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Abstract
Noncoding RNAs (ncRNAs) represent a class of RNA 
molecules that typically do not code for proteins. 
Emerging data suggest that ncRNAs play an important 
role in several physiological and pathological conditions 
such as cancer. The best-characterized ncRNAs are the 
microRNAs (miRNAs), which are short, approximately 
22-nucleotide sequences of RNA of approximately 
22-nucleotide in length that regulate gene expression 
at the posttranscriptional level, through transcript 
degradation or translational repression. MiRNAs 
can function as master gene regulators, impacting 
a variety of cellular pathways important to normal 
cellular functions as well as cancer development and 
progression. In addition to miRNAs, long ncRNAs, 
which are transcripts longer than 200 nucleotides, have 
recently emerged as novel drivers of tumorigenesis. 
However, the molecular mechanisms of their regulation 
and function, and the significance of other ncRNAs such 
as piwi-interacting RNAs in pancreas carcinogenesis are 
largely unknown. This review summarizes the growing 
body of evidence supporting the vital roles of ncRNAs 
in pancreatic cancer, focusing on their dysregulation 
through both genetic and epigenetic mechanisms, and 
highlighting the promise of ncRNAs in diagnostic and 
therapeutic applications of pancreatic cancer.
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Core tip: Emerging data suggest that noncoding RNAs 
(ncRNAs) play a vital role in pancreatic cancer. They 
contribute to pancreatic cancer through regulation of 
gene expression at the chromatin, transcriptional, or 
posttranscriptional level. However, their function and 
mechanism in pancreatic cancer development are 



potential disease mechanisms has benefited greatly 
from studies using model organisms and/or novel 
experimental systems. Insights from such studies 
are providing mounting evidence that noncoding 
RNAs (ncRNAs) and ncRNA-regulatory processes are 
important players in tumorigenesis of the pancreas. 
In this review, we will focus on the characteristics 
and biological roles of several ncRNAs, with particular 
emphasis on their roles in pancreatic cancer. Potential 
therapeutic applications of the ncRNAs will also be 
discussed.

FUNCTIONAL CLASSIFICATION OF 
MAJOR HUMAN NCRNAS
Early biochemistry studies identified three families 
of RNA that function cooperatively in the process of 
protein synthesis: messenger, transfer, and ribosomal 
RNA (rRNA). Messenger RNAs (mRNA) carry genetic 
information copied from DNA that specifies a particular 
amino acid, dictating the polypeptide sequence. 
Transfer RNAs (tRNA) bind a complementary amino 
acid and carry it to the growing end of a polypeptide 
chain. rRNA bind to protein complexes, which physically 
move along mRNAs and catalyze the assembly of 
amino acids into the nascent polypeptide chain[9]. The 
technological advances applied to functional genomics 
during the last decade have opened new frontiers in 
the field of RNA biology. To date, approximately 35% 
of the human genes identified by the ENCODE project 
(about 57000; GENCODE version 17) encode for 
proteins[10,11]. The vast majority of the remaining genes 
(about 65%) are transcribed into RNAs but do not 
encode proteins, which are generally known as ncRNAs. 
NcRNAs comprise several classes of RNAs, classified 
in different groups according to their length, function, 
cellular localization, orientation or other criteria (these 
classifications are continuously being adjusted as 
new data are being acquired). Generally, ncRNAs 
less than 200 nucleotides (nt) in length are classified 
as short, while all larger transcripts are regarded as 
long ncRNAs (lncRNAs). There are several subtypes 
of long and short ncRNAs species, many of which are 
involved in regulation of gene expression. These can be 
further grouped according to their genomic origins and 
biogenic processes (Table 1).

The majority of the non-protein-coding transcripts 
belong to the group of lncRNAs. The number of genes 
encoding for lncRNAs identified so far is approximately 
13000 (GENCODE version 17), representing more 
than 20% of the human genome. To date, a small 
number of these have been studied in detail, shedding 
light on their functions and mechanisms of action 
in regulating cellular processes such as cell growth 
and apoptosis, development, and cell pluripotency 
and differentiation)[12-14]. Unlike miRNAs and piRNAs, 
lncRNAs are highly diverse in structure and function. 
LncRNAs typically have the same structures as mRNAs 
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not fully understood. This review focuses on ncRNAs 
dysregulation in pancreatic cancer through both genetic 
and epigenetic mechanisms, and the impact of this 
dysregulation on pancreatic cancer risk. We highlight 
the potential role of the most promising ncRNAs in 
diagnostic and therapeutic applications.
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INTRODUCTION
The incidence of pancreatic cancer ranges from 
1/100000 to 10/100000, and is generally higher in 
developed countries and among men. It has remained 
stable for the past 30 years, in contrast to that of 
other common solid tumors. It is the eighth leading 
cause of cancer death in men and the ninth in women 
throughout the world[1]. In China, the incidence rate of 
pancreatic cancer increased from 3.24/100000 in 2003 
to 3.59/100000 in 2011 with an annual percentage 
change of 1.44. The mortality rate was 5.40/100000 
(male 5.88/100000, female 4.89/100000), ranking 
6th among all cancers[2]. In the United States, pan
creatic cancer is expected to affect 46000 people, 
and 40000 people are expected to die from it. The 
American Cancer Society reported 43920 new cases of 
pancreatic cancer in the United States in 2012[3,4]. The 
overall 5-year survival rate of patients with pancreatic 
cancer is less than 6% and this dismal prognosis has 
not improved in recent years, resulting in an increasing 
number of deaths. The high fatality due to pancreatic 
cancer is attributed to failure to diagnose the disease 
early before it has metastasized to other organs and 
resistance of the cancer cells to current therapies[5].

