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Abstract
Genetic factors play an important role in the etiology 
of inflammatory bowel disease (IBD). The launch of 
genome-wide association study (GWAS) represents 
a landmark in the genetic study of human complex 
disease. Concurrently, computational methods have 
undergone rapid development during the past a few 
years, which led to the identification of numerous 
disease susceptibility loci. IBD is one of the successful 
examples of GWAS and related analyses. A total of 
163 genetic loci and multiple signaling pathways have 
been identified to be associated with IBD. Pleiotropic 
effects were found for many of these loci; and risk 
prediction models were built based on a broad 
spectrum of genetic variants. Important gene-gene, 
gene-environment interactions and key contributions 
of gut microbiome are being discovered. Here we will 
review the different types of analyses that have been 
applied to IBD genetic study, discuss the computational 
methods for each type of analysis, and summarize the 
discoveries made in IBD research with the application 
of these methods.
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Core tip: Computat ional methods have rapidly 
progressed during the last a few years, which ren
dered us the ability to analyze genotype data on a 
genome-wide level. The application of these methods 
in inflammatory bowel disease (IBD) genetic study 
yielded productive results. We discuss the major types 
of analyses in genome-wide study, and the different 
computational methods used in each type of analysis. 
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We also show how these computation methods were 
used in the IBD genetic study and the major findings 
achieved.
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INTRODUCTION
Inflammatory bowel disease (IBD) consists of two 
major subtypes: Crohn’s disease (CD) and ulcerative 
colitis (UC) according to the diseases’ clinical features. 
It is a complex disease, the determinants of which 
involve both genetic factors and environmental 
influences. The genetic contribution of IBD was first 
demonstrated by family studies and twin studies. 
The occurrence of the disease was observed as being 
aggregated in families, with a relative risk of 13-36 for 
CD patients’ siblings and 7-17 for UC[1]. Several studies 
found a significantly higher proband concordance 
rate in monozygotic twins (38.5%-63.6%) than that 
in dizygotic twins (0%-6.7%)[2]. The difference is 
less pronounced among UC patients, 6.6%-27.9% 
in monozygotic twins vs 0%-8.0% in dizygotic 
twins[2]. Similar to other complex diseases, IBD is not 
a monogenetic disease and does not strictly follow 
the Mendelian inheritance pattern. Instead, it clearly 
demonstrates the features of polygenic disease. 
Linkage based genome-wide scanning studies among 
IBD families led to the discovery of IBD susceptibility 
loci IBD1-9[1,3-5], which constitute the early stage of 
IBD molecular genetics study.

Genome-wide association studies
The launch of genome-wide association studies 
(GWAS) focusing on single nucleotide polymorphism 
(SNP) then resulted in the discovery of numerous 
susceptibility loci for complex diseases including 
IBD. In most IBD GWAS designs, the effect allele 
frequency of each SNP was compared between cases 
and controls. In this type of case/control study design, 
the underlying basic statistical test at each SNP is 
χ 2 test or Fisher’s exact test, and logistic regression 
which allows for the adjustment of various covariates. 
IBD is one of the successful examples in utilizing 
GWAS for revealing of its genetic architecture. A total 
of 163 genetic loci have been found to be genome-
wide significantly associated with IBD[6]. Certainly 
the rapid development of genotyping technology has 
made it possible to simultaneously examine millions 
of SNPs. The advance of computation methods also 
has made essential contributions to the discovery 

