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Abstract

PURPOSE—To describe how integrated gradient nonlinearity (GNL) correction can be utilized 

within non-iterative partial Fourier (homodyne) and parallel (SENSE, GRAPPA) MR image 

reconstruction strategies, and demonstrate that performing GNL correction during – rather than 

after – these routines mitigates the image blurring and resolution loss caused by post-

reconstruction image domain based GNL correction.

METHODS—Starting from partial Fourier and parallel MRI signal models that explicitly account 

for GNL, non-iterative image reconstruction strategies for each accelerated acquisition technique 

are derived under the same core mathematical assumptions as their standard counterparts. A series 

of phantom and in vivo experiments on retrospectively undersampled data were performed to 

investigate the spatial resolution benefit of integrated GNL correction over conventional post-

reconstruction correction.

RESULTS—Phantom and in vivo results demonstrate that the integrated GNL correction reduces 

the image blurring introduced by the conventional GNL correction, while still correcting GNL-

induced coarse-scale geometrical distortion. Images generated from under-sampled data using the 

proposed integrated GNL strategies offer superior depiction of fine image detail, e.g., phantom 

resolution inserts and anatomical tissue boundaries.

CONCLUSION—Non-iterative partial Fourier and parallel imaging reconstruction methods with 

integrated GNL correction reduce the resolution loss that occurs during conventional post-

reconstruction GNL correction while preserving the computational efficiency of standard 

reconstruction techniques.
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INTRODUCTION

Conventional image reconstruction techniques in clinical magnetic resonance imaging 

(MRI) typically assume that spatial encoding is performed with gradient fields that vary 

linearly across the entire imaging field-of-view (FOV). In practice, however, the gradient 

fields inevitably contain higher-order, nonlinear components due to engineering limitations, 

manufacturing imperfections, or to reduce peripheral nerve stimulation (1, 2). The 

unaccounted gradient nonlinearity (GNL) causes image geometric distortion and negatively 

affects applications where high geometric accuracy is required, such as large-scale 

longitudinal studies and pre-treatment planning (3–10).

The conventional methods to correct GNL-induced distortion are based on image-domain 

interpolation with the (presumed a priori known) spatial deformation mapping that results 

from GNL (1). Despite being able to correct coarse scale geometric distortion, such methods 

may introduce unnecessary blurring (11–13). Although improved image-domain 

interpolators can potentially reduce such blurring, they cannot completely circumvent this 

loss since in this case image discretization occurs before – rather than – after the correction 

is performed (11).

Recently, a model-based MR image reconstruction method with integrated GNL correction 

was reported (11). As opposed to the conventional method where distortion is corrected after 

image reconstruction, this model-based method prospectively accounts for the GNL effect 

during reconstruction and was shown to reduce the blurring and resolution loss caused by 

the conventional method, while still correcting the geometric correction. For acquisitions 

with full k-space sampling, this method can be performed non-iteratively via type-I non-

uniform fast Fourier Transform (NUFFT) followed by an image intensity correction (11, 14).

In this paper, we extend the integrated GNL correction method in (11) to other widely-used 

reconstruction methods used for Cartesian acquisitions, including partial Fourier (15) and 

the parallel imaging methods of GRAPPA and SENSE (16, 17). We provide non-iterative 

solutions for these cases and demonstrate the feasibility of the integrated GNL with them.

THEORY

Signal Model

The Fourier domain signal measured during a Cartesian MRI acquisition with non-ideal 

spatial encoding gradients can be modeled as (11):

[1]

where f(x) is a continuous imaged object function, x is the physical position vector, Δ(x) is 

the (presumed a priori known) distortion field caused by GNL; Ω is the field-of-excitation; 

g[κ] is the κ-th signal measurement at k-space position ω[κ]; and n is the zero-mean proper 

complex Gaussian noise.