Genetic analysis has established a model of 
pancreatic cancer progression. Key shared genetic alte
rations associated with pancreatic cancer progression 
include earliest genetic events such as mutations in 
K-RAS and overexpression of HER-2/neu. At later 
stages, inactivation of the p16 tumor suppressor gene 
often occurs, followed by loss of p53, disturbance of 
SMAD4, and BRCA2 signaling pathways and other 
genomic-transcriptomic alterations that facilitate 
deregulation of cell-cycle control and survival, invasion 
and metastasis[6]. Findings from genetically engineered 
mouse models are consistent with this model of 
genetic progression[7]. Since these are alterations of 
tumor suppressor genes, they have not yet led to 
solutions for therapeutic interventions. Beyond these 
mutational events, the pancreatic cancer genome is 
characterized by diverse, large scale chromosomal 
changes with frequent amplifications, deletions, 
and rearrangements[8]. Recently, basic research on 



such as the 5’ cap, polyadenylated 3’ tail and undergo 
splicing to give rise to the final product. They are 
localized both in the nucleus and cytoplasm, but the 
signals that drive their localization are not known. 
One important consideration is that, while sequence 
conservation of lncRNAs is reportedly poor, transcripts 
with corresponding positions and directions in reference 
to protein coding genes are more common, indicating 
that their functions may well be conserved. It was 
observed that genes are usually located very proximal 
to the lncRNA on the genome[15]. Based on their 
proximity to protein coding genes, lncRNAs can be 
further classified into five categories: sense, antisense, 
bidirectional, intronic, and intergenic[16]. Although 
lncRNAs constitute the majority of the transcriptome, 
we certainly understand less of their biologic 
functions than those of their lesser counterparts. 
They are attributed with an ever-increasing number 
of functional activities including genomic imprinting 
and transcriptional regulation, including both cis- and 
trans-acting effect. This is achieved via a variety of 
mechanisms such as antisense inhibition, transcriptional 
interference, recruitment of chromatin remodeling 
complexes, and promoter inactivation by binding to 
basal transcriptional factors (TFs)[17]. Recently, it has 
been shown that several lncRNAs may be spliced at 
their 5’ and 3’ ends to form circular RNAs (circRNA). 
However, the functional importance of circularization, 
presumably for increased stability, has not been 
confirmed[18].

In contrast to lncRNAs, short ncRNAs have been 
extensively classified based on their genomic origins 
and precise mechanisms of action. The miRNAs are 
the best-characterized family of ncRNAs to date. 
Mature, functional miRNAs sequences are 20-23 nt in 
length, and are usually produced as RNA polymerase

Ⅱ-transcribed primary transcripts, namely pri-miRNA. 
The biogenesis of a pri-miRNA transcript occurs either 
through the canonical pathway involving Drosha and 
Dicer or through various noncanonical pathways that 
are Drosha- and even Dicer-independent[19-21]. Similarly, 
recent data show that miRNAs can be produced 
from snoRNA, tRNA, or Y-RNA, as intermediate 
products[22]. The human genome encodes thousands of 
miRNAs, which regulate a large fraction of the human 
transcriptome. An increasing number of TFs and miRNAs 
are known to form feedback loops (FBLs) of interactions 
where a TF positively or negatively regulates the 
expression of a miRNA, and the miRNA suppresses the 
translation of the TF mRNA. FBLs are potential sources 
of instability in a gene regulatory network. Positive FBLs 
can give rise to switching behaviors, while negative 
FBLs can generate periodic oscillations. MiRNAs and TFs 
can modulate the expression of multiple targets, alter 
cell fate and are often engaged in mutually reinforcing 
functions. However, miRNAs differ from TFs in many 
critical ways. Firstly, almost all the known miRNAs are 
repressors, while TFs are either repressors or activators 
and in some rare cases can act as both depending on 
the target and interacting partners. Secondly, miRNAs 
usually bring about down-regulation of their targets by a 
post-transcriptional mechanism, by degrading the target 
RNA or blocking its translation. TF interaction with target 
DNA is largely mediated through structural elements, 
while miRNA interactions with targets are largely 
governed by the rules of nucleic acid complementarity 
and are therefore more easily predicted. When a 
particular gene is targeted by a TF, there is usually 
a single or at most a few tandemly repeated sites 
present at that locus. However, a typical miRNA-target 
interaction is characterized by miRNA molecules binding 
to several mRNA molecules. Lastly, TFs are usually not 
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Table 1  Main classes and function of human noncoding RNAs

RNA types Length (nt) Function

Small non-coding RNAs (< 200 nt)
   Protein synthesis RNAs
      Transfer RNAs About 80 Carrying amino acids to connect with mRNA
      Ribosomal 5S and 5.8S RNAs 121-200 Component of ribosomes
      Small nucleolar RNAs   70-200 Involved in maturation of other non-coding RNAs
      Small nuclear RNAs About 150 Joining with proteins to form spliceosomes controlling alternative splicing
   Regulatory RNAs
      MicroRNAs 20-23 Negatively regulating gene expression by joining an enzyme and blocking mRNA, or 

speeding its breakdown
      Small interfering RNAs 21-22 Silencing specific genes in a sequence-specific manner.
      PIWI-interacting RNAs About 25-33 Controlling retrotransposition and regulating methylation.
      Promoter-associated short RNAs < 200 Regulating gene expression through interaction with gene promoter sites
Long non-coding RNAs (> 200 nt)
   Ribosomal 28S and 18S RNAs 200-5070 Component of ribosomes
   Long intergenic non-coding RNAs or 
   long intronic non-coding RNAs

