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Abstract

Presence-only data present challenges for selecting thresholds to transform spe-

cies distribution modeling results into binary outputs. In this article, we com-

pare two recently published threshold selection methods (maxSSS and maxFpb)

and examine the effectiveness of the threshold-based prevalence estimation

approach. Six virtual species with varying prevalence were simulated within a

real landscape in southeastern Australia. Presence-only models were built with

DOMAIN, generalized linear model, Maxent, and Random Forest. Thresholds

were selected with two methods maxSSS and maxFpb with four presence-only

datasets with different ratios of the number of known presences to the number

of random points (KP–RPratio). Sensitivity, specificity, true skill statistic, and F

measure were used to evaluate the performance of the results. Species preva-

lence was estimated as the ratio of the number of predicted presences to the

total number of points in the evaluation dataset. Thresholds selected with

maxFpb varied as the KP–RPratio of the threshold selection datasets changed.

Datasets with the KP–RPratio around 1 generally produced better results than

scores distant from 1. Results produced by We conclude that maxFpb had speci-

ficity too low for very common species using Random Forest and Maxent mod-

els. In contrast, maxSSS produced consistent results whichever dataset was

used. The estimation of prevalence was almost always biased, and the bias was

very large for DOMAIN and Random Forest predictions. We conclude that

maxFpb is affected by the KP–RPratio of the threshold selection datasets, but

maxSSS is almost unaffected by this ratio. Unbiased estimations of prevalence

are difficult to be determined using the threshold-based approach.

Introduction

Species distribution modeling has become an important

tool to tackle issues in ecology, evolutionary biology, bio-

geography, and conservation planning. Species distribu-

tion data are commonly obtained from herbaria, natural

history museums, and government databases to develop

these models. These data sources generally only provide

presence data for species and rarely provide information

on absences. Many modeling techniques have been intro-

duced or adapted to deal with these types of data. Some

techniques use presence data exclusively, for example,

BIOCLIM (Busby 1991), DOMAIN (Carpenter et al.

1993), LIVES (Li and Hilbert 2008), and one-class SVM

(Guo et al. 2005; Drake et al. 2006), while other

techniques use both presence data and accompanying

pseudo-absence data (often random points) that represent

the background context for the model. This latter group

of modeling approaches include GARP (Stockwell and

Peters 1999), ENFA (Hirzel et al. 2002), Maxent (Phillips

et al. 2006), and all the group-discrimination techniques

including ANN (Pearson et al. 2002), generalized linear

model (GLM), GAM, boosted regression tree (Elith et al.

2006), Random Forest (Cutler et al. 2007), and two-class

SVM (Guo et al. 2005). Point process modeling has also

been introduced to build models with presence-only data

(Warton and Shepherd 2010; Chakraborty et al. 2011;

Aarts et al. 2012). Most of these techniques produce con-

tinuous predictions, which may be considered as relative

suitabilities for species occurrence.

Applied ecological problems such as climate change

impacts (Bush et al. 2014; Muir et al. 2015), invasive

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

337



species impacts (Buckland et al. 2014), reintroduction

sites identification (Bleyhl et al. 2015), and conservation

planning (Abade et al. 2014) often require binary models

of distributions, and a threshold is needed to transform

the continuous results into a binary product. Although

this discretization may lose some information (Guillera-

Arroita et al. 2015), it is still the only way for some prob-

lems, especially those involving species range estimation

(Syfert et al. 2014; Saupe et al. 2015). Although there are

many threshold selection methods for presence/absence

data (Fielding and Bell 1997; Liu et al. 2005; Jim�enez-

Valverde and Lobo 2007; Freeman and Moisen 2008;

Nenz�en and Ara�ujo 2011), there are very few methods

proposed for use with presence-only data (Phillips et al.

2006; Pearson et al. 2007; Li and Guo 2013; Liu et al.

2013a). The minimum predicted value for the training

sites has been used as threshold (Phillips et al. 2006), ter-

med “lowest presence threshold” (Pearson et al. 2007).

With this method, sensitivity achieves its maximum value

1 with the evaluation data, but it is extremely sensitive to

low sample sizes (Bean et al. 2012), and sometimes it pre-

dicts species’ presence everywhere in the study area (Phil-

lips et al. 2006). More generally, different levels of

sensitivity can be set so that different thresholds can be

obtained (e.g., sensitivity = 0.9) (Pearson et al. 2004).

However, as this approach only considers sensitivity, its

usefulness remains limited.

