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Genotype Imputation
with Millions of Reference Samples

Brian L. Browning1,2,* and Sharon R. Browning2

We present a genotype imputation method that scales to millions of reference samples. The imputation method, based on the Li and

Stephens model and implemented in Beagle v.4.1, is parallelized and memory efficient, making it well suited to multi-core computer

processors. It achieves fast, accurate, and memory-efficient genotype imputation by restricting the probability model to markers that

are genotyped in the target samples and by performing linear interpolation to impute ungenotyped variants. We compare Beagle

v.4.1 with Impute2 and Minimac3 by using 1000 Genomes Project data, UK10K Project data, and simulated data. All three methods

have similar accuracy but different memory requirements and different computation times. When imputing 10 Mb of sequence data

from 50,000 reference samples, Beagle’s throughput was more than 1003 greater than Impute2’s throughput on our computer servers.

When imputing 10 Mb of sequence data from 200,000 reference samples in VCF format, Minimac3 consumed 263 more memory per

computational thread and 153more CPU time than Beagle. We demonstrate that Beagle v.4.1 scales to much larger reference panels by

performing imputation from a simulated reference panel having 5 million samples and a mean marker density of one marker per four

base pairs.
Introduction

Genotype imputation methods use genotype data in a

panel of reference samples to infer ungenotyped variants

in target samples.1,2 With existing reference panels, it is

possible to accurately impute millions of genetic vari-

ants,3 and there are millions of additional low-frequency

variants that are potentially imputable with larger refer-

ence panels.

Genotype imputation has played a key role in the meta-

analysis of genome-wide association studies. Researchers

use genotype imputation to ensure that all samples in

the meta-analysis have genotype data for a shared set of

sequence variants. Large meta-analyses have been instru-

mental in identifying many genetic associations for

many phenotypes.3–5

The first published genome-wide imputation analysis

used a HapMap2 CEU reference panel of 60 individuals

who were genotyped for 2.1M markers.2,6,7 The advent of

large-scale sequencing made it possible to create reference

panels of sequenced individuals. The 1000 Genomes Proj-

ect produced a series of three reference panels of increasing

size from low-coverage sequencing (mean depth < 83),

culminating in a reference panel of 2,504 individuals

from26populations.8–10 Recently, theHaplotypeReference

Consortium generated a reference panel with 32,488 indi-

viduals by combining sequence data frommultiple cohorts,

most ofwhichwere sequencedat lowcoverage (Das andThe

Haplotype Reference Consortium, 2014, ASHG, confer-

ence). Increasing the size of reference panels is desirable

because the use of larger reference panels increases imputa-

tion accuracy, particularly for lower-frequency vari-

ants.11,12 Increasing the sequencing depth in reference
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samples is also desirable because low-coverage sequencing

has high error rates at very-low-frequency variants.13 Large

sequencing projects, such as the National Human Genome

Research Institute’s Centers for Common Disease Geno-

mics, will sequence hundreds of thousands of individuals

at high depth (see Web Resources). These projects will

make it possible to assemble reference panels of unprece-

dented size and accuracy that can be used to accurately

impute many additional low-frequency variants.

The computation time for genotype imputation in-

creases with the number of reference samples and with

the number of markers in the reference panel. The

increasing size of reference panels has motivated the devel-

opment of newmethods that reduce the computation time

for imputation, such as haplotype clustering11 and the use

of a genetically matched subset of reference samples to

impute a target sample.12,14

The most important advance in the computational effi-

ciency of genotype imputation came with the realization

that target individuals could be phased prior to imputa-

tion.12,15 With pre-phasing, alleles are imputed onto each

haplotype of a sample. Imputing alleles rather than geno-

types reduces the computational complexity of standard

imputation methods from quadratic to linear in the num-

ber of reference samples.15 Some decrease in accuracy is ex-

pected when using pre-phased target data because haplo-

type uncertainty is not modeled, but the decrease in

accuracy is generally very small and the computational

speed-up is very large.15

Parallelization can also reduce the computation time for

imputation. Modern computers have multiple indepen-

dent CPU cores that can execute instructions concurrently.