> 200 Various

   Telomere-associated ncRNAs 100 bp > 9 kb Negative regulators of telomere
   Antisense RNAs Binding and blocking the translation of mRNA target
   Promoter-associated short RNAs > 200 Regulating gene expression through interaction with gene promoter sites
   Transcribed-ultraconserved regions 200-799 Long-range enhancer-like activity, maintenance of splicing factor expression levels and 

transcription regulation
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H19
As the first lncRNA to be identified in human disease, 
H19 is a maternally imprinted gene on chromosome 
11p15.5, and contains five exons and four introns. The 
gene is mainly localized in cytoplasm, and is highly 
expressed during embryo development and strongly 
repressed after birth. However, multiple studies have 
shown that H19 was re-expressed in many types of 
cancers, such as esophagus, colon, liver, and bladder 
cancers. Furthermore, studies have indicated that 
H19 possesses both tumor promoter and suppressor 
functions[42-44]. In pancreatic cancer, H19 was not only 
markedly overexpressed in tumor tissues and cell 
lines, its expression also positively correlated with 
invasion and migration of the tumor. H19 plays its role 
by partially antagonizing let-7’s targeting of HMGA2-
mediated EMT (epithelial-mesenchymal transition)[45]. 
In addition, studies have demonstrated that DNA-
based therapy controlled by H19 gene sequences 
either alone or in combination with gemcitabine 
could improve the effectiveness of pancreatic cancer 
treatment[46,47].

HOX transcript antisense intergenic RNA
HOX transcript antisense intergenic RNA (HOTAIR) 
is a 2158 nt transcript located on chromosome 
12q12.13, which regulates the nearby HOX genes[48,49]. 
Previous studies reported that HOTAIR acted as an 
oncogene in many cancers, including breast cancer, 
hepatocellular carcinoma, non-small cell lung cancer 
and colon cancer. Artificially up-regulating HOTAIR 
in cancer cells strongly increased cell proliferation, 
and invasive and metastatic abilities. Knockdown of 
HOTAIR in cancer cells that overexpressed HOTAIR 
impaired their invasion and metastasis[48,50-52]. Several 
studies demonstrated that this could be attributed 
to its 5’- and 3’- domain selectively binding PRC2 
(polycomb repressive complex 2) and LSD1/coREST/
REST protein complexes, respectively. Following 
binding of PRC2 and LSD1/coREST/REST protein 
complexes, HOTAIR recruits these complexes to the 
HOXD locus on chromosome 2. This is followed by 
further recruitment of zeste12 suppressed and zeste 
homolog2 enhanced, leading to H3K27 trimethylation 
and H3K4 demethylation, finally resulting in repression 
of genes involved in cell proliferation and metastasis. 

consumed in the TF-DNA interactions and may indeed 
engage in multiple rounds of regulation. The fate of 
the miRNA engaged in a miRNA-target complex is 
not understood with similar clarity[23-27]. MiRNAs have 
been shown to be associated with many of the classical 
hallmarks of cancer, including proliferation, apoptosis, 
differentiation, and angiogenesis. With their widespread 
range of influence on biological pathways and 
implications as either oncogenes or tumor suppressor 
genes, their dysregulation is naturally an important 
factor in tumorigenesis leading to pancreatic cancer.

The piwi-interacting RNAs (piRNAs) are 25-33 nt 
in length, which depend on the PIWI protein group 
they bind to, and they lack sequence conservation 
between organisms. PiRNAs were first discovered 
in Drosophila as repeat-associated siRNAs, which 
show complementarily to a variety of transposable 
and repetitive elements. Unlike Drosophila piRNAs, 
more than 90% of mammalian piRNAs can be 
mapped uniquely in the genome and they cluster to 
a small number of loci. PiRNA clusters are transcribed 
in the sense or antisense direction, and the long 
single-stranded RNA serves as the basis for piRNA 
production. Recent research highlighted the complexity 
of piRNA biogenesis pathways, which have just begun 
to be elucidated[28]. PiRNAs are distinct from miRNA 
in that there is no evidence for a double-stranded 
RNA precursor and their biogenesis is independent of 
Dicer. There are two proposed pathways for generating 
piRNAs: a primary processing pathway and a “ping-
pong” amplification loop, as recently reviewed[29,30]. 

LONG NCRNAS IN PANCREATIC CANCER
As shown above, lncRNAs, including several newly 
found lncRNAs: enhancer RNA[31], competing endo
genous RNA[32], circRNA[33], and antisense long non-
coding RNA[34], are a class of transcripts longer than 
200 nt, which is functional, rather than “transcriptional 
noise” (non-functional RNA) as previously believed. 
Although only a small part of lncRNAs has been well-
characterized to date, the significance of lncRNAs 
dysregulation has been investigated in diverse human 
diseases, especially in malignant tumor[35-41]. Here, we 
systematically summarize the dysregulated lncRNAs in 
pancreatic cancer (Table 2).
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Table 2  Long noncoding RNAs dysregulated in pancreatic cancer

Names of lncRNAs Genomic location Expression Roles in pancreatic cancer Ref.