of such a tremendously large number of genetic 
determinants. Multiple software tools have been 
developed for the GWAS studies, among which, PLINK 
is the most popular one[7]. PLINK provides a compact, 
comprehensive tool-box for GWAS from basic quality 
control filtering, SNP association testing to advanced 
features including gene based analysis, annotation and 
epistasis test. PLINK has been used as the primary 
GWAS analytical tool in the vast majority of the IBD 
genetic studies, from the early finding of loci IL10, 
ARPC2[8], HNF4A, CDH1, CDH3, LAMB1[9] to the more 
recent identification of 163 IBD loci[6]. In GWAS, 
sample structure, which includes both population stra
tification and hidden relatedness[10], is a common issue 
resulting in inflation of statistics and false positive 
results. Sample structure is usually estimated using 
identical-by-descent analysis implemented in PLINK 
and principal component analysis implemented in 
EIGENSTRAT[11,12]. During the recent years, linear 
mixed model (LMM), which captures both fixed and 
random effects, has been applied to GWAS. Software 
based on LMM includes EMMAX[10], FaST[13], and 
GEMMA[14]. They simultaneously correct for population 
stratification and hidden relatedness. GEMMA can also 
be used to analyze multiple correlated phenotypes.

Advance in methodology development of imputation 
and meta-analysis renders GWAS more power for the 
identification of genome-wide significant genetic loci. 
Imputation is to infer genotypes of un-genotyped SNPs 
based on the SNPs that have been assayed for a group 
of samples and the haplotype information from a 
reference population set. The aims of using imputation 
are to fine-map the associated regions, to boost study 
power by examining more SNPs, and to meta-analyze 
cohorts which are genotyped on different platforms[15]. 
The common practice of applying imputation in GWAS 
mainly involves three steps: haplotype estimation 
(pre-phasing), genotype imputation and association 
testing. The first step pre-phasing is to estimate 
underlying haplotypes from SNP genotype data. 
Among several existing methods, software packages 
fastPHASE[16], IMPUTE2[17], MACH[18], BEAGLE[19] and 
SHAPEIT[20] all employ coalescent-based methods and 
hidden Markov models[21]. MACH and IMPUTE2 utilize 
the hidden states as “template haplotypes”[17,18,21]; 
fastPHASE employs parsimonious haplotype-clustering 
for a certain number of clusters[16], and BEAGLE 
adopts a localized haplotype clustering[19]. SHAPEIT 
further improves by collapsing haplotypes into a graph 
structure[20]. Several of these software packages also 
contain the application of imputation, such as IMPUTE 
V2, MACH, fastPHASE and BEAGLE[21]. They are the 
most commonly used software for imputation. For 
example, IMPUTE V2 carries out haploid imputation for 
the SNPs that are not genotyped but in the reference 
panel by conditioning on the haplotypes estimated 
from the genotyped SNPs[17]. BEAGLE iteratively 
fits the localized haplotype clustering model to the 
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estimated haplotypes and resamples haplotypes 
conditional on the genotype and diploid HMM model to 
derive the probability of the un-genotyped SNP[19]. The 
review by Marchini J. and Howie B. provides a good 
summary of the pros and cons of each method[15]. 
For step 3, association testing, one approach is to 
convert the genotype probability to the bi-allelic 
format by specifying a probability threshold. Another 
more commonly used approach is to take imputation 
uncertainty into account by frequentist tests such as 
the score test in SNPTEST[22]. A novel approach of 
Bayesian method to derive Bayes factor has also been 
incorporated into SNPTEST and BIMBAM[23]. Software 
has been developed to work seamlessly for the above 
three steps, for instance, using SHAPEIT for pre-
phasing, and then IMPUTE2 for imputation, which was 
followed by SNPTEST for association testing. Each of 
the imputation method discussed above has its own 
advantage. In the two large cohort studies of IBD, 
BEAGLE was used as the imputation tool, but other 
methods have also been widely used in the GWAS 
study of IBD[6,24].

As another popular approach in GWAS to increase 
statistical power, meta-analysis combines results 
from individual studies. Identifications of many IBD 
genome-wide significant loci have benefited from 
meta-analysis[24-26], with around 30 susceptibility loci 
being discovered from each of these large scale meta-
analyses. In all these three studies, Z-score based 
inverse variance weighted meta-analysis was carried 
out, with the assumption of fixed effects. Other popular 
approaches include traditional P value based method 
with sample size as weight[27], random effect method 
and Bayesian approach[28]. Popular software packages 
for GWAS meta-analysis include METAL[27], META[22,29], 
MetABEL[30], GWAMA[31]; PLINK also has its own meta-
analysis option. All these software packages have 
a fixed effects model implemented, but some also 
contain random-effect models[32]. When conducting 
meta-analysis, practitioners should consider the 
direction of effects and heterogeneity between studies.