The problem of reconstructing the continuous image function, f(x), from a finite 

measurement vector, g, is intrinsically ill-posed without auxiliary assumptions about the 
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target signal. Typically, a finite series representation of f(x) is assumed (18), i.e., 

, where b(x) is the (continuous) pixel basis function, r[i] is 

the pixel position vector, and u[i] is the corresponding display coefficient of the i-th pixel. 

Assuming a Dirac delta pixel model (i.e., b(x) = δ(x)), the signal model in Eq. 1 gives: 

, which can be expressed in the following affine 

algebraic form:

[2]

where A(κ, i) = e−jω[κ]·Δ(r[i]) denotes the forward spatial encoding operator. In the presence 

of GNL, A is a mapping from a non-uniform image space grid onto a uniform k-space grid 

for Cartesian MRI. It can be implemented efficiently via a forward NUFFT operator of type-

I (11, 14). Without GNL, A reduces to a conventional discrete Fourier transform (DFT).

Partial Fourier Homodyne Acquisition

Assuming the target signal is strictly real-valued, the partial Fourier homodyne acquisition 

enables up to 2× acceleration by exploiting the conjugate symmetry of k-space 

measurements. For homodyne acquisition, the signal model in Eq. 2 can be re-expressed as 

(19):

[3]

where the notation ur denotes that the target signal is real-valued. The diagonal matrix, Ψ 

, represents the apparent image phase that may be due to receive B1 field 

inhomogeneity, off-resonance, and/or eddy current effects, which is typically estimate from 

a fully-sampled low-frequency region of k-space.

Standard partial Fourier methods construct method-of-moments estimates of ur from g. 

Noting that the expected value  of Eq. 3 is , ur can be 

estimated as:

[4]

where the ensemble average has been replaced with the sample average or observation 

vector. Previous work has shown that the operator (A*A)−1 can be approximated by a real-

valued diagonal matrix, diag{J}, where J denotes the Jacobian determinant of the GNL-

induced distortion field (11). Hence,

[5]

Denote ΦL as the binary operator extracting the central, low-pass region of k-space, and 

ΦH1, ΦH2 symmetrically extracting the high-pass regions above and below the center of k-

space, respectively. Then, the signal measurement vector can be split up along the phase 

encoding or readout direction as:
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[6]

Homodyne reconstruction recovers the real-valued image vector by assuming conjugate 

symmetry of k-space measurements (15), leading to: real 

. Hence ur can be reconstructed by:

[7]

Similar to its original counterpart, the homodyne reconstruction described by Eq. 7 is non-

iterative.

In standard partial Fourier methods, the image phase estimate Φ, is constructed from a fully-

sampled low-frequency region of k-space. However, note that Eq. 3 presumes that the phase 

map is GNL distortion-free. Hence, this reference signal should be derived from a low-

resolution image generated using integrated GNL correction, i.e.,

[8]

where operator  takes the phase map of a complex vector.

GRAPPA

GRAPPA (16) is an auto-calibrating k-space based parallel imaging method that reconstructs 

the full set of coil images from undersampled k-space data. Denoting G as the M × C multi-

channel k-space data matrix, where M and C are the number of k-space measurements (per 

coil) and coils, respectively, the forward signal model of GRAPPA is:

[9]

where U is the N × C matrix (N denoting the total number of image pixels) representing the 

set of coil images and N is the proper Gaussian noise matrix (N × C). For parallel imaging, 

N ≥ M. Following auto-calibration, GRAPPA estimates missing k-space values via Fourier-

domain interpolation (16). The fully-sample multi-coil k-space data matrix (N × C) 

estimated by GRAPPA, , is denoted as:

[10]

where  is the k-space interpolation operator derived from auto-calibration 

signals (ACS).

Because GRAPPA reconstruction occurs entirely in k-space, integrated GNL correction can 

simply be performed while transforming the reconstruction result from k-space to the image 

domain in a way similar to the case of full k-space sampling:
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[11]

Again, the Jacobian determinant approximation is used. Similarly, if the target signal is 

presumed to be real-valued, homodyne techniques can also be incorporated into this 

reconstruction process to yield:

[12]

where uc, gc, and Ψc denote the real-valued image, GRAPPA reconstructed k-space signal, 

and phase map of the c-th coil, respectively.