H19 11p15.5 Upregulated Cell proliferation, migration, invasion, target therapy [42-47]
HOTAIR 12q12.13 Upregulated Cell proliferation, cell cycle, apoptosis, migration, invasion [48-52]
HOTTIP 7p15.2 Upregulated Cell proliferation, cell cycle, migration, invasion, drug resistance [58,59]
MALAT-1 11q13 Upregulated Cell proliferation, migration, invasion [60-65]
PVT1 8q24.21 Upregulated Drug resistance [66-69]
HULC 6p24.3 Upregulated Cell proliferation [70]
AF339813 13q31.3 Upregulated Cell proliferation, apoptosis [71]
Gas5 1q25.1 Downregulated Cell proliferation, cell cycle [72]
ENST00000480739 12q13 Downregulated Not mentioned [73]
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Further analysis of gene expression indicated that 
there were also a great number of genes up regulated 
when HOTAIR was overexpressed. Depleting PRC2 in 
cancer cells overexpressing HOTAIR resulted in the 
gene expression profile changing into that of cancer 
cells without HOTAIR overexpression[48,50-52].

HOTAIR also has higher expression level in 
pancreatic cancer tissues compared to adjacent non-
cancerous pancreatic tissues[53]. RNAi-mediated 
knockdown of HOTAIR resulted in: (1) decrease in cell 
proliferation, changes in cell cycle progression, and 
induction of apoptosis; (2) blockage of cell invasiveness 
and metastatic ability both in vitro and in vivo; and 
(3) significant changes in the gene expression profile. 
Interestingly, when analyzing some of these changed 
genes, researchers found the changes involved both 
PRC2-dependent and -independent mechanisms. 
As HOTAIR was located both in the nucleus and 
cytoplasm, it was very likely, besides functioning 
through PRC2, that HOTAIR may play roles through 
different mechanisms[53].

HOXA transcript at the distal tip
HOXA transcript at the distal tip (HOTTIP) is another 
HOX-associated lncRNA transcribed from the 5’ tip of 
the HOXA locus, which directly controls the expression 
of multiple 5’ HOXA locus genes via interaction 
with PRC2 and WDR5/MLL1 chromatin modifying 
complexes[54]. Although HOTTIP was significantly 
expressed and functioned in anatomically distal human 
fibroblasts[55], its up-regulation and coordination with 
HOXA13 have been recently studied in hepatocellular 
carcinomas[56]. In hepatocellular carcinomas, HOTTIP 
serves as a negative prognostic factor, and HOTTIP 
expression was associated with increased cell prolife
ration and enhanced metastasis. In addition, HOTTIP 
is linked to deletion of the vitamin D receptor in 
keratinocytes, which contributes to the formation of 
skin cancer[57]. With regard to pancreatic cancer, it was 
found that HOTTIP was significantly up-regulated in 
pancreatic cancer tissues and in pancreatic cancer cell 
lines compared with non-cancerous pancreatic tissues 
and the non-tumor pancreatic cell line HPDE6. In the 
same study, it was further documented that HOTTIP 
inhibition resulted in proliferation arrest, impaired 
cell invasion by inhibiting EMT, and potentiated the 
antitumor effects of gemcitabine both in vitro and in 
vivo. All of these functions were fulfilled partially by 
coordinating the activation of HOXA13[58]. Another 
research group showed that HOTTIP regulates 
pancreatic cancer cell proliferation, apoptosis and 
migration via its regulation of several other HOX genes 
including HOXA10, HOXB2, HOXA11, HOXA9, and 
HOXA1 rather than HOXA13[59]. Thus, further studies 
are needed to elucidate the mechanism of HOTTIP 
function.

Metastasis-associated lung adenocarcinoma transcript 1
Metastasis-associated lung adenocarcinoma transcript 

1 (MALAT-1), also named nuclear-enriched abundant 
transcript 2 (NEAT1) is another extensively investigated 
lncRNA. It is more than 8000 nt in length, expressed 
on chromosome 11q13 and localizes to nuclear 
speckles after being spliced. The gene was first found 
in non-small cell lung cancer and serves as a predictive 
marker of metastasis and a therapeutic target in non-
small cell lung cancer, thus the name[60]. Thereafter, an 
increasing number of studies reported that MALAT-1 
was also overexpressed in many other cancer types, 
and was associated with cancer metastatic potential, 
shorter survival, and poor prognosis in patients with 
these cancers as well as non-small cell lung cancer. 
Moreover, the mechanisms of MALAT-1 functioning in 
cancer occurrence and development were also widely 
explored. For example, the mechanism underlying 
MALAT-1 interacting with and binding unmethylated 
polycomb 2 protein, which controls the relocalization 
of growth-related genes between polycomb bodies and 
interchromatin granules, has been reported in detail[61], 
and a study on colorectal cancer demonstrated that 
the 3’ end of MALAT-1 has a vital biological motif in 
colorectal cancer cell invasiveness and metastasis[62].

MALAT-1 was also shown to be up-regulated in 
pancreatic cancer tissues and cell lines[63,64]. Further 
studies demonstrated that high MALAT-1 expression 
was correlated with advanced tumor clinical stages, 
positive lymph node and distant metastasis, and poor 
survival. Knockdown of MALAT-1 resulted in reduced 
cell proliferation, migration, and invasion in vitro, and 
blocked cell metastasis in vivo[65]. All these findings 
indicate that MALAT-1 may act as a cancer promoting 
factor in pancreatic cancer, and suggest a potential 
therapeutic role of MALAT-1 targeted therapy in 
pancreatic cancer.