PATHWAY ANALYSIS
Though a large number of susceptibility loci have been 
identified by SNP based GWAS, the disease variance 
explained by these loci was still limited: 13.6% for CD 
and 7.5% for ulcerative colitis[6]. At least part of the 
missing heritability may reside in those genetic loci of 
moderate effect, which did not reach genome-wide 
significance due to the limited power in most genetic 
studies. If genes in these loci function collaboratively, 
they could make significant contributions to the 
disease etiology. Pathway studies, which jointly assess 
the statistical significance of a group of genes, can 
be applied to identify such loci. From a biological 
point of view, gene products work cooperatively to 
carry out certain molecular and cellular functions; 
and disease etiology is more likely the result of 

pathway dysregulation. From the statistical point of 
view, examining the joint effect of a group of genes 
will allow the identification of those in which each 
gene member make only a modest contribution. By 
collapsing SNP statistics to gene level and further 
pathway level, the number of multiple testing will be 
reduced. Though challenges and arguments persist in 
the field of pathway analysis, advance in methodology 
development has been rapid. The major steps involved 
in pathway/network analysis are mapping SNPs to 
genes, aggregating SNPs statistics to gene level, 
and then assessing the enrichment of pathways or 
projection of genes into protein-protein interaction 
(PPI) network. Different methods have been evolved 
handling the tasks at each step differently. Over 
50 pathway analysis software packages have been 
developed[33]. CD has been used as a common example 
for the development and application of GWAS-based 
pathway software.  For example, Wang et al[34] applied 
their software GenGen to the study of the Wellcome 
Trust Case Control Consortium CD dataset and un
covered the significant associations of pathway IL12/
IL23 with CD status in several cohorts genotyped on 
different SNP chips and of different ethnicities[35]. This 
is one of the earliest GWAS-based pathway analyses 
of IBD. Another study by Torkamani et al[36], revealed 
another interleukin association with CD - IL3 activation 
and signaling pathway. The software that they used, 
MetaCore, is a commercial one which is developed by 
GeneGo. Significant enrichment of “JAK-STAT signaling 
pathway”, “Cytokine-cytokine receptor interaction” was 
found by Peng et al[37] using statistical method Simes/
FDR. Similar findings of several cytokine signaling 
pathways were made by Carbonetto and Stephens 
using a model based approach[38]. In addition to IL/
cytokine signaling, the involvement of MHC genes was 
found by Holmans et al[39] using software ALIGATOR. 
Similarly, when searching for enrichment of canonical 
pathways or Gene Ontology (GO) terms, Jostins et 
al[6] found the highly significant enrichment of GO 
terms regulation of cytokine production, lymphocyte 
activation, and pathway JAK-STAT signaling pathway 
in the largest IBD GWAS so far. Though being 
common in that these pathways were all interleukin/
immune related pathways, the non-overlapping of 
top significant pathways between different methods 
could be attributed to different statistical methods 
and/or the different pathway databases used in their 
studies. Several non-immune pathways were also 
found to be significantly associated, such as “calcium 
signaling”, “ChREBP regulation pathway” identified by 
Torkamani et al[36]; “ABC transporters” and “Extracellular 
matrix-receptor interaction” found by Peng et al[37] by 
Fisher’s exact test. It would be interesting to further 
experimentally test the biological contributions of 
genes in these pathways to IBD. A lot of convenient 
online software tools have been developed for pathway 
analysis based on GWAS data, such as i-GSEA4GWAS[40] 
and GSEA-SNP[41]. In addition to the methods dis
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cussed above, other pathway analysis tools that were 
originally designed for gene expression data have 
also been used after concatenating SNP statistics to 
gene statistics, such as DAVID[42], GeneTrail[43], and 
WebGestalt[44].

