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Background: Metabolomics has shown promise in gastric cancer (GC) detection. This research sought to identify whether GC has
a unique urinary metabolomic profile compared with benign gastric disease (BN) and healthy (HE) patients.

Methods: Urine from 43 GC, 40 BN, and 40 matched HE patients was analysed using 1H nuclear magnetic resonance (1H-NMR)
spectroscopy, generating 77 reproducible metabolites (QC-RSD o25%). Univariate and multivariate (MVA) statistics
were employed. A parsimonious biomarker profile of GC vs HE was investigated using LASSO regularised logistic regression
(LASSO-LR). Model performance was assessed using Receiver Operating Characteristic (ROC) curves.

Results: GC displayed a clear discriminatory biomarker profile; the BN profile overlapped with GC and HE. LASSO-LR identified
three discriminatory metabolites: 2-hydroxyisobutyrate, 3-indoxylsulfate, and alanine, which produced a discriminatory model with
an area under the ROC of 0.95.

Conclusions: GC patients have a distinct urinary metabolite profile. This study shows clinical potential for metabolic profiling for
early GC diagnosis.

Gastric adenocarcinoma (GC) is the fifth most common cancer
worldwide and the third most deadly. Approximately one million
people are diagnosed worldwide yearly, and there is a 70%
mortality rate (Worldwide Cancer Research Fund, 2012; Cancer
Research UK, 2014). GC is often diagnosed late, as non-specific
symptoms, such as dyspepsia, resemble benign (BN) causes such as
gastritis. In spite of this, cancers identified early have a moderate
chance of cure. The 5-year survival rate of Stage IA tumours is 71%
and Stage IB tumours is 57% (American Cancer Society, 2015).
This highlights the importance of appropriate screening in higher-
risk populations.

Metabolomics is the study of low-molecular weight chemicals
(o1500 Da) in a biological system. It is the most downstream of

the ‘omics’ sciences (Genomics, Transcriptomics, Proteomics, etc.),
and is thus considered closest to an organism’s phenotype (Dunn
et al, 2011). Previous studies show that GC cells preferentially
convert glucose into lactate even in the presence of sufficient
oxygen (Warburg effect) (Hirayama et al, 2009; Cai et al, 2010;
Hu et al, 2011; Aa et al, 2012). Citrate is one metabolite with
connections to apoptotic pathways in GC (Lu et al, 2011). Certain
nucleic acids are overexpressed in GC (hypoxanthine, uridine,
guanosine), indicating active replication (Hirayama et al, 2009;
Hu et al, 2011; Yu et al, 2011).

Identification of a distinct urinary metabolomic profile for GC
could offer a non-invasive, cost effective, efficient, and reasonably
accurate modality towards accurate diagnoses. The study described
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herein provides a preliminary investigation of the ability for
1hydrogen nuclear magnetic resonance (1H-NMR) spectroscopy to
discriminate between urine samples collected from GC, healthy
(HE), and benign gastric disease (BN) patients.

MATERIALS AND METHODS

Patient selection. Midstream urine samples were collected from
43 GC, 40 BN, and 40 HE patients from January 2009 to December
2014 from three hospitals in Edmonton, Canada. GC samples were
collected prior to chemoradiotherapy and surgery. All patients
provided written informed consent. Ethics approval was obtained
from the Health Research Ethics Board at the University of
Alberta.

Inclusion criteria for cancer patients were: biopsy-confirmed
diagnosis of GC, age X18 years, and no metastases on their staging
computed tomography scans. BN patients had to experience
gastrointestinal symptoms (such as haematemesis or epigastric
discomfort) and must have endoscopic evidence within the past 6
months of consent that symptoms were not due to a malignant
cause. BN patients had the following conditions: gastritis, gastro-
oesophageal reflux disease (GORD), portal hypertensive gastro-
pathy, varices, gastritis, ulcers, and polyps. HE controls had no
declared history of cancer and no gastrointestinal symptoms.
Groups were matched on age, gender, and BMI.

Exclusion criteria included: breastfeeding, pregnancy, significant
cardiac disease with New York Heart Association XClass II,
systemic infection, prior cancer, and glomerular filtration rate
o30 ml min� 1.

Sample collection and NMR spectroscopy. Within 2 h of
collection, one ml aliquots of urine mixed with 50ml of 0.42%
sodium azide preservative were prepared and biobanked at � 80 1C.
All one-dimensional (1D) 1H-NMR spectra were acquired at
Canada’s National High Field Nuclear Magnetic Resonance Centre
using a 600-MHz Varian Inova spectrometer (Agilent Inc., Palo Alto,
CA, USA). Sample preparation and NMR analysis followed the
standard protocols outlined in Supplementary File.