Maximizing the sum of sensitivity and specificity

(maxSSS), one of the best threshold selection method for

presence/absence data (Liu et al. 2005), has been proved

valid to use with presence-only data when random points

are used instead of true absences, where sensitivity is the

proportion of correctly predicted presences among all the

presences (which is also called recall in other fields), and

specificity is the proportion of correctly predicted

absences among all the absences (Liu et al. 2013a). Three

criteria were proposed (i.e., objectivity, equality and dis-

criminability) as sound principles for threshold selection.

Specifically, the threshold should be objectively selected,

and the selected threshold should be identical irrespective

of either presence/absence data or presence-only data

being used in the selection, at least for large samples.

Additionally, discrimination between presence and

absence rather than between presence and random point

should be optimized. maxSSS satisfies all the three

criteria.

Li and Guo (2013) derived a statistic Fpb (which will

be defined in the next section) based upon the presence-

background (which is defined as random points) data act-

ing as a surrogate for the F measure (i.e., the harmonic

mean of positive predicted value and sensitivity), and

used it to select thresholds, where positive predicted value

(also called precision) is the proportion of correctly

predicted presences among all the predicted presences.

They found that thresholds selected by maximizing Fpb
(i.e., maxFpb) and by maximizing F (i.e., maxF) were sim-

ilar. However, in calculating F, only correctly predicted

presences, observed presences, and predicted presences are

used, and the total number of evaluation data points are

not used in the calculation, although this value is known.

This makes true absences unconstrained in all implemen-

tations of maxF, which may result in very low specificity.

Consequently, the behaviors of both maxF and maxFpb
require further examination.

These authors also proposed estimating species preva-

lence from the transformed binary predictions with

maxFpb and found that the estimated prevalence was very

accurate with root-mean-square error (RMSE) < 0.081 for

all the models (here for prevalence estimation RMSE is

always between 0 and 1, and the smaller the RMSE, the

better the estimation). This means that the mean absolute

bias of the estimation is also <0.081, since arithmetic mean

is less than quadratic mean (Pachpatte 2005). Because of

the potential problems with maxF as mentioned above, the

effectiveness of this threshold-based prevalence estimation

approach also needs to be further examined.

We use a simulation approach in this article to compare

the two threshold selection methods maxFpb and maxSSS

to examine the difference in their performance under dif-

ferent combinations of modeling techniques and species

with varying prevalence. We focus on their response to

threshold selection datasets with different ratios of the

number of known presences to the number of random

points (KP–RPratio) and also investigate the performance of

the threshold-based prevalence estimation approach when

models are trained with different number of presences.

Methods

Threshold selection methods

For presence/absence data, the identities of both presence

and absence data are known, and the related confusion

matrix and calculation of various accuracy metrics can be

found in many papers (Liu et al. 2011). For presence-only

data, we used random points (or more generally pseudo-

absences) as the “absence” component of the evaluation

data in addition to the presence component (i.e., known

presences), and the related confusion matrix can be con-

structed similarly. Among the four cells of this matrix,

true presences and false absences are calculated in the

same way as with presence/absence data, and the “true

absences” and “false presences” are calculated with

pseudo-absences, which are the predicted absences (i.e.,

with predicted values below the threshold) among all the

pseudo-absences, and the predicted presences (i.e., with
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predicted values above the threshold) among all the

pseudo-absences.

For a metric M (calculated with presence/absence data),

its presence-only counterpart is expressed as M0 (calcu-

lated with presence/pseudo-absence data, i.e., the apostro-

phe (0) indicates a value based on presence-only data).

Liu et al. (2013a) derived that

SSS0 ¼ Se0 þ Sp0 ¼ sþ ð1� sÞðSeþ SpÞ ¼ sþ ð1� sÞSSS;

and therefore,

TSS0 ¼ ð1� sÞTSS;

where SSS is the sum of sensitivity (Se) and specificity

(Sp), TSS = Se + Sp – 1 = SSS – 1 is the true skill statis-

tic, s is the proportion of true presences among the

pseudo-absences, and it is therefore the species prevalence

if random points are taken as pseudo-absences (Liu et al.