SENSE

SENSE (17) is another widely-used parallel imaging method, which reconstructs a single 

image from the measured multi-channel data set. Presuming uniform (Cartesian) under-

sampling, the k-space MR signal observed during a standard SENSE acquisition can be 

modeled as:

[13]

where g (MC × 1) is the multi-coil k-space data vector, S (NC × N) is a block diagonal 

matrix that represents the true (distortion-free) sensitivity profiles of receiving coils, Φ (M × 
N matrix) is a uniform under-sampling operator, u (N × 1) is the target image vector, and n 
(MC × 1) is the noise vector. Additionally, I denotes a C × C identity matrix and is the 

Kronecker product.

SENSE reconstruction estimates the target image vector, u, by solving the following 

regularized least-squared estimation problem:

[14]

where the regularization parameter, λ > 0, stabilizes the matrix inversion process implicit to 

this problem. As shown in (11), this problem can be solved iteratively, e.g., via conjugate 

gradient (CG) iteration. However, the computational efficiency of this approach may not be 

sufficient for routine clinical use, particularly considering that standard SENSE 

reconstruction (without integrated GNL correction) is non-iterative. Although CG iteration is 

widely used for solving quadratic estimation problems like Eq. 14, there exist many viable 

alternative numerical strategies. One attractive and increasingly popular optimization 

strategy is alternating direction method-of-multipliers (ADMM) (20), which breaks apart a 

compound optimization problem like Eq. 14 into a series of easier tasks.

Conventionally, a standard SENSE reconstruction is first performed on the undersampled 

data, after which standard image domain GNL correction is applied to the resultant image. 

To utilize the proposed integrated GNL correction in a similar direct manner, the uncorrected 

SENSE image result can instead be Fourier transformed back to k-space, and the standard 

integrated GNL correction process for fully-sampled data can be applied. As shown in the 
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Appendix, this process actually corresponds to the first iteration of a particular ADMM 

routine for solving Eq. 14, initialized with the standard SENSE reconstruction results. 

Specifically, the initial standard SENSE reconstruction (i.e., without GNL correction) is 

performed as:

[15]

where Ŝ represents the set of GNL-distorted (i.e., non-corrected) coil sensitivity profiles and 

F is the DFT operator. The subsequent transform and GNL correction process is:

[16]

where α is a (optional) normalization constant that is a function of λ. As shown in the 

Appendix and Results, non-iteratively executing just a single iteration of the ADMM scheme 

for Eq. 14 leads to improvements in spatial resolution relative to standard reconstruction and 

correction pipeline.

Like GRAPPA, the homodyne strategy can also be integrated into SENSE reconstruction 

algorithm(21). This process mirrors Eq. 7, using the GNL-corrected SENSE reconstruction 

process in Eq. 16 (denoted as ) in lieu of the integrated GNL correction process 

for the full-sampled data:

[17]

where the reference phase here is estimated as:

[18]

Again, Eq. 17 reduces to standard SENSE with homodyne acquisition when Δ(x) = 0 (i.e., 

without integrated GNL correction).

METHODS

Data Acquisition

Several phantom and in vivo brain scan data sets were acquired to compare the proposed 

strategies with standard GNL correction. All the experiments were performed on a 3.0 T MR 

scanner (General Electric, Signa HDxt System, v16.0) with zoom mode gradient (slew rate = 

200 T/m/s, gradient amplitude = 40 mT/m) and an 8-channel head-only receive coil.

The American College of Radiology (ACR) quality control phantom was scanned with a T1-

weighted spin echo protocol (TR = 500 ms, TE = 13 ms, FA = 90°, BW = ±15.63 

kHz,matrix size = 256 × 256, FOV = 220 × 220 mm2, slice thickness = 3 mm). For the sake 

of demonstration, the resolution insert slice of the ACR Phantom was physically centered 94 

mm from the gradient isocenter along the inferior direction to ensure high GNL. 

