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ABSTRACT: Multiparameter optimization (MPO) scoring functions are popular tools for providing guidance on how to design
desired molecules in medicinal chemistry. The utility of a new probabilistic MPO (pMPO) scoring function method and its
application as a scoring function for CNS drugs are described in this letter. In this new approach, a minimal number of
statistically determined empirical boundaries is combined with the probability distribution of the desired molecules to define
desirability functions. This approach attempts to minimize the number of parameters that define MPO scores while maintaining a
high level of predictive power. Results obtained from a test-set of orally approved drugs show that the pMPO approach described
here can be used to separate desired molecules from undesired ones with accuracy comparable to a Bayesian model with the
advantage of better human interpretability. The application of this pMPO approach for blood−brain barrier penetrant drugs is
also described.
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Physicochemical descriptors (e.g., TPSA, cLogP) are
commonly used to design molecules in medicinal

chemistry due to their utility in predicting possible liabilities.
For example, TPSA and cLogP are sometimes used as
descriptors for predicting possible p-glycoprotein (Pgp) liability
of compounds,1−3 and cLogP is sometimes used as a descriptor
for predicting possible in vitro metabolic (microsomal/
hepatocyte) stability of the molecules.4 In addition, there are
composite descriptors such as solubility forecast index (SFI),
which combines two descriptors (cLogD and nArom) for
predicting solubility.5 Combination of more than two
descriptors with individual desirability functions has also been
shown to be useful for scoring molecules for central nervous
system (CNS) targets.6

The design of new molecules in medicinal chemistry requires
multiple end-points such as permeability, solubility, stability,
safety, and potency to be optimized simultaneously. Since
multiple end-points are being tracked at the same time, there
are general design guidelines to increase the probability of
combining all desired properties into one molecule. One of the
earlier and most influential examples is “the rule of five”
published by Lipinski in 1997.7 Since then, various ways of
predicting the desirability space for rational design purposes
have been introduced to medicinal chemists. One example is

the CNS MPO score. This defines the desirable property space
for drugs that aim to target CNS.8 The utility of this scoring
function has been emphasized in a recent perspective article for
a CNS target.9 In this scoring method, the desirability of the
molecules within the boundaries is uniform. Another example
of highly human interpretable model is the drug absorption
model that relies on PSA and AlogP98.10 A different way of
scoring molecule desirability has been employed in a scoring
function called quantitative estimate of drug-likeness (QED). In
this scoring function, the drug-likeness of molecules is
determined by linear combination of the probability distribu-
tions.11 In the latter approach, there are no boundaries in the
descriptor space (e.g., cLogP ≤ 3 is desired) as there are in
MPO scores. Hence, probabilistic scoring functions try to guide
medicinal chemists by relying on the underlying distribution of
the existing chemical space, whereas MPO scoring functions
impose boundaries that are aimed to enrich the desirable
property space.
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MPO scores are useful tools because they provide guidelines
that aim to reduce the risk of having undesired properties.
These scoring functions eliminate the need to track multiple
parameters/descriptors independently. However, the use of
correlated descriptors while defining MPO scores can be
detrimental for design purposes because they expose MPO
scores to overtraining and can sometimes result in penalizing
(or rewarding) target molecules more than once for the same
shortcoming (or benefit). In addition, having cutoffs such as
cLogP ≤ X without a lower boundary can result in MPOs
giving high scores for molecules that may not be desirable
otherwise.
This letter describes an application and the utility of a

probabilistic MPO (pMPO) scoring function (see SI for python
implementation). In this method, two different approaches are
combined in an attempt to increase the predictability of the
scoring function with a reduced number of parameters: 1.
distribution of the desired molecule space and 2. enrichment
benefit of imposed boundaries. Descriptors are chosen by the
use of student’s t tests for statistical significance (p-value < 0.05
in the implementation provided in the SI). The use of
correlated descriptors is avoided by using Pearson R2; if any
two descriptors are correlated with R2 > 0.5, only the descriptor
with the lower p-value was used. Pearson R2 was used as a
metric to identify correlated descriptors because it is a
commonly used metric among medicinal chemists and highly
interpretable. A cutoff value of 0.5 was chosen in this work to
minimize the number of descriptors, but it was intended to be
chosen by the end user. Boundary conditions were determined
by minimizing the abundance of undesired molecules with a
sigmoidal function (Figure 1). This approach allows users to