2013a). Because s is a constant (between 0 and 1) for a

dataset, SSS0 and TSS0 are monotonically increasing func-

tions of SSS and TSS, respectively. If a threshold makes

any of the four indices (i.e., SSS0, TSS0, SSS, and TSS)

reach its maximum, then it will make the other three

reach their maximum. Therefore, maximizing the four

indices is equivalent in terms of selecting thresholds. The-

oretically, this is not affected using different sets of data

even with different values of the constant s. Suppose we

have two datasets each containing a presence component

and a pseudo-absence component, the ratios of the

number of true presences among the pseudo-absences to

the number of pseudo-absences for the two datasets are s1

Figure 1. Thresholds selected using maxF with

presence/absence dataset (pa1), using maxFpb
with four presence-only datasets (po1, po2,

po3, and po4), and using maxSSS with all the

five datasets for Maxent and Random Forest

models for three virtual species with low,

intermediate, and high prevalence. The dashed

lines correspond to the median thresholds

selected using maxF and maxSSS with pa1.
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and s2, respectively. According to the above discuss-

ion, we have SSS01 ¼ s1 þ ð1� s1ÞSSS and SSS02 ¼ s2þ
ð1� s2ÞSSS. Since both s1 and s2 are constants, SSS is

always maximized by maximizing either SSS1 or SSS2.

Therefore, maxSSS is not affected by different datasets.

For simplicity, in the following we will not explicitly write

the apostrophe. From these discussions and also consider-

ing TSS is a well-recognized accuracy measure, maxSSS

satisfies all the three criteria.

Fpb ¼ ð2p00r0Þ=ðp00 þ r0Þ is the harmonic mean of r0 and p

″, which was proposed to be a surrogate of the accuracy

measure F = 2pr/(p + r), where r and r0 are the sensitivities
(i.e., recall) of the model calculated with presence/

absence data and presence-only data respectively, p is the

positive predicted value (i.e., precision), and p″ is defi-

ned as the ratio of true presences (i.e., correctly predicted

presences among all the known presences in the dataset) to

the (pseudo) false presences (i.e., predicted presences

among all the random points in the dataset) (Li and Guo

2013). The proposed threshold selection method was based

on maximizing Fpb (hereafter maxFpb). It can be derived

that p ¼ p00=c (Li and Guo 2013), where c ¼ n1=ðpn0Þ, n1 is
the number of randomly sampled presences, n0 is the num-

ber of random points, and p is the species prevalence. Since

the calculation of r and r0 only uses true presences, they

should be equal for large samples, that is, r = r0. Therefore,
we have Fpb = 2pr/(p + r/c), which is a function of p and r

with a parameter c. However, c is unknown prior to the

analysis, and it will vary each time we alter the KP–RPratio.
Different values of c can be obtained in a simple situation

where we use the same set of presences but varying number

of random points.

Figure 2. F measures calculated for the results

transformed with the thresholds selected using

maxF with presence/absence dataset (pa1),

using maxFpb with four presence-only datasets

(po1, po2, po3, and po4) and using maxSSS

with all the five datasets for Maxent and

Random Forest models for three virtual species

with low, intermediate, and high prevalence.

The dashed lines correspond to the median F

of those using maxF and maxSSS with pa1.
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When c?0, that is, when there are much fewer known

presences than the true presences within the random

points (which can be achieved by taking a large number

of random points), Fpb?0; when c?1, that is, there are

as many known presences as the true presences in the

random points, Fpb ! 2pr=ðpþ rÞ ¼ F; when c?∞, that

is, there are much more known presences than the true

presences in the random points, Fpb?2r. It is therefore

unclear what we are really measuring each time we apply

this metric to a dataset since we do not know how many

presences there are in the random points. We must

emphasize that the two components (presences and

pseudo-absences) come from two separate sampling pro-

cesses in this presence-only situation, and random sam-

pling can only be (ideally) assumed for each component,

and their combination cannot be assumed from simple

random sampling any more. Therefore, theoretically c can

take any positive value.

Although the two extreme situations (c ?0 and c?∞)

are unlikely to occur in real situations, the above reason-

ing illustrates that varying values of c results in different

accuracy measures. This means that if we use datasets

with different KP–RPratios for the same model, we would

subsequently have different criteria even with the same

name Fpb. Therefore, if we select thresholds by maxFpb, it

is highly likely that different thresholds will be selected,

even with two large datasets.

Data creation and analysis

We developed six virtual species distributed within a

250 9 250 km area in central–western Victoria, Australia.

Figure 3. True skill statistic (TSS) calculated

for the results transformed with the thresholds

selected using maxF with presence/absence

dataset (pa1), using maxFpb with four

presence-only datasets (po1, po2, po3, and

po4) and using maxSSS with all the five

datasets for Maxent and Random Forest

models for three virtual species with low,

intermediate, and high prevalence. The dashed

lines correspond to the median TSS of those

using maxF and maxSSS with pa1.
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Eighteen environmental variables were available included

relevant bioclimatic, topographical, and radiometric vari-

ables (Liu et al. 2013b). We used principal component

analysis to extract three principal components accounting

for more than 65% of the total variation. Three normal-

ized environmental variables (xj, j = 1, 2, 3) were

obtained by subtracting the mean from each component

and being divided by its standard deviation. All of the

environmental data were resolved to 1 9 1 km, creating

a total of nT = 62,500 cells.