Additionally, brain scans were acquired on two healthy volunteers under an IRB-approved 

protocol. A sagittal 2D T2-weighted fast spin echo (FSE) sequence (TR = 4767 ms, TE = 
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102 ms, FA = 90°, BW = ±25.00 kHz, matrix size = 256 × 256, FOV = 220 × 220 mm2, slice 

thickness = 4 mm, echo train length = 12) was performed on one volunteer, and an axial 3D 

MP-RAGE sequence (TR = 7 ms, TE = 2.9 ms, TI = 900 ms, FA = 8°, BW = ±31.25 kHz, 

matrix size = 256 × 256 × 240, FOV = 240 × 240 × 240 mm3, slice thickness = 1 mm) was 

performed on the second. For all the experiments, complete raw k-space data sets were 

retained and retrospectively undersampled (details below).

Image Reconstruction Experiments

Vendor-provided GNL information was used throughout the study. For all experiments in 

this work, 2D in-plane GNL correction (both standard and proposed methods) was 

performed. All the data were processed in Matlab 7.14 environment on a 4-core 3.2 GHz 

computer with 8 GB memory. The standard image domain GNL correction was 

implemented in house via conventional cubic spline interpolation in the image domain, 

which has been validated against the vendor-provided implementation (1). The type-I 

NUFFT operator was constructed using a 1.25× oversampled Fast Fourier Transform (FFT) 

and width J = 5 Kaiser-Bessel kernel. We note that image domain correction was not 

performed using a Kaiser Bessel kernel since the latter is not intrinsically interpolating 

(since it is non-oscillatory). This is not a problem for the NUFFT, which counters the effects 

of non-interpolating convolution during deapodization. Although an exhaustive evaluation of 

possible interpolation kernels is beyond the scope of this work, a representative result 

obtained with a Kaiser Bessel window is shown in Supporting Figure S1, available online. 

Based on our current Matlab implementation, the proposed NUFFT-based method requires 

1.5 sec to correct a 256 × 256 pixels single coil image (as in the GRAPPA reconstruction 

example), while the standard GNL correction needs 1.0 sec. The proposed homodyne 

reconstruction requires the phase map to be separately corrected with the same NUFFT 

operator, the total time is therefore 3.0 sec (proposed) versus 1.0 sec (standard) for the 

equivalent matrix size.

To test the proposed partial Fourier reconstruction, the resolution insert slice of the ACR 

data set was selected and retrospectively undersampled (contiguously) to 63% of its original 

size in the phase encoding (right/left) direction according to Eq. 7. Three groups of 

experiments were performed: zero-filling, homodyne, and fully-sampled (for reference) 

reconstructions. Within each group, three different reconstructions were performed: standard 

reconstruction without GNL correction, standard reconstruction followed by image-domain 

GNL correction, and reconstruction with the integrated GNL correction. Both the standard 

and proposed homodyne reconstruction strategies were performed according to Eq. 7. Phase 

maps were computed according to Eq. 8. For the standard approach, A = F and J = 1 (i.e., no 

GNL) was assumed during transformation from k-space to the image domain. For the 

proposed approach, A was de ned as the GNL-aware type-I NUFFT operator.

To test the proposed GRAPPA reconstruction, k-space data of one slice (located at 44 mm to 

the right of isocenter) of the T2-weighted FSE dataset was retrospectively 2× uniformly 

undersampled except within a low-pass region that remained fully-sampled for use as an 

ACS. A total of 36 ACS lines were preserved, leading to an effective sampling rate of 57%. 

The missing k-space signals were then recovered. The inverse DFT-based reconstruction was 
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first applied to the recovered full k-space signals. Then, the standard GNL correction was 

applied to the reconstructed images. Next, the proposed GRAPPA with integrated GNL 

correction was performed according to Eq. 11. The k-space of each coil was reconstructed 

separately and root-sum-of-squared combined. Finally, to simulate GRAPPA with 

homodyne acquisition, a homodyne kernel (cutoff at 71% of total k-space) is further applied 

according to Eq. 7, leading to an overall undersampling rate of 43%. Then, the proposed 

method as in Eq. 12, along with the conventional inverse DFT-based homodyne 

reconstruction followed by standard GNL correction, were performed respectively.