PVT1
PVT1 was identified in 1986[66]. Previous studies 
showed that PVT1 possessed oncogenic potential in 
many malignant tumors. However, it was not until 
recently that studies investigating PVT1 gene in 
pancreatic cancer have emerged[66], including the 
study on negative regulation of PVT1 on pancreatic 
cancer cell sensitivity to gemcitabine, the finding of a 
susceptibility allele rs1561927 in PVT1[67], and a study 
on PVT1 expression level in pancreatic tissues[68]. In 
this study, researchers used qRT-PCR to measure PVT1 
expression level in pancreatic tissues and analyzed its 
association with clinical-pathological parameters and 
patient overall survival, and found that PVT1 had much 
higher expression in pancreatic cancer tissues than 
non-cancerous tissues, and was positively correlated 
with poor survival of patients. However, studies on the 
detailed mechanisms of PVT1 in pancreatic cancer as 
well as in other cancer types are very scarce. 

Other newly found overexpressed lncRNA 
Highly up-regulated in liver cancer (HULC) is a cancer-
related lncRNA, residing on chromosome 6p24.3. 
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It mainly functions in the cytoplasm. HULC was 
found to be overexpressed in a group of metastatic 
and advanced clinical stage pancreatic tumors and 
could promote cell proliferation in vitro[69]. Recently, 
lncRNA AF339813 was found to be overexpressed 
and positively regulated by NUF2 (Ndc80 kinetochore 
complex component) in pancreatic cancer cells[70].

Down-regulated lncRNAs
Besides the above-mentioned lncRNAs up-regulated in 
pancreatic cancer, there are also some lncRNAs which 
are down-regulated in pancreatic cancer. LncRNA 
growth arrest-specific 5 was markedly down-regulated 
in pancreatic cancer tissues and cancer cell lines, and 
involved in cell proliferation and cell cycle regulation. 
The mechanism may be partially explained by its 
negative regulation of CDK6 expression[71]. A novel 
lncRNA called ENST00000480739 was significantly 
downregulated in pancreatic cancerous tissues 
compared to adjacent non-cancerous tissues, and the 

ENST00000480739 expression level was negatively 
correlated with tumor TNM stages and poor overall 
survival of patient with pancreatic cancer[72].

MiRNAS IN PANCREATIC CANCER
Mounting evidence has shown the involvement of 
deregulation and aberrant expression of miRNAs in 
the carcinogenesis of various organs, including the 
pancreas. Although the understanding of miRNAs 
expression profile in pancreatic cancer has been 
improving significantly, the role of these miRNAs in 
pancreatic cancer tumorigenesis and progression 
is only fractionally documented[73-77]. MiRNAs dysre
gulated in pancreatic cancer can be classified into 
oncogenic miRNAs and tumor suppressor miRNAs in 
relation to their function in carcinogenic processes. A 
number of important miRNA candidates that might be 
clinically relevant in the management of pancreatic 
cancer are listed in Table 3.
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Table 3  Selected microRNAs in pancreatic cancer

MiRNA Expression Role Target genes Biological significance Clinical significance

miR-21 Up O PTEN, EGFR, HER2/neu, PDCD4, 
Bcl2, TIMP2, TIMP3

Proliferation and cell division Gem chemosensitivity, Biomarker, 
Prognosis, Potential target for 

treatment
miR-221/222 Up O CDKN1B, PUMA, PTEN, Bim Cell cycle progression Gem chemosensitivity, Biomarker for 

diagnosis, Prognosis, potential target 
for treatment

miR-192 Up O SIP1, cell cycle regulatory genes Cell proliferation and migration, 
reduced apoptosis and cell cycle 

progression

Biomarker for diagnosis (serum)

miR-424-5p Up O SOCS6 Cell proliferation and migration Prognosis
miR-208 Up O CDH1 EMT N
miR-155 Up O TP53INP1 Apoptosis Biomarker for diagnosis, Prognosis
miR-10a/b Up O HOXB8, HOXA1 Invasivity and metastasis Gem chemosensitivity, Prognosis
miR-196a-2/196 Up O HOXB8, ANXA1, HMGA2 N Biomarker for diagnosis, Prognosis
miR-375 Up O PDK1, 14-3-3zeta Cell proliferation and apoptosis Biomarker for diagnosis, Potential 

target for treatment
miR-210 Up O HOXA1, FGFRL1, HOXA9, COX10, 

E2F3, RAD52, ACVR1B, MNT
Regulating the interaction between 
pancreatic cancer cells and stellate 

cells

Biomarker for diagnosis, Prognosis

miR-301a Up O Bim, NKRF Proliferation and metastasis Prognosis
miR-421 Up O DPANCREATIC CANCER4/Smad Cell proliferation and colony 

formation
Potential target for treatment

miR-15/16 Up O Anti-apoptotic genes: bcl2l1, naip5, 
fgfr2 and mybl2

Apoptosis and tumor angiogenesis Potential target for treatment

miR-124 Down TS RAC1 Cell proliferation, invasion and 
metastasis

N

miR-203 Down TS BIRC5, CAV1 Cell cycle progression, apoptosis, 
EMT

Indicator of the metastatic potential, 
potential target for treatment

miR-143 Down TS GET1, GET2, KRAS Cell proliferation, invasion and 
metastasis

N

miR126,let-7 Down TS E2F2, c-Myc, KRAS, MAPK, STAT3 Cell proliferation Chemosensitivity, potential target for 
treatment

miR-34a/b Down TS TP53, Bcl-2 Apoptosis, DNA repair, cell cycle 
progression and angiogenesis

Prognosis, Chemosensitivity

miR-200 family Down TS EP300, ZEB1, SIPI1 EMT Prognosis, Chemosensitivity
miR-146a Down TS IRAK-1, EGFR Invasivity Potential target for treatment
miR-96 Down TS KRAS, AKT Tumor growth and invasion Potential target for treatment