In this article, we adopted the probabilistic approach to

simulating species distributions (Meynard and Kaplan

2013). The probability of the species occurrence was cal-

culated for each of the six species at site i (i = 1, 2,. . .,nT)

with environmental data Xi = (xi1, xi2, xi3), using

pi ¼ 1

1þ e�f ðXiÞ ;

where f(Xi) = a0 + a1xi1 + a2xi2 + a3xi3. The parameters aj
(j = 0, 1, 2, 3) for the six species are shown in

Appendix S1.

In order to form a binary distribution (i.e., realization)

for each species, for each site i (i = 1, 2,. . .,nT), we car-

ried out a Bernoulli trial with probability pi. If the

outcome was 1, site i was labeled presence; otherwise, it

was labeled absence. A set of realizations for the six vir-

tual species are shown in Appendix S2. This procedure

was applied for 100 realizations for each species. It can be

seen that the above procedure is just the inverse process

of logistic regression. While logistic regression is used to

Figure 4. Sensitivity (Se) calculated for the

results transformed with the thresholds

selected using maxF with presence/absence

dataset (pa1), using maxFpb with four

presence-only datasets (po1, po2, po3, and

po4) and using maxSSS with all the five

datasets for Maxent and Random Forest

models for three virtual species with low,

intermediate, and high prevalence. The dashed

lines correspond to the median sensitivity of

those using maxF and maxSSS with pa1.
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estimate the coefficients of the model with both explana-

tory and response variables, here we calculated the values

of the response variable with known coefficients of the

model and explanatory variables.

Four modeling techniques (DOMAIN, GLM, Maxent,

and Random Forest) were used. All calculations were

carried out in R 2.15.2 (R Development Core Team,

2012). The R packages stats 2.15.2, randomForest 4.6-10,

and dismo 0.8-11 together with Phillips & Dud�ık’s pro-

gram (Phillips and Dud�ık 2008) were used to implement

GLM, Random Forest, and Maxent, respectively.

DOMAIN (Carpenter et al. 1993) was implemented with

our custom programming of the algorithm. For each

species, we randomly selected 50 presences and 5000

random points as model training data, but using so

many random points in the training data resulted in

Random Forest models with very low accuracy. Conse-

quently, we used a ratio of 2:1 for the number of ran-

dom points compared to the number of presences for

Random Forest models, that is, 100 random points. This

strategy was adopted by Liu et al. (2013a, 2013b), and

similar strategy has already been recommended by others

(Barbet-Massin et al. 2012). Higher accuracies can be

achieved using ensembles of many such models (Barbet-

Massin et al. 2012); however, this is unnecessary for this

article. Since the 50 presences were randomly sampled

from the entire study area, they were representative of

all the presences, and therefore, generally high-quality

models could be built with them. Unlike using a large

number of presences from which models with high accu-

racies would always be obtained, using a smaller number

of presences we could build models with wider range of

Figure 5. Specificity (Sp) calculated for the

results transformed with the thresholds

selected using maxF with presence/absence

dataset (pa1), using maxFpb with four

presence-only datasets (po1, po2, po3, and

po4), and using maxSSS with all the five

datasets for Maxent and Random Forest

models for three virtual species with low,

intermediate, and high prevalence. The dashed

lines correspond to the median specificity of

those using maxF and maxSSS with pa1.
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accuracies, which is better for comparative studies as in

this article.

A test dataset was created by selecting 3000 p presences

and 3000 (1–p) absences from the full dataset excluding

the training data, where p was species prevalence. Four

validation datasets were created for selecting thresholds

by selecting n1val presences from all the presences exclud-

ing the training data and test data, and nrpval random

points from the full dataset, where n1val = 50 and nrp-

val = 5000, n1val = 50 and nrpval = 50, n1val = 5000

and nrpval = 5000, and n1val = 5000 and nrpval = 50 for

the four datasets (termed po1, po2, po3, and po4),

respectively. A presence/absence validation dataset (pa1)

was also created by selecting 5000p presences and 5000

(1–p) absences from the full dataset excluding the train-

ing data and test data. This presence/absence dataset was

used to select thresholds using methods maxF and

maxSSS, and the four presence-only datasets were used to

select thresholds using maxFpb and maxSSS0 (since the

formulae are exactly the same for maxSSS and maxSSS0,
we do not differentiate them further). For the latter, the

(pseudo) specificity was calculated using the pseudo-

absences (i.e., the random points).