To test the proposed SENSE reconstruction with integrated GNL correction, one slice 

located at −61 mm in inferior direction was selected from the MPRAGE data set and 

retrospectively undersampled (2×). Coil sensitivity profiles were estimated from separate 

calibration scan data via ESPIRiT (22). The image reconstructed by conventional SENSE 

was first obtained, which was then GNL-corrected using the standard image-domain 

method. Then, the proposed SENSE strategy with integrated GNL correction defined in Eq. 

16 was directly applied to the same undersampled k-space data. λ was manually selected to 

be 0.025 which offered visually acceptable performance. The selection of this model 

parameter could potentially be automated and optimized using an objective metric like mean 

squared error (23), but this development is beyond the scope of this work. Finally, the k-

space data were further undersampled according to homodyne acquisition (homodyne kernel 

cutoff at 71% of total k-space), yielding an overall undersampling rate of 36%. The 

proposed SENSE with homodyne acquisition (Eq. 17) was then performed. For comparison, 

the standard SENSE/homodyne reconstruction with and without conventional GNL 

correction was also performed.

RESULTS

Fig. 1 shows the images reconstructed from undersampled k-space signals by zero-padding 

(a-c), partial Fourier homodyne reconstruction (d-f), and images reconstructed from fully 

sampled k-space data (g-i). The images were sinc-interpolated (4×) for display. As expected, 

images reconstructed by zero-padding show blurring along the undersampling direction. The 

results of homodyne reconstruction exhibit comparable spatial resolution to the full k-space 

sampling results with an expected minor reduction in signal-to-noise ratio (SNR). Both 

standard and the proposed methods are able to correct the coarse scale geometrical distortion 

due to GNL, but the NUFFT-based homodyne reconstruction (f) shows less spatial blurring 

than the image after standard GNL correction (e). As shown in Fig. 1, the images after 

NUFFT-based correction show better depiction around the resolution inserts.

Fig. 2 shows images reconstructed via the NUFFT-based GRAPPA reconstruction, along 

with the standard GRAPPA reconstruction results before and after standard GNL correction. 

The data were sinc-interpolated (4×) for display and Fermi windowed. Both standard and 

NUFFT-based corrections are able to correct the geometrical distortion caused by GNL, as 

seen around the anterior end of Figs. 2a to 2c. Comparing between images before and after 

standard GNL corrections shows that the standard correction method introduces image 

blurring in the corrected images. This blurring is reduced by the proposed NUFFT-based 

correction. Shown on the right in Fig. 2 are the line profiles in the images after standard or 
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NUFFT-based GNL correction. The line profile comparison shows that, due to the 

smoothing effect of interpolation, the pixel intensity change around small anatomical 

structures in the standard GNL correction results is reduced when compared with that in the 

images obtained with NUFFT-based corrections. Additional performed experiments, whose 

results are not shown here for brevity, suggest that the resolution preserving capability of the 

proposed NUFFT-based method are also retained for higher GRAPPA acceleration rates 

and/or fewer ACS lines, although this topic will be explored in greater depth in a separate, 

future study.

Fig. 3 shows the reconstruction results of the conventional SENSE before (a, d, g, j) and 

after (b, e, h, k) standard GNL correction, and the results of the proposed SENSE 

reconstruction with integrated GNL correction (c, f, i, l). Data were 4× sinc-interpolated for 

display and Fermi windowed. Similar to the observation in Figs. 1 and 2, the proposed 

SENSE with integrated, NUFFT-based GNL correction better preserves image details. 