As an alternative to pathway analysis, another way 
to assess genes’ joint effect is PPI network, in which 
the nodes represent the protein products of the genes, 
and the edges connecting the nodes represent the 
biochemical interactions between a pair of proteins. 
After mapping significant genes to PPI networks in 
various databases, the resulting nodes, edges and 
the size of the largest connected component was 
then computed. Cytoscape[45] is the most commonly 
used comprehensive toolkits for network analysis and 
visualization. Other online tools include DAPPLE[46], 
STRINGS[47], and FUNCOUP[48]. Pathway and net
work analyses can also be combined, which yield 
significantly enriched pathways within the network. 
Such pathway analyses are implemented in software 
like STRINGS and FUNCOUP; and can be integrated 
into Cytoscape. Network analysis tools, such as 
DAPPLE, have been used for prioritization of candidate 
genes in IBD analysis[6].

Gene-gene interaction
In addition to pathway analysis in general, gene-gene 
interaction is also an important topic in IBD research. 
Gene-gene interaction is often referred to as “epistasis”, 
for which there are its mathematical definition and its 
biological interpretation. Simplistically, it implicates 
a departure from independent effect of each gene 
per se, but we need to be aware that epistasis in 
mathematical meaning and biological context are 
not often interchangeable. Mathematically, epistasis 
testing for complex human diseases including IBDs, 
was carried out in two ways - hypothesis driven and 
hypothesis free. In the former, particular groups 
of genetic variants were selected and tested; and 
in the later especially in the context of GWASs, 
pairs of interactions between all SNPs studied were 
exhaustively searched[49]. Most traditional studies in 
the IBD research field, which were limited by sample 
size and resources, focused on epistasis testing 
between specific candidate genes, using χ 2 test or 
logistic regression. Because of the huge number of 
combinations n(n-1)/2 needed to be tested for n SNPs, 
one can image the tremendous computational burden 
created to carry out the hypothesis free search. In 
recent years, the methodology developments have 
made it possible in human genetics study, which has 
been summarized in detail in review article by Wei 
et al[49]. They classified the common methods into 
several classes, such as regression-based methods, 
LD- and haplotype-based methods, Bayesian methods, 
machine-learning and data-mining methods, and 
data filtering methods[49]. Among these methods, 
the most commonly used one to detect epistasis 

interactions in either hypothesis free or hypothesis 
driven setting is the regression-based methods by 
comparing the statistical model with interaction terms 
(saturated model) and the one without (reduced 
model)[49]. Logistic regression has been commonly 
used in epistasis testing among candidate genes, 
such as interactions between CARD8 and NALP3[50]. 
This is relatively easy for testing interactions between 
a small number of SNPs of interest. For genome-
wide epistasis testing, with the rapid development 
of modern computational technology, this is not an 
impossible task anymore. Epistasis test implemented 
in PLINK is a typical example of using regression 
based method on SNP alleles[7]. Proper application 
of approximation methods further speeds up the 
computing time for initial screening purpose. For 
example, software package “BOOST” employed the 
Kirkwood superposition approximation[51] at the initial 
genome-wide screening stage for epistasis interactions 
involved in disease traits[52], followed by the classical 
likelihood ratio test only at the testing stage after 
eliminating the many non-significant interactions first. 
In addition to the two-step design and utilization of 
approximation approach, BOOST also transformed 
genotype data to Boolean representation which 
allows for fast logic computing[52]. Now together with 
joint effect tests[53], BOOST algorithm has been incor
porated into PLINK 1.9 (http://pngu.mgh.harvard.
edu/~purcell/plink2/epistasis.html). Other algorithms 
have also been introduced into the field of epistasis 
testing, such as decision tree learning which is a 
predictive modeling method of machine-learning and 
data mining[54]; as well as multifactor dimensionality 
reduction (MDR)[55,56]. These methods also allow for 
the identification of higher order interactions. Such 
methods have been used in epistasis analysis for IBD. 
Most recent publications in this regard include the 
one by Wang et al[57] using regression tree to search 
for models that contain logical SNP interactions that 
better explain UC disease compared to single SNP 
combinations. However, their study was limited to the 
known genome-wide significant 133 UC loci. MDR is a 
non-parametric method that select and combine high-
dimensional genotypic data into a one-dimensional 
model with a variable of high and low risk classes[55]. 
By MDR analysis, Okazaki et al[58] found suggestive 
evidence for high-order interactions between genes 
IL23R, IBD5 and ATG16L1 variants in a CD case-
control cohort.