Up: Upregulated; Down: Downregulated; O: Oncogeneic; TS: Tumor suppressive; N: Not mentioned.
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Oncogenic miRNAs
Several studies revealed that distinct cell- and tissue-
specific miRNA expression was found in pancreatic 
cancer specimens compared with normal cells and 
tissues[78-81]. Hong et al[82] analyzed the miRNA 
profile in pancreatic cancer tissues and cell lines in 
comparison with normal tissues and cells, and found 
8 aberrantly overexpressed miRNAs (miR-196a, 
miR-190, miR-186, miR-221, miR-222, miR-200b, 
miR-15b and miR-95). Interestingly, it has been found 
that miR-196a plays a vital role in pancreatic cancer. 
High expression of miR-196a had good potential in 
predicting poor survival of patients with pancreatic 
cancer [median, 14.3 mo (95%CI: 12.4-16.2 mo) 
vs 26.5 mo (95%CI: 23.4-29.6 mo)][83]. miR-196a 
may have promoted pancreatic cancer proliferation 
and migration by targeting nuclear factor kappa-
B-inhibitor alpha (NFKBIA), which is a metastasis-
related protein[84]. Several studies have reported that 
miR-221 may function as a proto-oncogene. Up-
regulation of miR-221 is known to contribute to the 
proliferation, invasion, inhibition of apoptosis and 
chemoresistance of pancreatic cancer. Its target genes 
include MMP 2 and MMP 9, which were closely related 
to cell migration and invasion, and were regarded as 
markers of cancer invasion and metastasis[85]. Another 
target gene of miR-221 was PTEN, a tumor suppressor 
that negatively regulates cell proliferation and survival 
by antagonizing phosphatidylinositol 3-kinase (PI3K) 
signaling[86].

As mentioned above, tissue miRNAs play an 
important role in pancreatic cancer initiation and 
development. In addition, circulating miRNAs may 
also contribute to pancreatic cancer progression. For 
example, circulating miR-200a/b were elevated and 
could be potential markers for early diagnosis and 
treatment monitoring of pancreatic cancer. One of its 
downstream targets was SIP1, whose protein product 
suppressed E-cadherin expression and contributed to 
EMT[87]. One study reported that combinations of 7 
miRNA (miR-20a, miR-21, miR-24, miR-25, miR-99a, 
miR-185, and miR-191) served as great biomarkers 
and showed high sensitivity and specificity for 
distinguishing various stages of pancreatic cancer from 
cancer-free controls and also from chronic pancrea
titis[88]. Among the 7 miRNAs, miR-21 levels in serum 
were significantly associated with overall pancreatic 
cancer survival[88,89]. Furthermore, overexpression of 
miR-21 contributed to gemcitabine chemoresistance 
and enhanced malignancy of pancreatic cancer cells 
via p85α, the PI3K regulatory subunit[90]. MiR-21 is also 
known to be involved in other cancers[91-94]. It played an 
oncogenic role by targeting FOXO1 and activating the 
PI3K/AKT pathway in diffuse large B-cell lymphoma[95]. 
In addition, miR-21 may promote intrahepatic cholan
giocarcinoma proliferation in vitro and in vivo, probably 
by targeting PTPN14 and PTEN[96].

Furthermore, miRNAs have an important role in 
cancer stem cells (CSCs) function[97-99]. MiR-34 was 
down-regulated in pancreatic cancer, and miR-34 
restoration led to a significant reduction of CD44+/
CD133+ cells and inhibition of tumor sphere growth in 
pancreatic cancer, implying that miR-34 may be involved 
in pancreatic CSC self-renewal[100]. Moreover, MiR-34 
may be involved in CSC activity via direct modulation of 
downstream targets Bcl-2 and Notch[101]. MiR-200a was 
significantly down-regulated in pancreatic CSCs (PCSCs) 
compared with their counterpart control, PANC-1 cells. 
Artificial overexpression of miR-200a in the PCSCs 
resulted in up-regulation of the epithelial marker 
E-cadherin and down-regulation of mesenchymal 
markers ZEB1, N-cadherin and Vimentin, suggesting 
that the loss of miR-200a was critical for the acquisition 
of EMT characteristics and that the overexpression 
of miR-200a could reverse the EMT phenotype of 
PCSCs[102]. The miR-17-92 family can negatively 
regulate and control PCSCs features by targeting genes 
involved in the activated Nodal/Activin/TGF-β signaling 
pathway or by targeting ALK4, p21 and transcription 
factor T-box 3[103]. Taken together, these data show that 
miRNAs play a crucial role in PCSCs biological function.