Although the GNL distortion is relatively moderate in this example, the standard GNL 

correction still introduces image blurring to the anatomical boundaries and modifies noise 

texture. On the other hand, these boundary regions are better preserved by the proposed 

NUFFT-based methods. Line profiles in the images after standard and the NUFFT-based 

GNL corrections demonstrate the reduced blurring. These observations can be understood 

via the frequency spectra analysis shown in our previous work (11), which demonstrated that 

the power spectra of images corrected with the interpolation-based GNL correction 

exhibited loss of its high frequency components, similar to a low-pass filtering effect. On the 

contrary, the proposed NUFFT-based correction does not suffer from this loss, since the 

blurring introduced by interpolation in the NUFFT operators is implicitly accounted for via 

its integrated deconvolution.

DISCUSSION

We presented new methods for the combination of a recently proposed integrated GNL 

correction strategy with accelerated data acquisition techniques that are widely used in 

clinical settings, including partial Fourier homodyne and parallel imaging. Starting from the 

signal model for spatial encoding, the image reconstruction framework with integrated GNL 

correction for each strategy is constructed, from which non-iterative solutions for Cartesian 

MRI are derived in correspondence with their original counterparts that are routinely used in 

clinical settings. For SENSE, the statistical meaning in its original version as a maximum 

likelihood estimator is retained (17), as shown from the derivation of its reconstruction 

model in the Appendix. Comparison between conventional GNL correction method and the 

NUFFT-based corrections shows that image details are better retained by the proposed 

method. Although tested with 2D protocols, the proposed frameworks can be readily 

extended into 3D partial Fourier acquisition, and 3D GRAPPA/SENSE with two-

dimensional acceleration. Other partial Fourier processing methods (e.g., POCS) are not 

included in this work due to their iterative nature (24, 25). Additionally, for such methods, 

the numerical error induced by the imperfect approximation of operator (A*A)−1 by diag 

{J} can accumulate at each iteration, which makes the design of efficient routines 

challenging.
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In our previous work on this topic (11), it was shown that the NUFFT-based GNL correction 

operator preserved the noise power spectrum of the target image. Based on this observation, 

and preliminary experimental results not shown here, it is hypothesized that the developed 

GNL correction strategies will retain their resolution preserving advantage across a broad 

range of SNR levels. However, extensive theoretical and experimental analysis of the effect 

of noise – amongst other characteristics like pixel size – on GNL-corrected image accuracy 

and precision is needed to rigorously validate this hypothesis. This will be the subject of a 

separate, future work.

The GNL distortion fields used in this work were generated using a vendor-provided 5th 

order spherical harmonic polynomial model of the gradient field, which is generally believed 

to be sufficient for conventional clinical applications (3, 4). Conventionally, these 

coefficients are obtained via electromagnetic field simulation based on the system specific 

coil design. The geometrical accuracy of GNL correction (any strategy) can potentially be 

improved by adopting a higher order model of the gradient field (8), and by estimating field 

coefficients on a system specific basis to account for manufacturing variations (26, 27). 

Adopting advanced calibration procedures is expected to provide overall improvements in 

GNL correction performance; however, the relative advantage of NUFFT-based correction 

over the standard image domain strategy is expected to be retained.

The proposed strategies can potentially be applied to any acquisition where the original 

homodyne acquisition, GRAPPA and SENSE algorithms are routinely applied. As shown in 

the previous work (11), the resolution retaining effect is expected to be more pronounced in 

region where strong GNL presents. Since the GNL distortion is usually stronger in regions 

away from gradient isocenter, the proposed method may particularly benefit large FOV 

applications such as those used in treatment planning or peripheral angiography (28). The 

proposed method may also be beneficial for scanners exploiting gradient coils with new, 

asymmetric design where gradient linearity is intentionally sacrificed in exchange for higher 

gradient value and slew rate, leading to stronger GNL distortion within a typical brain scan 

volume (29).