Here the epistasis testing that we have discussed 
refers to its mathematic meaning. The epistasis 
interactions captured in statistical model often are 
hard to investigate for its biological mechanism in 
experimental settings.

Gene-environment interaction
Gene-environment interaction is another hot topic 
in IBD research. A broad range of environmental 
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factors have been studied in IBD genetics, including 
environment factors in traditional definition such as 
smoking, diet, physical activity, medication, infection 
and other life style factors[59,60]; and the newly defined 
“in-vironment” factors, like the microbiome in the 
gut. In fact, the gut “in-vironment” is affected by 
environment factors like diet[61]. It has been well 
recognized that the development of IBD is the result of 
interplaying between individual’s genetic composition 
and his/her environmental exposure. To study the 
gene-environment interactions, the χ2 test and logistic 
regression methods can be similarly used, just by 
introducing environmental factors into the regression. 
Important findings include the interactions between 
smoking and polymorphisms of important IBD risk 
genes, NOD2, CYP2A6 and GSTP1[62,63]. New methods 
have been adopted in this regard too, such as the logic 
regression[64,65], which fits the regression model with 
Boolean expression of the predictor variables, similarly 
as we discussed above for gene-gene interactions. 
In the work by Wang et al[57], they not only found 
gene-gene interactions but also identified interactions 
between genes and smoking in UC cohorts by logic 
regression. The same group has also applied this 
method to a similar study of genetic and environmental 
factors for CD[66]. By far, smoking is the most studied 
environmental factors for IBD.

It has long been suggested that the interaction 
between the intestinal immune system and its microbe 
environment plays key roles in the pathogenesis of 
IBD. The highly significant enrichment of pathway 
“response to molecules of bacterial origin” among the 
significant IBD GWAS loci reinforced such concept 
in the largest IBD GWAS study to date[6]. Dysbiosis, 
which refers to the reduction of gut microbiota diversity 
or abnormal change of composition, has been known 
to play a major pathological role in IBD etiology[67]. 
The Dysbiosis of microbiota in IBD patients was 
investigated using different experimental methods. 
Two approaches are commonly used in the microbiome 
investigation. A traditional approach is the targeted 
amplicon approach in which the taxonomy and the 
phylogeny of the microbiota were examined by using 
several marker genes[68]. One most commonly used 
marker is ribosomal small subunit --16S ribosomal 
DNA (rDNA) because of its universal existence across 
species and its composition of both slowly evolving 
sequences and fast evolving sequences[68]. A more 
recent approach is the metagenomics approach which 
is high-throughput sequencing based microbiota 
genomic DNA profiling[68]. Many computational tools 
have been developed for analyzing sequencing data 
from either approach. The major analytical tools for 
16S rDNA data include QIIME (quantitative insights 
into microbial ecology)[69] established using PyCogent 
toolkit[70], mothur, which incorporates algorithms in 
several other tools and new features[71], and VAMPS[72]. 
For metagenomics data analysis, common software 
packages, including PhymmBL[73] and MEGAN[74], 