impose a minimal number of empirical boundary conditions by
taking advantage of the probability distribution of the desired
molecule space. Since this approach aims to reduce the number
of parameters, it has a potential to be more transferrable. The
relative contributions of the descriptors to the final pMPO
score is determined by relative z-scores.
In order to assess the utility of the pMPO approach, a data

set of marketed orally available drugs was compiled. This data
set is composed of 299 brain penetrant drugs and 366 drugs
that are not reported to get into the CNS. The term brain
penetrant drugs refers to drugs that interact with the targets
that are expressed in the CNS or in the brain or have been
shown to partition into the brain or central nervous system in
the literature. This list was compiled by starting with the FDA
approved drug molecules that have MWs < 850 and TPSA <

200 after removing all prodrugs. These drugs were clustered to
remove very similar drug molecules from the data set. In this
stage, only the cluster centers were selected from each drug
cluster. This allowed the data set to be diverse and
representative of the drug space. For the purposes of showing
the utility of the pMPO approach, CNS penetrant drugs will be
called desired drugs and peripheral drugs will be called undesired
drugs. This data set will be used to show the utility of the
pMPO approach in a hypothetical scenario in which one wishes
to separate the desired drugs from undesired ones by using
common physicochemical descriptors (Table 1). Table 1

includes correlated descriptors such as TPSA/TPSAa or
MW/nAtoms. These correlated descriptors were intentionally
included as variables for the pMPO algorithm presented here in
order to show the benefit of using a statistics based approach
that can eliminate redundant descriptors. For example, TPSA
and MW were chosen by the pMPO algorithm described here,
whereas TPSAa and nAtoms were not.
Of the 14 descriptors that were presented to the pMPO

algorithm, only five were chosen. Two of the variables (fsp3
and nArom) were discarded because they did not provide
statistically significant differentiation between desired and
undesired molecules. Seven descriptors were discarded because
they correlated with the five descriptors that were chosen.
Table 1 lists the mean and standard deviation for the five
physicochemical descriptors that were used to separate the
desired molecules from undesired ones. z-scores are also
provided in Table 1 to highlight the degree of separation these
descriptors afford, and the column w corresponds to the final
weight of the descriptor based on the relative z-scores. As seen
in Table 1, TPSA is the descriptor that contributes the most to
the final pMPO score with a z-score of 0.53 and weight of 0.33.
Polarity appears to be an important parameter for the CNS
drugs since the descriptors that estimate the polarity of the
molecule (TPSA and HBD) make up 60% of the final score.
To illustrate how the algorithm works, the distributions for

the desired and undesired molecules and the desirability
function that separates them are shown in Figure 1 for TPSA.

Figure 1. TPSA distribution for desired and undesired molecules is
shown in green and red, respectively. The yellow curve corresponds to
a desirability function that can be used to separate desired molecules
from undesired ones. Scores obtained from a Bayesian model for the
TPSA values are given on the right-hand-side. Inset in the right-hand
side corresponds to the TPSA distribution for the corresponding bins.

Table 1. Descriptors Chosen for pMPO

p-value xd̅ σd xn̅d σnd z w

TPSA 1.5 × 10−37 51 28 87 39 0.53 0.33
TPSAa 6.6 × 10−35

HBA 2.2 × 10−28

HBD 2.6 × 10−25 1 1 2 1.4 0.42 0.27
MW 2.3 × 10−10 305 94 399 136 0.25 0.16
nAtoms 9.9 × 10−9

cLogDb 2.7 × 10−7 1.8 1.9 0.8 2.8 0.20 0.13
cLogPc 1.1 × 10−6

cLogPb 1.5 × 10−5

ALogP98 2.2 × 10−5

mbpKa 2.2 × 10−4 8.1 2.2 7.2 2.7 0.19 0.12
mapKa 1.6 × 10−2

fsp3 4.9 × 10−1

nArom 9.3 × 10−1

aTPSA with sulfur atom counted as polar atom. bCalculated by ACD
v15. cBiobyte cLogP v9. xd̅ and σd are the mean and standard deviation
for desired molecules, respectively, and xn̅d and σnd are that of
undesired molecules. z corresponds to z-score and w corresponds to
weight that determines the contribution of the descriptor to the final
pMPO score.