The results were evaluated against the test data. The

area under the receiver operating characteristic curve

(AUC) was calculated with the original model predictions

to show the general accuracy of the models. The predic-

tions after being transformed with the selected threshold

were evaluated with sensitivity, specificity, F, and TSS

(Liu et al. 2011).

In order to investigate the performance of estimating

prevalence with the threshold-based approach, the preva-

Figure 6. Estimated prevalence from the

results transformed with the thresholds

selected using maxF with presence/absence

dataset (pa1), using maxFpb with four

presence-only datasets (po1, po2, po3, and

po4), and using maxSSS with all the five

datasets for Maxent and Random Forest

models for three virtual species with low,

intermediate, and high prevalence. The dashed

lines correspond to the true prevalence.
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lence was estimated when a threshold was selected by cal-

culating the ratio of the number of predicted presences to

the total number of points in the evaluation dataset. This

is equivalent to the ratio of the predicted area of presence

(where model predictions were above the selected thresh-

old) to the total study area.

Results

The AUC values (across the 100 realizations for each of

the six species with each of the four modeling techniques)

ranged from 0.75 to 0.98 for DOMAIN models, from

0.80 to 1 for GLM models, from 0.66 to 0.99 for Maxent

models, and from 0.61 to 0.96 for Random Forest models

(Appendix S1).

The four presence-only datasets produced very differ-

ent thresholds when maxFpb was used. Thresholds pro-

duced with the dataset po1 were much higher and

those produced with the dataset po4 were much lower

than those produced with the presence/absence dataset

(pa1) using maxF (Fig. 1 and Appendix S3). Those

produced with the datasets po2 and po3 were also

lower than their presence/absence counterparts for spe-

cies with low prevalence, especially for Maxent and

Random Forest models. This contrasts with the use of

maxSSS, where the median thresholds produced with

the four presence-only datasets and the presence/absence

dataset were almost the same.

When assessing the binary results transformed with the

thresholds selected by maxF and maxFpb, the F and TSS

values corresponding to po1 and sometimes po4 were

much lower than their presence/absence counterparts

(i.e., those produced with maxF and pa1), and the F and

TSS values corresponding to po2 and po3 were not much

dissimilar to their presence/absence counterparts (Figs. 2

and 3 and Appendix S3). For the results transformed with

the thresholds selected by maxSSS, the F and TSS values

corresponding to the five datasets were roughly the same.

They almost reached the best level of F corresponding to

maxF except for very common species modeled with Ran-

dom Forest. For less common species, the results from

maxF and maxFpb with the two datasets po2 and po3

reached TSS similar to that from maxSSS. For common

and very common species modeled with Random Forest

and Maxent, maxF and maxFpb produced results which

had very low TSS (almost 0 for Random Forest models).

When maxFpb was used, datasets po1 and po4 produced

results very different from their presence/absence counter-

parts in terms of sensitivity and specificity. Dataset po1

produced results with very high specificity but very low

sensitivity, while the results using dataset po4 produced

opposite pattern. Datasets po2 and po3 produced results

not greatly different from their presence/absence counter-

parts and maintained very high sensitivity with low speci-

ficity (even close to 0 for very common species when

modeled with Random Forest and Maxent) (Figs. 4 and 5

and Appendix S3). When comparing the two methods,

for species with low and intermediate levels of prevalence

(except modeling with Random Forest), maxFpb (with

po2 and po3), maxF, and maxSSS produced similar level

of sensitivity and specificity. However for species with

high and intermediate levels of prevalence (when modeled

with Random Forest), maxSSS produced much higher

specificity than maxF and maxFpb (with po2, po3, and

po4).

Prevalence was always highly underestimated by dataset

po1 and overestimated by the other datasets (especially

po4) when maxFpb was used (Fig. 6 and Appendix S3). It

was almost always overestimated when maxF was used,

and the level of bias in the prevalence estimation by

maxF was significantly negatively correlated with the

accuracy (AUC) of the models (Spearman’s rank correla-

tion coefficient = �0.8673, P < 0.0001, Fig. 7). When

maxSSS was used, all the five datasets produced almost

the same prevalence estimation in all the situations. The

estimated prevalence was higher than, lower than, and

similar to the true prevalence for rare species, for very

common species, and for species with intermediate level

of prevalence, respectively. For species with low and

intermediate levels of prevalence, the prevalence estimated

by maxFpb using po2 and po3 was similar to that esti-

mated by maxSSS. But for species with high level of

prevalence, there was quite large difference in the preva-

lence estimation between the two methods. While the

former overestimated the prevalence, the latter underesti-

mated it.