Tumor suppressor miRNAs
In contrast, there are also tumor suppressor miRNAs, 
which were often found to be deregulated in pancreatic 
cancer. They inhibit the initiation and progression 
of pancreatic cancer by negatively regulating cell 
cycle and proliferation (miR-124[103], miR-203[104], 
miR-143[105], miR-126[106], and let-7[107]), or facilitating 
apoptosis and DNA repair (miR-34a[108-110], miR-203[104], 
miR-150 and miR-630[111]), or decreasing the capacity 
of tumor invasion and metastasis (miR-200a/b/c[112,113], 
miR-141[114], miR-429[115], miR-203[116], miR-143[105], 
and miR-146[117]). Recently, a study reported that miR-
615-5p was significantly downregulated in pancreatic 
cancer compared with adjacent normal tissues, and 
could inhibit proliferation, migration and invasion of 
pancreatic cancer cell lines by targeting AKT2[118]. 
Another well-known tumor suppressor miRNA is the 
let-7 family. Let-7 was found downregulated in a 
number of pancreatic cancer cell lines. Reexpression 
of let-7 (including let-7a and let-7f) retarded the 
migratory potential of pancreatic cancer, and 
decreased the expression of Vimentin and Fibronectin. 
Furthermore, STAT3 phosphorylation and STAT3-
activated gene expression were inhibited with 
upregulation of let-7[119]. Similarly, miR-1181 was also 
found underexpressed in pancreatic cancer. Clinically, 
decreased expression of miR-1181 was found to be 
associated with poorer overall survival and disease-free 
survival. Experimentally, miR-1181 contributed to CSC-
like phenotypes by gain-of-function and loss-of-function 
assay, and it was demonstrated that SOX2 and STAT3 
expression were inhibited directly by miR-1181[120].
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NCRNAS AS DIAGNOSTICS AND 
PROGNOSTICS FOR PANCREATIC 
CANCER
The development of diagnostic and prognostic 
pancreatic cancer biomarkers has the potential to 
detect disease at an early stage, improve disease 
management, and reduce mortality due to this 
disease. CA19-9 is widely used for the diagnosis and 
prognosis of pancreatic cancer, although its limitations 
are well understood. The expression levels of miR-16, 
miR-21, miR-210, miR-155, miR-20a, miR-25 and miR-
196a in the plasma of patients with pancreatic cancer 
were higher than those of the normal controls. Of 
which, miR-21 had the highest diagnostic value when 
used as a diagnostic marker alone. An additional study 
confirmed that the diagnostic sensitivity and accuracy 
could be improved when miR-16, miR-155 and miR-25 
were combined with CA19-9, respectively[121,122]. 
The concentration of miR-18a in plasma/serum was 
reported to be much higher than that of healthy 
volunteers[123]. Besides in plasma, miRNA-10b, -30c, 
-106b, -155, and -212 in bile have also been reported 
to provide excellent accuracy for distinguishing 
pancreatic cancer patients from others[124].

Intraductal papillary mucinous neoplasm (IPMN) is 
a precursor cystic lesion to pancreatic cancer. In one 
study[125], researchers evaluated 700 miRNAs in PanIN 
lesions and found 35 miRNAs dysregulated in PanIN-3, 
including overexpression of let-7f/g, -18a, -15b, -21, 
-29a/b/c, -31, -93, -95, miR-101, -103, -106b, -146a, 
-155, -182, -190, -193b, -194, -196b, -200a/b, 
-203, -222, -338-3p, -429, and 486-3p, but no or 
weak expression of miR-107, -139-3p/5p, -216a/b, 
-217, -218 and -483-5p in PanIN-3. Of which, miR-
196b emerged as the most useful biomarker in 
discriminating PanIN-3 lesions. In addition, miR-138, 
miR-195, miR-204, miR-216a, miR-217, miR-218, 
miR-802, miR-155, miR-214, miR-26a, miR-30b, 
miR-31, and miR-125 were enriched in the cyst 
fluids derived from invasive carcinomas. Cyst fluid 
miRNomes may develop as informative early detection 
biomarkers of pancreatic cancer developing from 
pancreatic cystic lesions[126].

Besides the implication of miRNAs for diagnosis, 
some specific miRNAs can predict the outcome of 
pancreatic cancer. It was demonstrated that low 
expression of miR-200c in tumor tissue and high 
expression of miR-200c in serum were associated with 
worse survival in pancreatic cancer[127]. In addition, 
miR-221 and miR-222 were known to target the tumor 
suppressor gene coding for cyclin-dependent kinase 
inhibitor p27Kip1, and their role was established in 
pancreatic cancer as key inhibitors of cell cycle arrest, 
apoptosis, and sensitization of cells to gemcitabine. 
Up-regulation of these two miRNAs is often related 
with poor patient survival rate[128]. However, these 
studies of miRNAs as diagnostic and prognostic factors 

involved small sample sets; thus, validation in larger, 
independent cohorts is required prior to application of 
miRNA assays in a clinical setting[129].

NCRNAS AS PANCREATIC CANCER 
THERAPEUTICS
One of the major drawbacks and obstacles in 
pancreatic cancer therapy is chemoresistance, which 
is largely attributed to genetic mutations, epigenetic 
modifications and complex alterations within the tumor 
microenvironment. Over the past years, it has emerged 
that therapeutic resistance is, at least in part, mediated 
by CSCs and EMT, and some miRNAs are promising 
targets to tackle chemoresistance in pancreatic 
cancer[130]. Nucleic acid-based therapeutic strategies 
are those in which a chemically modified nucleic acid 
is used to restore the normal activity of miRNAs. Here, 
nucleic acid-based strategies are classified into two 
main categories: (1) miRNA replacement therapy; and 
(2) anti-miRNA therapy. 

MiRNA replacement therapy
MiRNA replacement therapy is one of nucleic acid-based 
therapeutic strategies. MiRNA replacement studies 
have been conducted in some animal models of cancer. 
However, this strategy has not yet been performed in 
pancreatic cancer cells. A replacement strategy seems 
to be a promising methodology for developing tools to 
replace malfunctioning tumor suppressor miRNAs and 
overcoming pancreatic cancer. MiRNA mimic delivery 
is best tolerated by non-tumorigenic cells because 
the pathways they activate or suppress have already 
been activated or suppressed by endogenous miRNAs, 
and normal cells can regulate the pathway while 
cancer cells can not[131]. Let-7 was the first miRNA in 
humans to be discovered and is regularly expressed in 
normal pancreatic cells, and its down-regulation plays 
a critical role in renewal and metastasis of pancreatic 
cancer cells. Restoration of lost let-7 expression in 
gemcitabine-resistant pancreatic cancer cells inhibits 
cellular proliferation, restores epithelial phenotype, and 
renders the tumor cells sensitive to gemcitabine[132]. 
Furthermore, down-regulated miRNAs miR-143, miR-
148b, and miR-141 can be restored through miRNA 
replacement therapy[133,134].