ACS Medicinal Chemistry Letters Letter

DOI: 10.1021/acsmedchemlett.5b00390
ACS Med. Chem. Lett. 2016, 7, 89−93

90

http://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.5b00390/suppl_file/ml5b00390_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.5b00390/suppl_file/ml5b00390_si_001.pdf
http://dx.doi.org/10.1021/acsmedchemlett.5b00390


In order to obtain the desirability function shown in Figure 1,
the probability distribution shown in green was multiplied by a
sigmoidal function that has an inflection point where the green
and red distribution functions intersect and a value of 5% at the
maximum of the distribution that represents the undesired
molecules (red distribution in Figure 1). The final pMPO score
can then be calculated using eq 1 with the desirability functions
obtained for each chosen descriptor by using the weights
coming from relative z-scores. In eq 1, wi corresponds to the
weight, pi corresponds to the probability distribution of the
desired molecules, and si corresponds to the sigmoidal function
(eq 2) used to minimize the score for the molecules that fall
into the undesired property space. In this equation, the
inflection point corresponds to 1/(1 + b), and c values >1
correspond to ramping up sigmoidal function, whereas 0 < c <
1 corresponds to ramping down sigmoidal function.

∑= wpspMPO
i

i i i
(1)

=
+ − − ̅

s
bc

1
1 x x1( ) (2)

The confusion plot and ROC curve obtained with eq 1 is
shown in Figure 2. The area under the ROC curve is 0.77. As

seen in Figure 2, the pMPO algorithm provided an
interpretable scoring function with a high level of accuracy
for the separation of desired molecules from undesired ones.
Results obtained from the pMPO method can be compared

to a model built with a Bayesian model to assess the level of
accuracy that is being sacrificed for interpretability (see SI for
details.) A Bayesian model built with the five descriptors chosen
by the pMPO algorithm produced a model with an AUC of
0.81 with the confusion plot shown in Figure 2. The Bayesian
model performed slightly better than the pMPO algorithm
presented here as measured by the AUCs. However, this is
partly because of the smoothing of distributions by the pMPO
algorithm and partly because the pMPO algorithm can give
lower scores for the molecules that are deemed to be in lower
probability area based on the distribution of the desired drugs
in the data set. The right-hand-side panel in Figure 1 shows the
Bayesian scores obtained for TPSA distribution; it can be seen
in this plot that the scores for consecutive bins in a Bayesian
model can produce a discrete pattern. Such pattern can expose
this type of scoring function to ambiguity around how to
optimize these scores. Despite the slight degradation in
performance, the pMPO algorithm and the Bayesian model
arrive at the same conclusions, and the pMPO algorithm offers
the advantage of better interpretability for rational design.
(Comparisons of the Bayesian and pMPO scoring functions for
all 5 descriptors are given in the SI.)
The set of five descriptors chosen by the pMPO algorithm

represents a set of uncorrelated descriptors that appear to have

distributions that differ from those of known oral drugs for
peripheral targets. One can assume that the reason for making
molecules that are outside the known oral drug space must be
due to the difficulty of crossing the blood−brain barrier. All of
these descriptors have also been highlighted in a recent
publication as to be more stringent descriptors for CNS drugs.6

Hence, one can rationalize the use of these descriptors for
defining a pMPO for CNS penetrant drugs. This pMPO score
only uses the probability distributions for CNS penetrant drugs
since there is no need to bias the molecules out of known drug
space for this purpose. The pMPO score for CNS (pMPOCNS)
is calculated with eq 3, and comparison of the pMPOCNS scores
against the CNS MPO score published by Wager et al. is shown
in Figure 3.

∑= wppMPO
i

i iCNS
(3)

As shown in Figure 3, there is a fairly good overall agreement
between the CNS MPO and pMPOCNS scores obtained for 299
CNS penetrant drugs. It is instructive to examine the examples
where the two scoring functions are in disagreement: low
pMPOCNS and high CNS MPO scores (green circled drugs) or
high pMPOCNS and low CNS MPO scores (red circled drugs).
Drugs in the green circle in Figure 3 are shown in Table 2.
Lunesta did not have a single property that is responsible for
the relatively lower score; it scored about 50% in all properties

Figure 2. Confusion plot and AUC curve for pMPO algorithm.
Confusion plot obtained from a Bayesian model is shown on the right.