compare high-throughput sequencing reads to known 
microbiome genome sequences; while others, such 
as PhyIOTU[75] and MLtreemap[76], derive phylogenetic 
origin based on marker genes from the large amounts 
of sequencing data. Both approaches have been 
used in microbiome study of IBD pathogenesis. Gut 
microbiota are shaped by various factors including 
both host genetic factors, and environment factors, like 
diet, medication and others. Information from research 
in this field is emerging. A reduction in diversity of 
fecal microbiome has been reported for CD patients 
when compared to healthy controls, which is the result 
of studying 16S rRNA genes[77], and similar results 
were found for UC patients[78]. Another microarray 
study using 16S rDNA from CD patients and healthy 
controls specifically observed a reduction in bacterial 
populations within the phylum Firmicutes[79]. Reduced 
diversity has also been reported when comparing fully 
inflamed tissue to non-flamed tissue for the same CD 
or UC patient[80]. On the other hand, increased fungal 
diversity has been found in CD patients compared with 
controls[81]. A recent large pediatric treatment-naïve 
CD cohort examining microbiome indicates increase 
and reduction of abundance in different bacteria 
species; and also suggests the influence of antibiotic 
on such changes[82]. Several studies implicate that host 
genetics, like NOD2, ATG16L1 variants have an impact 
on abundance of mucosal microbiota abundance[83,84]. 
A study focusing on bacterial and metaproteomic 
analysis of the mucosal-luminal interface has em
phasized the host-microbe interactions as one of the 
important underlying factors for IBD[85].

Pleiotropy
IBD is a type of auto-immune disease (AID) and 
genetic studies have found it shares susceptibility loci, 
signaling pathways with other immune diseases and 
non-immune diseases, despite their distinct clinical 
features. Lees et al[86] provided a good summary of 
susceptibility loci common to IBD and other diseases. 
Pleiotropy is a common phenomenon among auto-
immune diseases. Signaling pathways like cytokine 
signaling and innate immunity have been linked to 
several AIDs[87-89], including IBD[90,91]. Results from 
more recent studies of cohorts genotyped on the 
immunochip provide further evidence for the genetic 
sharing among different types of immune-related 
diseases. Traditionally, when a cohort comprising 
patients of multiple related diseases were studied, 
pooled analysis or meta-analysis is employed, including 
both fixed effects meta-analysis and random effects 
meta-analysis. However, inherent heterogeneity in 
these cohorts makes it loose power to find subtypes 
specific signals or signals that are of opposite di
rections of effect in related diseases. To compensate 
for these disadvantages, several methods have been 
developed. Cotsapas et al[92] developed the cross-
phenotype meta-analysis method which tests for the 
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deviation from the null hypothesis that there is no 
additional association beyond the known ones; and the 
alternative hypothesis involves associations with two 
or more phenotypes. They applied this method for the 
test of pleiotropic effects of 107 SNPs which are known 
for immune-disease association among 7 diseases 
including CD; and found evidence of association with 
more than one disease for 47 SNPs. Bhattacharjee et 
al[93] presented a subset-based meta-analysis, which 
exhaustively investigates combinations of diseases 
subsets against the shared control set or the rest of 
all the samples; logistic regression was iteratively 
applied for each combination to find the best subset 
combination that would yield strongest association for 
each SNP; and the discrete local maxima method[94] 
was used to get the estimation of P value upper 
boundary. Other methods made extensions to the 
weighted sum of the univariate test statistics[95], 
reflecting effect heterogeneity among phenotypes[96,97]. 
Newly proposed methods like GPA (Genetic analysis 

incorporating Pleiotropy and Annotation)[98] employed a 
two-groups model[99] and an Expectation-Maximization 
(EM) algorithm[100] for estimation of parameters in 
the GPA model. They also incorporated annotation 
enrichment into the analysis to prioritize identification 
of functional signals. Schifano et al[101] developed a 
novel approach SMAT for evaluating shared effect 
of genetic variants on several secondary continuous 
phenotypes in a case-control cohort by ways of a 
scaled marginal model.

Risk prediction
Genetics study is aimed to identify high-risk popu
lations for early prevention and future targeted 
treatment. Comparing to numerous GWAS on IBD, 
the number of risk prediction studies using genetic 
markers is limited. Recently, Wei et al[102] used an 
advanced machine-learning technique and the large 
IBD Genetic Consortium’s cohort of more than 60000 

Analysis Software URL Ref.