Data modelling and statistical analysis. Following standard data
cleaning protocols, 77 metabolite concentrations were reproducibly
detected by NMR platform. For each metabolite, pairwise
comparisons of GC vs HE and BN vs HE were tested using the
non-parametric Mann–Whitney U-test. Correction for multiple
comparisons was performed using Benjamini and Hochberg
method (Benjamini, 1995).

Exploratory multivariate statistical analysis in the form of
Partial Least Squares discriminant analysis (PLS-DA) and
Orthogonal Partial Least Squares discriminant analysis (O-PLS-
DA) were used to uncover any latent correlated structure in the
data (Eriksson et al, 2013). Logistic regression optimised by LASSO
regularisation (LASSO-LR) was then performed to derive a
parsimonious discriminant GC vs HE biomarker model. Statistical
analyses were performed using SIMCA (version 13, Umetrics,
Umea, Sweden), Matlab scripting language (MathWorks Inc.,
Natick, MA, USA), and STATA Version 13 (StataCorp LP, College
Station, TX, USA).

RESULTS

Patient characteristics. Baseline patient and tumour character-
istics are listed in Table 1. To compare univariate statistical results
from two arms of this study (GC vs HE and BN vs HE), a bi-plot of
log median fold change for metabolites significant in either
comparison was constructed (Figure 1). P-values, q-values, median

Table 1. Baseline characteristics of the study subjects and
tumour

Characteristic BN GC HE
Number of patients 40 43 40
Mean age (s.d.), years 63.1 (9.0) 65.2 (12.0) 63.2 (8.8)
Gender (male/female) 19/21 28/15 23/17
Mean BMI (s.d.), kg m� 2 29.5 (6.4) 27.6 (6.9) 27.7 (4.7)

Helicobacter pylori status (on biopsy or urea breath test)
Positive/negative/unknown 3/21/16 7/26/10 —

Benign condition
Gastritis only 13 (32.5%) — —
Ulcer only 4 (10.0%) — —
Gastritis and ulcer 1 (2.5%) — —
Gastritis and portal hypertensive
gastropathy (PHG)

1 (2.5%) — —

PHG 9 (22.5%) — —
Gastro-oesophageal reflux disease
(GORD)

3 (7.5%) — —

Varices 1 (2.5%) — —
Polyps 5 (12.5%) — —
Reactive gastropathy 1 (2.5%) — —
Normal scope with GI symptoms 2 (5.0%) — —

Overall TNM stage
Ia/b — 3/3 —
IIa/b — 8/3 —
IIIa/b/c — 2/5/3 —
IV — 14 —
Unknown — 2 —

Tumour location
GE junction/cardia/fundus/body/
antrum/pylorus

— 6/1/4/15/
16/1

—

Lauren histological class
Diffuse/intestinal/mixed/not
specified

— 15/16/3/9 —

Grade (differentiation)
Well/moderate/moderate to poor/
poor/not reported

— 3/8/5/29/
3

—

Resectable/not resectable — 28/15 —

Neoadjuvant (yes/no) — 10/18 —
Adjuvant (yes/no) — 18/10 —

Abbreviations: BMI¼body mass index; BN, benign gastric disease; GC¼gastric cancer; GE¼
gastro-oesophageal; GI¼gastrointestinal; HE¼ healthy; TNM¼ tumour, node, metastasis.
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Figure 1. Biplot of log2 median fold change for metabolites in GC vs HE
and BN vs HE models. Blue circles represent metabolites significantly
changed in both models; red squares, significantly changed in GC vs
HE only; green triangles, significantly changed in BN vs HE only.
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concentrations, and median-fold differences for each pairwise
comparison are reported in Supplementary Table S1. A detailed
discussion of the PLS-DA and O-PLS-DA models are provided in
Supplementary Files. These results reflect those of the univariate
statistics. Of particular interest were nine metabolites, which had
high VIP scores in the GC vs HE OPLS model but low VIP scores
in the BN vs HE OPLS model (Supplementary Table S2): sucrose,
dimethylamine, 1-methylnicotinamide, 2-furoylglycine, N-acetyl-
serotonin, trans-aconitate, alanine, formate, and serotonin.