When performing genotype imputation, one can create a
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separate computational thread for each CPU core, run the

threads in parallel, and have each computational thread

impute a subset of the target haplotypes. Alternatively, ge-

notype imputation can be parallelized by imputing

distinct genomic regions concurrently. These two ap-

proaches to parallelization reduce computation time but

increase total memory requirements because each compu-

tational thread must allocate memory for storing results of

probability calculations. As we will see below, memory-effi-

cient algorithms are essential because memory constraints

can prevent full utilization of available CPU cores.

In this paper we present a genotype imputation method

that is computationally fast, multi-threaded, and highly

memory efficient. We show that this imputation method

scales to reference panels with millions of samples and

that its imputation accuracy matches the accuracy of

Impute2 andMinimac3. Our imputationmethod performs

imputation into phased haplotypes using a Li and

Stephens haplotype frequency model16 with a highly

parsimonious model state space. This reduced state space

substantially reduces the number of numerical values

that must be calculated and stored. The imputation

method is implemented in Beagle v.4.1.
Material and Methods

Imputation Method
Our imputation method assumes that the input reference panel

and imputation target are phased. This assumption simplifies

the genotype imputation problem to one of imputing missing al-

leles on a haplotype, and it permits computation time to scale lin-

early with the number of reference samples.15

Our imputationmethod has four key features. (1) It restricts hid-

den Markov model (HMM) calculations to clusters of markers that

are genotyped in the target data, which reduces memory require-

ments and computation time. (2) It uses a computationally effi-

cient linear interpolation algorithm to impute ungenotyped

markers. (3) It uses multi-threaded parallelization to reduce

computation time on multi-core computers. (4) It uses memory-

optimized algorithms and data representations to achieve high

memory efficiency. We describe each of these features in detail

below.

Hidden Markov Model
Our HMM uses a Li and Stephens model16 that is similar to the

models used in other imputation programs.2,17 We assume that

the set of genetic markers genotyped in the target samples is a sub-

set of themarkers in the reference panel.We shall refer to the set of

markers that are genotyped in the target samples as the ‘‘geno-

typed markers.’’ The remaining genetic markers that are initially

present only in the reference panel are the ‘‘imputed markers.’’

The markers present in the reference panel are the ‘‘reference

markers.’’ The set of reference markers is equal to the union of

the genotyped and imputed markers.

We first restrict the reference data to the genotyped markers.

Because the reference and the target data are phased genotypes,

we can combinemultiple consecutive genotypedmarkers to create

a single aggregate genotypedmarker whose alleles are the observed

allele sequences at the constituent markers. We work through the
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genotyped markers in chromosome order and combine sets of

consecutive genotyped markers that are contained within a

0.005 cM interval into a single aggregate genotyped marker. In

the Results, we investigate the sensitivity of imputation accuracy

to the length of the interval used to define aggregate genotyped

markers, and we show that aggregating markers within a 0.005

cM interval has little effect on imputation accuracy.

Let H be the set of reference haplotypes, and let M be the list of

aggregate genotyped markers in chromosome order. Let jHj and
jMj denote the number of reference haplotypes and the number

of aggregate genotyped markers. We index H and we index M

with the positive integers 1, 2,., jHj and 1, 2,., jMj, respectively.
A HMM is defined by its state space, initial state probabilities,

transition probabilities, and emission probabilities.18 We define

these HMM components next.

As others have done,2,16,17 we consider each target haplotype to

be a mosaic of reference haplotypes. If the target haplotype is

similar to reference haplotype h ˛ H in the region around aggre-

gate genotyped marker m ˛ M, then we could choose h to be the

reference haplotype in the mosaic at aggregate genotyped marker

m. Our HMM state space is the set of all ordered pairs (m, h) whose

first element is an aggregate genotyped marker and whose second

element is a reference haplotype. When modeling a target haplo-

type, a state (m, h) has high probability if the target haplotype is

well represented by a mosaic of reference haplotypes that has

reference haplotype h at marker m. We denote the set of model

states at marker m ˛ M as Hm ¼ {(m,h) : h ˛ H}.