GWAS PLINK http://pngu.mgh.harvard.edu/~purcell/plink/ [7]
EMMAX http://genetics.cs.ucla.edu/emmax/ [10]

FaST http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/
Fastlmm/

[13]

GEMMA http://www.xzlab.org/software.html [14]
Imputation SHAPEIT (pre-phasing) https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html [20]

IMPUTE2 (pre-phasing and imputation) https://mathgen.stats.ox.ac.uk/impute/impute_v2.html [17]
MACH (pre-phasing and imputation) http://csg.sph.umich.edu//abecasis/MACH/tour/imputation.html [18]

fastPHASE (pre-phasing and imputation) https://els.comotion.uw.edu/express_license_technologies/fastphase [16]
BEAGLE (pre-phasing and imputation) http://faculty.washington.edu/browning/beagle/beagle.html [19]

SNPTEST (association testing) https://mathgen.stats.ox.ac.uk/genetics_software/snptest/old/snptest.html [22]
Meta-analysis METAL http://csg.sph.umich.edu//abecasis/Metal/ [27]

META https://mathgen.stats.ox.ac.uk/genetics_software/meta/meta.html [22]
MetABEL http://www.genabel.org/packages/MetABEL [30]
GWAMA http://www.well.ox.ac.uk/gwama/download.shtml [31]

PLINK http://pngu.mgh.harvard.edu/~purcell/plink/metaanal.shtml [7]
Pathway analysis GenGen http://gengen.openbioinformatics.org/en/latest/tutorial/pathway/ [34]

ALIGATOR http://x004.psycm.uwcm.ac.uk/~peter/ [39]
i-GSEA4GWAS http://gsea4gwas.psych.ac.cn/ [40]

GSEA-SNP https://www.nr.no/en/projects/software-genomics [41]
DAVID http://david.ncifcrf.gov/summary.jsp [42]

GeneTrail http://genetrail.bioinf.uni-sb.de/ [43]
WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/ [44]

Network analysis Cytoscape http://www.cytoscape.org/ [45]
DAPPLE http://www.broadinstitute.org/mpg/dapple/dappleTMP.php [46]
STRINGS http://string-db.org/ [47]

FUNCOUP http://funcoup.sbc.su.se/search/ [48]
Gene-gene interaction PLINK http://pngu.mgh.harvard.edu/~purcell/plink/epi.shtml [7]

BOOST http://bioinformatics.ust.hk/BOOST.html [52]
MDR https://ritchielab.psu.edu/mdr-downloads [55]

Microbiome QIIME http://qiime.org/ [69]
mothur http://www.mothur.org/wiki/Main_Page [71]
VAMPS https://vamps.mbl.edu/portals/hmp/hmp.php [72]

PhymmBL http://ccb.jhu.edu/software/phymmbl/index.shtml [73]
MEGAN5 http://ab.inf.uni-tuebingen.de/software/megan5/ [74]
PhyIOTU https://github.com/sharpton/PhylOTU [75]

MLTreeMap http://mltreemap.org/ [76]
Pleiotropy CPMA http://coruscant.itmat.upenn.edu/software.html [92]

ASSET http://www.bioconductor.org/packages/release/bioc/html/ASSET.html [93]
GPA https://github.com/dongjunchung/GPA [98]

SMAT http://www.hsph.harvard.edu/xlin/software.html [101]
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samples. They developed a step-wise risk assessment 
model. The model achieved the highest areas under 
the curve (AUCs) so far for CD and UC, which are 0.86 
and 0.83 respectively. Compared to previous studies, 
this is a large improvement. Li et al[103] proposed a 
risk prediction method integrating pleiotropic effects 
between diseases by using a bivariate ridge regression 
method. They demonstrated improved prediction 
accuracy when CD and UC datasets were jointly 
analyzed.

We listed the commonly used software package 
for each type of analysis in Table 1 and Figure 1 and 
summarized the major points of our discussion above 
into the Table 2 as take-home messages.