LASSO-LR produced an optimal GC vs HE model using just
three metabolites: 2-hydroxyisobutyrate (2-HIB), 3-indoxylsulfate
(3-IS), and alanine (A). This resulted in the following diagnostic
regression model:

Pð Þ ¼ 15:0�7:7� log 2-HIBð Þþ5:2� log 3-ISð Þ�6:1�logðAÞ

The corresponding ROC curve had an AUC of 0.95 (95% CI:
0.86� 0.99) (Figure 2A). For a fixed specificity of 80%, the
corresponding sensitivity for predicting GC was 95% (95% CI:
0.86–0.99). According to this specificity, if the predicted score,
P, for a given individual is 40.3 the diagnosis would be ‘GC’;
otherwise if Po0.3, ‘not GC’. Figure 2B shows a frequency
histogram for three disease classifications grouped by the LASSO-

LR model score. BN samples are split into two broad distributions:
half of BN patients classified with GC, and the other half with HE.

DISCUSSION

GC is a highly morbid and fatal disease. Diagnosis of GC is often
delayed. The present study used 1D 1H-NMR spectroscopy to
characterise a urinary metabolic profile of GC that is distinct from
HE and a subpopulation of BN patients.

Five to seven percent of skeletal muscle is composed of alanine,
an endogenous amino acid (Felig et al, 1978). During fasting,
muscle protein is catabolised to release alanine for liver
gluconeogenesis. Similar to previous studies (Hirayama et al,
2009; Chen et al, 2010), alanine concentration increased from HE
to GC. Elevated alanine levels in GC patients’ urine compared with
HE show that alanine may be a biomarker of muscle wasting but
not necessarily a specific biomarker of the disease itself.

In rats with chemically induced gastric lesions (ulcers, erosions),
treatment with 1-methylnicotinamide inhibited gastric acid secre-
tion and increased mucosal blood flow and healing (Brzozowski
et al, 2008). Diminished levels of 1-methylnicotinamide in both BN
and GC groups suggest loss of this mucosal protective mechanism.
Where mucosa is ulcerated or eroded, sucrose can penetrate more
easily into the bloodstream and be excreted into the urine
(Sutherland et al, 1994). Our study shows significant sucrose
elevations in both BN and GC groups compared with HE. Perhaps
this is due to the increased permeability of damaged mucosa in GC
and BN patients.

Creatinine, a waste product of muscle metabolism, is excreted
by the kidneys (Eisner et al, 2011). The amount of creatinine in
urine is related to muscle mass (Swaminathan et al, 2000).
Cachectic patients have lower total body skeletal muscle mass and
therefore lower levels of urinary creatinine. This phenomenon was
consistent with our results.

Citrate is an intermediate of the Kreb’s cycle. An in vitro
experiment showed that citrate induced apoptosis in two GC cell
lines in a dose-dependent manner (Lu et al, 2011). In our study,
citrate was downregulated in GC patients, suggesting an ability of
GC to escape regular programmed cell death.

The distinction between BN and either GC or HE was less
clear using the multiclass PLS model (Supplementary Figure S2).
BN conditions that clustered more frequently with GC include:
ulcers, GORD, and gastritis. These observations fit with
Correa’s hypothesis (Correa, 1988). He delineated a preneoplastic
cascade from healthy to chronic atrophic gastritis and eventually to
cancer. Patients with chronic gastritis are farther on the
preneoplastic cascade than early gastritis patients, so their
phenotypes and metabolomic signatures more likely resemble
GC than HE.

This observational study has limitations. We enrolled a
pragmatic sample size of roughly 40 patients in each group.
A small sample size limits the power to detect a difference, and
conversely, differences detected may be spurious. This experiment
matched patients on three common confounders – age, sex, and
BMI, but as it is an observational design, only known confounders
can be controlled. Other confounders in this experiment include:
medications, smoking, and Helicobacter pylori status.

This study shows clinical potential for metabolic profiling,
although numerous steps are required to move this test into the
clinic. Should the three-metabolite model be successfully validated,
then a point-of-care diagnostic could be developed such as a simple
dipstick or laboratory assay. Alternatively, if the complete
metabolite profile needs to be done, then this assay could be
performed at a centralised laboratory with samples being collected
and processed in the periphery.
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Figure 2. Three-metabolite logistic regression model. (A) Receiver
Operating Characteristic (ROC) curve for GC vs HE comparison based
on three-metabolite model. Area under the curve (AUC) is 0.95 (95%
CI¼0.86–0.99). For a fixed specificity of 80%, the sensitivity is 95%
(95% CI¼0.85–1.00). (B) Frequency histogram for logistic regression
model scores. Yellow bars represent HE patients; red, BN patients; and
black, GC patients. The number (frequency) of patients with each score
is depicted by the height of the bars. Scores closer to 1 indicate a high
probability of GC; close to 0 indicates high probability of HE. Cutoff
boundary is score 0.3. Above 0.3, classified as GC; below, not GC.
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