An important feature of ourmodel is the fact that our state space

is defined in terms of the aggregate genotyped markers M, rather

than in terms of the markers in the reference panel. Because the

number of aggregate genotypedmarkers genotyped in the imputa-

tion target is typically a small fraction of the number of reference

markers, performing HMM forward-backward calculations using

only the aggregate genotyped markers is much faster than per-

forming HMM forward-backward calculations using all reference

markers. After completing our description of the HMM, we will

show how to impute non-genotyped variants in the target data us-

ing linear interpolation and the estimated HMM state

probabilities.

We assign an initial probability of 1=jH j to each state in H1.

Let the random variable Sm ˛Hm be a state of HMMmodel. As in

the Impute method,2 we define the transition probabilities to be

PðSmþ1 ¼ ðmþ 1;h0Þ j Sm ¼ ðm;hÞÞ ¼ ð1� tmÞ þ tm= jH j if h ¼ h0

PðSmþ1 ¼ ðmþ 1;h0Þ j Sm ¼ ðm;hÞÞ ¼ tm= jH j if hsh0

where

tm ¼ 1� e�rm= jH j

is the probability of transitioning to a random state at the next

marker, rm ¼ 4Nerm, Ne is a user-specified effective population

size, and rm is the genetic map distance between aggregate geno-

typed markers m and m þ 1 from a user-specified genetic map.

We define the position of an aggregate genotyped marker to be

the mean of the first and last genotyped marker positions in the

aggregate marker. We used our software’s default effective popula-

tion size parameter, which is Ne ¼ 106, for the analyses in this

study. In the Results we investigate the sensitivity of imputation

accuracy to the value of the Ne parameter, and we show that the

default effective population size, Ne ¼ 106, provides good accuracy

for large, outbred human populations.
ican Journal of Human Genetics 98, 116–126, January 7, 2016 117



We define emission probabilities in terms of a user-specified

allele error rate ε. Suppose that an aggregate genotyped marker

m ˛ M consists of l constituent genotyped markers and has k

distinct allele sequences in the reference and target data. A state

(m, h) emits the allele sequence present on haplotype h with prob-

ability max(1� lε, 0.5), and it emits each of the other (k� 1) segre-

gating allele sequences with probability min(lε, 0.5)/(k � 1). This

emission model includes the haploid version of the Mach17 emis-

sion model as a special case (when l ¼ 1 and k ¼ 2). We used our

software’s default allele error rate, which is ε ¼ 0.0001, for the an-

alyses in this study. In the Results we investigate the sensitivity of

imputation accuracy to the value of the allele error rate parameter,

and we show that the default allele error rate, ε ¼ 0.0001, provides

good accuracy for real and simulated data.

The state space, initial probabilities, transmission probabili-

ties, and emission probabilities described above define our

HMM. We use the HMM forward-backward algorithm18 to esti-

mate the HMM state probabilities P(Sm ¼ h) conditional on

the HMM model and the observed allele sequence on each target

haplotype.

Imputation of Ungenotyped Variants
The motivation for using linear interpolation to impute ungeno-

typed variants is obtained from considering an HMM in which

there is a HMM state for every reference marker. In this HMM,

there are no observed data between genotyped markers in the

imputation target. The only information available for determining

HMM state probabilities between genotyped markers comes from

state probabilities at the bounding genotyped markers and from

the genetic map. If one considers the genetic map positions be-

tween genotyped markers as an interval of real numbers, then as

one moves from a genotyped marker, a, to the next genotyped

marker, b, the HMM state probabilities will change smoothly

from P(Sa ¼ h) to P(Sb ¼ h). Over short genetic distances, this

change in state probabilities can be approximated by a straight

line.

Let g(x) be the genetic map position of marker x. If x is an

imputed marker that is between the aggregate genotyped markers

m andm þ 1, we can use linear interpolation to estimate the prob-

ability, pa, that the target haplotype carries allele a at marker x as

pa ¼
X
h˛H

h½x�¼a

ðlm;xPðSm ¼ ðm;hÞÞ þ ð1� lm;xÞPðSmþ1 ¼ ðmþ 1;hÞÞÞ

(Equation 1)

where

lm;x ¼ gðmþ 1Þ � gðxÞ
gðmþ 1Þ � gðmÞ;

h[x] is the allele carried by reference haplotype h at marker x, and

the sum is over all reference haplotypes that carry allele a at

marker x. We set lm,x ¼ 1 if the marker x occurs within aggregate

genotyped marker m. We use m ¼ 1 and set lm,x ¼ 1 if the marker

x occurs before the first aggregate genotyped marker. We use m ¼
jMj and set lm,x ¼ 0 if the marker x occurs after the last aggregate

genotyped marker.