CONCLUSION
Genome-wide genotyping results provide a huge 
reservoir of genetic data to explore. From single 
variant to gene and to pathway, analyses can be 
carried out at multiple levels. How host factors interact 
with environment is another important aspect to 
consider, especially for IBD. The ultimate goal of 
genetic studies is to translate discoveries to clinical 
applications. Thus it is important to develop good 
methods for risk prediction so as to identify patients 
at high risk for early prevention. Other applications 
should also be considered to maximize the value of 
discoveries from genetic studies.

Through the rapid development of computation 
methods and other technologies, tremendous advance 
has been made in the field IBD genetic studies; yet 

much remains to be explored and investigated.
As a successful example of GWAS, 163 suscep

tibility loci have been discovered for IBD[6], however, 
much remains unknown how these loci contribute to 
IBD etiology, especially the majority of these loci were 
not in the coding region of any gene. Many questions 
in this regard need to be addressed, for example, 
whether these SNPs directly affect gene expression 
level or gene function, whether they tag for any 
other SNP. More resources are becoming available for 
functional annotation of genetic variants, even those 
in the gene desert regions, such as the ENCODE[104], 
Epigenome Roadmap[105] for chromatin markers, 
and GTEx[106] for eQTL. It is expected that integrated 
analysis of genetic, epigenetic and eQTL data will 
provide more insight into the understanding of these 
genetic variants, and will help to prioritize the genetic 
variants for experimental studies.

In addition to common variants, rare variants 
can also contribute to IBD susceptibility. The current 
methods for rare variants identification include exome 
array, whole exome sequencing and whole genome 
sequencing. Compared to the well-established pipeline 
for GWAS and commonly accepted threshold standards 
to determine GWAS significant loci, much remains to 
be explored in the field of rare variants study. Rare 
variants were thought to confer larger effects than 
common variants, based on experience from Mendelian 
disease and early findings of complex disease such as 
variants I1307K and E1317Q in gene APC associated 
with colorectal tumors[107,108], and rare variants in gene 
PCSK9 associated with coronary heart disease[109]. 

Figure 1  Different analyses for genomic studies of inflammatory bowel disease and other complex human diseases. Multiple different analyses can be 
carried out based on the disease phenotype, genotype and relationship with other factors. GWAS: Genome-wide association study.
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Table 2  Take home messages from our discussion on the application of computational methods in genetic study of inflammatory 
bowel disease
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Take home messages

GWAS is an unbiased method to identify common genetic variants that are significantly associated with complex human diseases. Sample structure 
needs to be carefully handled to avoid false positive results
Imputation is often employed to infer un-genotyped SNPs based on those genotyped ones, followed by meta-analysis to combine results from multiple 
studies, in order to increase the power in GWAS
Pathway analyses help to identify genetic variants that have modest individual effect but jointly make significant contribution to disease susceptibility
Both gene-gene interactions and gene-environment interactions are important underlying factors for IBD
Pleiotropy studies aim to identify genetic loci shared by IBD and other immune diseases
Risk prediction is one of the ways to translate GWAS discoveries to clinics - to identify patients at high risk

More studies revealed that the genetic risks attributed 
to many rare variants are also modest which makes 
large sample size a necessary factor for such studies, 
and the effects of rare variants may need to be 
aggregated for analysis at the gene level to conquer 
the low power in rare variant analysis[110]. Another 
feature of rare variants is population specificity, which 
makes population stratification an outstanding issue 
in rare variant studies[110]. Because of these features, 
assumptions in analytical methods for common 
variants may not hold true for rare variants. Cautions 
need to be taken when utilizing existing methods that 
were used for common variants; and new statistical 
and computational methods development need to 
meet such demands from the studies of rare variants.

With the combined study for both common variants 
and rare variants, and integrated functional annotation, 
more susceptibility and causality loci will be identified 
for IBD, which will pave the way for the development 
of suitable treatments for each patient.
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