CONCLUSIONS

Non-iterative partial Fourier and parallel imaging reconstruction with integrated GNL 

correction mitigates the image blurring and resolution loss caused by conventional image 

domain interpolation-based GNL correction method while reducing the amount of data 

required to form an MR image.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Here, we show that the SENSE-based GNL correction process in Eq. 16 corresponds to the 

first iteration of an ADMM optimization routine for solving Eq. 14,

Since the DFT (F) is unitary,  and this problem can be 

restated as:

In the above problem, coil sensitivity modulation (S) is applied before GNL-induced spatial 

distortion. Alternatively, this effect can be applied after distortion. Let Ŝ denote the set of 

GNL-distorted sensitivity profiles that satisfy . Then, the SENSE 

reconstruction problem resorts to:

The alternating direction method-of-multiplier (ADMM) algorithm (20) operates by 

decomposing the target optimization problem into a series of (relatively) easier tasks. To this 

effect, introduce an intermediary variable v = F*Au. The above (unconstrained) optimization 

problem can then be recast as the following (constrained) joint estimation problem:

Note that this problem is mathematically equivalent to the original. The augmented 

Lagrangian functional for this constrained problem is then:

where ζ is the Lagrangian multiplier vector and μ > 0 is an optimization constant whose 

value controls the rate of convergence of the iterative routine. ADMM operates by serially 

minimizing  with respect to u and v, independently, while updating ζ. Specifically, at 

the n-th ADMM iteration, the solution vn, un, and ζn are updated as follows:
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Upon inspection, the update of vn is essentially a standard SENSE “unfolding” operation 

that can be solved non-iteratively (17). The Lagrange multiplier update is also 

straightforward. However, as previously noted for fully-sampled integrated GNL correction 

(11), the update of un cannot be computed directly.

One strategy for iteratively determining un is preconditioned steepest descent. At the k-th 

steepest descent iteration, un is updated as:

where P is a Hermitian positive definite preconditioner and the residual vector

Noting Eq. 5, a simple and effective preconditioner for this problem is the Jacobian 

determinant approximation of (A*A)−1, i.e., P = diag {J}. The optimal step size is 

determined adaptively as:

Since steepest descent is here applied within another iterative process, it can be initialized 

using the final result from the previous (outer) iteration, i.e., un,0 = un–1.

With ADMM, subproblems do not need to be solved exactly to guarantee convergence – 

inexact solving will simply slow the overall rate of convergence (20). At minimum, a single 

steepest descent step can be performed, yielding the following one-step update rule for un at 

the n-th ADMM iteration:

Assume zero initial conditions for u and ζ (i.e., u0 = ζ0 = 0), and with v initialized as the 

standard SENSE reconstruction results before GNL correction, i.e.,

Then, the update of u at the first ADMM iteration reverts to

where
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Hence, the u update at the first ADMM iteration can be obtained by transforming the 

SENSE result back to k-space, and applies integrated GNL correction on this fully-sampled 

data. Thus, the expressions in Eq. 16 correspond to performing the first iteration of a specific 

ADMM sequence for Eq. 14.

To demonstrate the efficacy and convergence of these optimization strategies, the MPRAGE 

data set with 2× retrospective uniform undersampling in Fig. 3 was reconstructed using the 

described ADMM sequence (with inexact un update), which was executed for 200 iterations 

with λ = 0.025 (manually selected). The effect of ADMM optimization constant μ was 

examined by performing the ADMM sequence with different values (μ = 0.0025, 0.025, 

0.25, 2.5, 25, 250). As shown in Fig. 4, the objective functions (from Eq. 14) under various μ 
gradually converge, while the choice of μ influences the solution after the first iteration as 

well as the global convergence rate. When a small μ (e.g., 0.0025) is used, the ratio λ/μ is 

large, which diminishes the contribution of A*A in obtaining the step size α0 and 

subsequently un, and therefore leads to a sub-optimal solution after the first iteration and 

decreases the global convergence rate. Although a large μ (e.g., 250) offers a good 

approximation after the first iteration, the strong weight set on μI during the update of vn 

weakens the effect of SENSE “unfolding” operation, which also tends to slow down the rate 

of convergence. Finally, an intermediary value (e.g., μ = 2.5) provides a fast convergence and 

offers a good approximation of the nal solution after iterations, and therefore is used in Fig. 

