proportions of individuals, n = 7 and N = 3. The mapping from the 

two-dimensional coordinate in (a) to that of (b) is a linear transformation followed by a 

translation.
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Figure 3. 
The principal component analysis on HapMap Phase 3 data, using a pruned set of 9,949 

SNPs and 1,198 founders consisting of 11 populations: a) the first and second eigenvectors; 

b) a linear transformation of coordinate from a) followed by a translation, assuming three 

ancestral populations with surrogate samples: CEU, YRI and CHB+JPT. The average 

positions of three surrogate samples are masked by a red plus sign.
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Figure 4. 
A comparison between PCA and supervised ADMIXTURE with respect to ancestral 

proportions for the HapMap Phase 3 data. A pruned set of 9,949 SNPs was used by both 

PCA and ADMIXTURE.
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Figure 5. 
A comparison of ancestral proportions between EIGMIX and supervised ADMIXTURE 

with 6 ancestral populations for the HGDP data. A pruned set of 9,790 SNPs was used by 

both EIGMIX and ADMIXTURE.
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Figure 6. 
A comparison of ancestral proportions between PCA and supervised ADMIXTURE with 6 

ancestral populations with a pruned set of 9,790 SNPs. The color legend is as the same as 

Figure 5, and EIGMIX is more robust than PCA when inferring admixture fractions.
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Table 1

Summary of population samples in the eigenanalysis.

Name Population # of samples

HapMap Phase III (1,198 founders):

ASW African ancestry in Southwest USA 53

CEU Utah residents with Northern and Western European ancestry from the CEPH collection 112

CHB Han Chinese in Beijing, China 137

CHD Chinese in Metropolitan Denver, Colorado 109

GIH Gujarati Indians in Houston, Texas 101

JPT Japanese in Tokyo, Japan 113

LWK Luhya in Webuye, Kenya 110

MEX Mexican ancestry in Los Angeles, California 58

MKK Maasai in Kinyawa, Kenya 156

TSI Toscani in Italia 102

YRI Yoruba in Ibadan, Nigeria 147

The Human Genome Diversity Panel (HGDP, 938 unrelated individuals):

Africa 101

Europe 157

Middle East 163

Central & South Asia 199

East Asia 228

Oceania 26

America 64
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