Figure 7. The effect of model accuracy AUC on the prevalence

estimation with threshold-based approach where the threshold was

selected by maxF with presence/absence data. Here, the absolute bias

in prevalence estimation is the absolute value of the difference

between estimated and true prevalence. The solid line is the smooth

curve from local regression.
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Discussion

Our simulation results have clearly demonstrated that

maxFpb selects different thresholds when using datasets

with different KP–RPratios. This is consistent for all the

species examined and for all the modeling techniques

studied. This is an undesirable property of the use of

maxFpb. In contrast, maxSSS always produces almost the

same threshold for a model using either presence/absence

data or presence-only data, which has previously been

demonstrated with an alternative simulation approach

(Liu et al. 2013a).

In this study, we used datasets where the KP–RPratios
were < 1 for the presence-only dataset po1, equal to 1 for

po2 and po3, and greater than 1 for po4. It may be

argued that in practice it may be possible to allocate the

number of random points used for threshold selection

based upon the number of presences used to maintain a

ratio of known presences to random points close to (or

at least not far away from) 1. With this approach, it may

be possible to constrain the resultant threshold to be close

to that from maxF. However, this approach depends on

our prior knowledge about the prevalence of the focal

species in the study area, and this is generally unknown.

A further enhancement could be to apply this process

iteratively by estimating several values for the prevalence

and adjusting the number of random points according to

the estimated prevalence. This process may potentially

make the maxFpb results close to maxF results.

However, this approach using maxF theoretically may

not be a good strategy for threshold selection. As men-

tioned previously, the true absences (in the confusion

matrix) are totally unconstrained in the application of

maxF, and this produces results with lower sensitivity and

higher specificity than those from maxSSS for rare

species, and with very high sensitivity and very low speci-

ficity (even close to 0 which is much lower than that

from maxSSS) for very common species. These responses

are undesirable. With rare species, omission errors are

much more important than commission errors, and miss-

ing suitable locations may result in poor decisions in con-

servation management and a contribution to further loss

of biodiversity. In contrast, commission errors are more

important than omission errors when considering com-

mon species, and the use of modeled outputs with high

commission errors for conservation planning management

may lead to poor resource allocation. In this respect,

maxSSS provides better results than maxF and maxFpb
using either presence/absence data or presence-only data.

Several authors have posited the view that prevalence

cannot be determined from presence-only data (Hastie and

Fithian 2013; Lele et al. 2013; Phillips and Elith 2013; Guil-

lera-Arroita et al. 2015), and this is supported by our

results. We have found that it is very difficult to unbiasedly

estimate species prevalence with presence-only data, even

with presence/absence data using threshold-based

approach. The effectiveness of this approach strongly

depends on the accuracy of the models. It seems that in

order to obtain a reasonable prevalence estimation (e.g.,

with absolute bias < 0.1), the AUC of the models should be

at least 0.9 (Fig. 7). This is difficult to achieve in practice.

Relative bias <10% may be a better criterion. It is much

stricter, and much smaller absolute bias is required. There-

fore, it is even more difficult to achieve in practice. A

large comparative study has shown that for the 226 species

with various modeling techniques, only a small proportion

of models reached this level of accuracy, even the

most powerful modeling techniques obtained mean

AUCs < 0.73 (Elith et al. 2006). Although many studies

reported highly accurate models, their accuracies are often

inflated because their evaluation data and model training

data are usually not independent (Araujo and Guisan 2006;

Veloz 2009).

In conclusion, the threshold selection method maxFpb
is affected by the KP–RPratio used in the threshold selec-

tion dataset, but this is not the case for the threshold

selection method maxSSS, which produces similar results

when using either presence/absence or presence-only data-

sets. A further disadvantage of maxFpb against maxSSS is

that it produces results with lower (sometimes close to 0)

specificity for very common species, impairing the utility

of this method compared to maxSSS. Additionally, the

effectiveness of prevalence estimation with threshold-

based approach strongly depends on the accuracy of

models. Reasonable prevalence estimation requires highly

accurate models, which is generally very difficult to

achieve in practise.
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