3.

Fig. 5 compares the first iteration result of the inexact ADMM sequence described above (μ 
= 2.5) against the solution after 200 iterations. Note that the first iteration of the ADMM is 

the same as the non-iterative reconstruction solution. No substantial visual differences were 

observed (Figs. 5c and 5d), suggesting that performing only one ADMM iteration may be 

sufficient for practical application. The images with and without standard GNL correction is 

also shown for reference. Compared with standard GNL correction, both ADMM-based 

integrated GNL correction results exhibit sharper boundaries between white and gray matter 

(Fig. 5).
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1. 
The resolution insert slice of ACR phantom reconstructed by zero-padding (a-c), partial 

Fourier homodyne reconstruction (d-f), and from fully sampled k-space data (g-i), before 

and after GNL correction. a, d, and g: images without GNL correction; b, e, and h: images 

corrected with standard GNL correction; c, f, and i: images corrected with the proposed 

NUFFT-based strategy.
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2. 
T2 weighed images reconstructed by conventional GRAPPA before and after the standard 

GNL correction, and images reconstructed by the proposed NUFFT-based GRAPPA. a-c, g-
i: full scale and magnified insets of images reconstructed from k-space data with (2× 

retrospective) undersampling (GRAPPA); d-f, j-l: magnified insets of images reconstructed 

from fully sampled k-space data (Full Sampling), and that reconstructed from k-space data 

with uniform undersampling and partial Fourier acquisition (GRAPPA+PF), respectively. a, 
d, g, j: images reconstructed by conventional DFT based reconstruction before GNL 
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correction (no GNLC); b, e, h, k: images obtained after applying standard GNL correction 

to a, d, g, j (std. GNLC); c, f, i, l: images reconstructed by the NUFFT-based strategies 

(NUFFT). The line profiles in images after the standard and proposed GNL correction are 

shown on the right of each row. The positions of line profiles are indicated with red (std. 

GNLC) or blue (NUFFT) markers.
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3. 
MPRAGE images reconstructed by conventional SENSE before and after the standard GNL 

correction, and images reconstructed by the proposed SENSE framework with integrated 

GNL correction. a-c, g-i: full scale and magnified insets of images reconstructed from k-

space data with (2× retrospective) undersampling (SENSE); d-f, j-l: magnified insets of 

images reconstructed from fully sampled k-space data (Full Sampling), and that 

reconstructed from k-space data with uniform undersampling and partial Fourier acquisition 

(SENSE+PF), respectively. a, d, g, j: images reconstructed by conventional DFT based 
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reconstruction before GNL correction (no GNLC); b, e, h, k: images obtained after applying 

standard GNL correction to a, d, g, j (std. GNLC); c, f, i, l: images reconstructed by the 

NUFFT-based strategies (NUFFT). The line profiles in images after the standard and 

proposed GNL correction are shown on the right of each row. The positions of line profiles 

are indicated with red (std. GNLC) or blue (NUFFT) markers.
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4. 
a Normalized objective function values of GNL-integrated SENSE reconstruction model at 

different numbers of ADMM iteration for a series of optimization constant μ values; b 
magnified inset as indicated in a.
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5. 
MPRAGE images (and magnified insets) reconstructed using the conventional DFT based 

SENSE before GNL correction (a), and after standard GNL correction (b). c, d: images 

reconstructed using the NUFFT-based SENSE framework solved via ADMM in the 1st (c) 

and 200th iteration (d), respectively. Note that the 1st iteration of the ADMM is the same as 

the non-iterative SENSE reconstruction solution. The line profiles in images after the 

standard and NUFFT-based GNL correction are shown in e. The positions of line profiles are 
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indicated with red (std. GNLC), blue (ADMM Iter = 1, non-iterative solution), or green 

(ADMM Iter = 200) markers.
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