Anti-miRNA therapy
Anti-miRNA therapy is another strategy of nucleic 
acid-based therapeutics. There are three ways to 
remove overexpressed oncomiRNAs: (1) genetic 
knockout (not discussed in this review); (2) antisense 
oligonucleotides (ASO) (antagomiRs); and (3) miRNAs 
sponges. AntagomiRs are miRNA antagonists that 
affect miRNA-related pathways by binding and blocking 
oncogenic miRNAs. These nucleic acid antagonists 
are one of the known approaches to inhibit oncogenic 
miRNAs, and therefore they may be an effective 
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way to treat cancer[135]. AntagomiRs are chemically 
modified ASO containing 2’-O-methylation of ribose 
residues, 3’-conjugated cholesterol residues, and 
partial replacement of phosphodiester bonds through 
phosphorothioate linkages, wherein one of the non-
bridging oxygens is replaced by sulfur[136]. In the case 
of antagomiR therapy, miR-21 and miR-221 are well-
known oncogenic miRNAs overexpressed in pancreatic 
cancer that can be knocked-down using ASO. ASOs 
for miR-21 and miR-221 increase the expression levels 
of their targets (PTEN, RECK, and CDKN1B), reduce 
proliferation, and increase apoptosis of pancreatic 
cancer cells. ASOs also sensitize pancreatic cancer cells 
to gemcitabine and generate synergistic antitumor 
effects[137,138]. Recently, the development of the human 
serum albumin-1-palmitoyl-2-oleoyl-snglycero-3-
ethylphosphocholine:cholesterol/antimiRNA oligonu
cleotides (+/-) (4/1) nanosystem exhibited the ability 
to efficiently deliver anti-miRNA oligonucleotides 
targeting the overexpressed miRNAs including miR-21, 
miR-221, miR-222, and miR-10 in pancreatic cancer 
cells, promoting the almost complete abolition of 
the expression of these miRNAs. Silencing of these 
miRNAs resulted in a significant increase in the levels 
of their targets (PTEN and p27Kip1). 

Sponge RNA contains complementary binding sites 
to miRNAs of interest. MiRNA sponges are comprised 
of transgenic cells and block all other miRNAs from the 
same family. Sponges bind to seed sequences of certain 
miRNAs that contain 2-7 specific sequential nucleotides. 
MiRNA sponges have multiple binding sites (usually 
4-16). Both RNA polymerase Ⅱ and Ⅲ promoters have 
been used to transcribe miRNA sponges. However, 
transcripts of RNA polymerase Ⅱ promoters are more 
stable due to their 5’ caps and 3’ polyadenylated 
tails[139]. MiR-103a-3p is a notable miRNA in that it is 
evolutionarily conserved and involved in regulating 
multiple cellular processes such as cell division, cellular 
metabolism, and angiogenesis[140,141]. The dysregulation 
of miR-103a-3p has been associated with many human 
diseases including several cancers, Alzheimer’s disease, 
and diabetes. It has been shown that more than 50% 
of miR-103a-3p activity is reduced by miR-103a-3p 
sponges[142]. However, RNA sponges contain several 
seed sequences that may bind to other ncRNAs as well 
as mRNAs. Therefore, the safety of miRNA therapy 
needs to be fully elucidated to ensure that other 
important metabolic pathways are not affected.

Small-molecule drugs
In contrast to nucleic acid-based strategies, the 
expression of miRNAs can also be modulated by drugs. 
A number of agents, including isoflavone and 3,3-diin
dolylmethane, have been shown to alter expression of 
miR-200 and the let-7 family in gemcitabine-resistant 
cancer cells[143]. Curcumin, one of the polyphenols 
isolated from plants such as Curcuma longa, has 
been shown to induce miR-7. This induction inhibits 

cell growth, migration, and invasion. The apoptotic 
effects of curcumin appear to be mediated by down-
regulating SET8 via miR-7 upregulation[144]. As a potent 
anti-cancer natural product, curcumin also down-
regulates miR-21 and up-regulates miR-200, thereby 
improving gemcitabine sensitivity via the induction of 
PTEN[145]. Flavonoids are another group of polyphenolic 
compounds reported to have anti-oxidant and anti-
cancer effects. Genisteins are flavonoids affecting 
the ER (anti-estrogenic effects) and can be found in 
soybeans. It has been reported that genistein treatment 
in pancreatic cancer cells upregulates miR-34a[146] and 
downregulates miR-27, and miR-223[147,148].

CONCLUSION
NcRNAs have undoubtedly become one of the “hot” 
spots in modern biological and biomedical research. As 
ncRNAs can be efficiently targeted by stable ASO, this 
approach may be explored to target specific regulatory 
ncRNAs to understand their biological functions and 
action mechanisms and to develop novel strategies 
for disease intervention. Differential expression 
of ncRNAs is now a recognized trait of pancreatic 
carcinogenesis. However, the functional role of many 
of these molecules unearthed during profiling studies 
remains undetermined. Relatively speaking, biomarker 
studies into pancreatic cancer ncRNAs are in their 
infancy. Further work is needed to establish the role 
of distinguishing between free-circulating ncRNAs, 
those bound to Argonaute proteins and circulating 
microvesicle-encapsulated ncRNAs. The therapeutic 
applications of ncRNAs in pancreatic cancer are still in 
a formative stage and require extensive investigation 
in vitro and in animal models before their true potential 
can be realized.
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