Figure 3. Comparison of the pMPOCNS scores against the CNS MPO
score for 299 blood−brain penetrant drugs.

Table 2. Drugs with Low pMPOCNS and High CNS MPO
Scores
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that defined the pMPOCNS. Flucytosine, however, scored low
because of high HBD count, low MW and low cLogD.
Metformin12 had low scores in all parameters; hence, the
pMPO algorithm returned a fairly low score for this molecule.
It is important to note that all of these drugs were rewarded
twice for their low lipophilicities by the CNS MPO score.
Drugs within the red circled area (high pMPOCNS and low

CNS MPO scores) are shown in Table 3. Halofantrine13 and

pimozide were penalized for their high molecular weights and
cLogD values by the pMPO algorithm. Cinacalcet, however,
was penalized for its low TPSA value. All of these drugs,
however, had relatively low CNS MPO scores mostly because
they were penalized twice for their high lipophilicities; cLogP
and cLogD contribute equally to the final CNS MPO score.
Since these two variables are correlated, the double counting of
the same shortcomings could have been avoided by the use of
uncorrelated descriptors in the final scoring function. These
molecules were not penalized as much by the pMPOCNS
scoring function due to the relatively lower contribution of
the lipophilicity to the final scoring function (with a weight of
13%).
Composite or MPO scores designed to be predictors of one

end-point often correlate with other end-points in drug
discovery. One can imagine that MPO scores designed to
predict the “CNS drug-likeness” of molecules may correlate
with the measured Pgp ratios of the molecules as well due to
the high expression of Pgp at the blood−brain barrier. In order
to see the utility of the pMPOCNS in terms of predicting Pgp
liabilities of the molecules, 500 diverse molecules with
measured efflux ratio <3 in the parental cell lines were
randomly chosen from the Merck compound collection and
evaluated against it (see SI for details.) These compounds have
measured passive permeabilities between 10 and 85 nm/s and
measured effective Pgp efflux ratios (efflux ratio measured in rat
Pgp overexpressing cell lines divided by the efflux ratio
measured in the parental cell lines) between 0.5 and 110.
Analysis of measured Pgp ratios and pMPOCNS scores in Figure
4 shows that pMPOCNS score is a fairly good descriptor of the
Pgp liability of these molecules. The left panel in Figure 4

shows the binned effective Pgp ratios along the x-axis against
the compound count along the y-axis, and each bar corresponds
to the number of compounds with a pMPOCNS score ≤0.5 in
red and >0.5 in blue. The bar charts in the left panel show the
enrichment that could be obtained with pMPOCNS scores.
Although neither method was designed to be a predictor of
efflux ratio, head-to-head comparison between the pMPOCNS
scores and published CNS MPO scores (on the right panel:
compounds with CNS MPO score ≤4 in red and >4 in blue)
shows that pMPOCNS scores provide better enrichment. The
plot that compares the pMPOCNS and CNS MPO scores for
these molecules is given in the SI.
In conclusion, the inclusion of simple statistical tests for the

selection of descriptors allows multiparameter optimization
scores to be less prone to double-counting errors. In addition,
the use of probability distributions allows the number of
parameters that define the MPO boundaries to be reduced.
Combination of these two approaches in scoring molecules, as
in the pMPO approach presented here, allows for the
interpretability that medicinal chemists desire with very little
degradation in prediction performance relative to more
elaborate models. The python implementation provided in
the SI can be applied to generating pMPOs for a variety of end-
points such as in vivo PK, metabolism, or permeability.
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■ ABBREVIATIONS
TPSA, topological polar surface area (sulfur discarded); TPSAa,
topological polar surface area with sulfur included; MW,
molecular weight; HBD, hydrogen bond donor count; HBA,
hydrogen bond acceptor count; mbpKa, most basic pKa
(calculated by ACD v15); cLogD, cLogD at pH = 7.4
(calculated by ACD v15); cLogP, Biobyte cLogP; fsp3, fraction
sp3 atoms; nArom, aromatic ring count; nAtoms, heavy atom
count
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