There are two computational shortcuts that we can use to reduce

the computational time required to estimate the allele probabili-

ties in Equation 1. The first computational shortcut exploits the

fact that the calculation in the summand of Equation 1 is the

same for all reference haplotypes that have the same alleles be-
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tween aggregate genotyped markers m and m þ 1. Let Am be the

partition of H such that reference haplotypes are in the same sub-

set of the partition if and only if they have the same alleles at all

referencemarkers between the first genotypedmarker in aggregate

genotyped marker m (inclusive) and the last genotyped marker in

aggregate genotyped marker m þ 1 (inclusive). Then the probabil-

ity that a target haplotype has allele a at imputedmarker x in Equa-

tion 1 becomes

pa ¼
X
A˛Am

X
h˛A

h½x�¼a

lm;xPðSm ¼ ðm;hÞÞ þ ð1� lm;xÞPðSmþ1 ¼ ðmþ 1;hÞÞ

¼
X
A˛Am

A½x�¼a

 
lm;x

X
h˛A

PðSm¼ðm;hÞÞþð1� lm;xÞ
X
h˛A

PðSmþ1¼ðmþ 1;hÞÞ
!

(Equation 2)

where A[x] is the allele at marker x that is carried by all refer-

ence haplotypes in the set A. In this calculation, the lm,x and

the distinct reference allele sequence Am can be calculated

once and used for imputing missing alleles on all target haplo-

types. The inner sums
P

h˛APðSm ¼ ðm;hÞÞ can be computed

when state probabilities are calculated during the HMM for-

ward-backward algorithm. Consequently, when estimating

allele probabilities at an imputed marker x that is between

two genotyped markers, we need only sum over the number

of distinct allele sequences in the reference panel that exist be-

tween aggregate genotyped markers m and m þ 1 (the outer

sum in Equation 2). This reduces computation time because

the number of distinct reference allele sequences between two

aggregate genotyped markers is typically much smaller than

the total number of reference haplotypes when the reference

panel is large.

The second computational shortcut is to omit terms from the

outer sum in Equation 2 when the inner sums are sufficiently

small. Let jAmj be the number of subsets in the partition Am of

H. If A ˛ Am, and if

X
h˛A

PðSk ¼ ðk;hÞÞ <
1

2 jAm j

for k ¼ m and for k ¼ m þ 1, then we ignore the term correspond-

ing to A in our calculation of the outer sum in Equation 2.
Computational Complexity
Because each target sample is imputed independently, computa-

tion time scales linearly in the number of target samples.

Our imputation method groups together sets of consecutive

genotyped markers that are within a fixed genetic distance.

Because the number of aggregate genotyped markers in the target

data increases more slowly than the number of genotyped

markers, computation time increases sublinearly in the number

of genotyped markers.

Computation complexity is linear in the number of reference

samples and linear in the number of reference markers. Doubling

the number of reference samples typically also increases the num-

ber of non-monomorphic reference markers and thus results in a

greater than 2-fold increase in computation time. However, if

the number of potential reference markers is bounded, as is the

case if insertion polymorphisms are ignored, then the growth in

computation time will be asymptotically linear in the number of

reference samples.
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Parallelization
Our method parallelizes imputation by sample. Each computa-

tional thread takes one sample at a time and imputes the missing

alleles on the sample’s two haplotypes. The input genotype data

for the reference panel and target samples are shared between all

computational threads. This data sharing reduces the memory

required by each computational thread.

Memory-Efficient Computation
We limit memory use by using marker windows, by compactly

storing the reference haplotypes and imputed allele probabilities,

and by using a memory-efficient implementation of the HMM for-

ward-backward algorithm.

Marker Windows
Our method uses sliding, overlapping windows of markers with a

user-specified number of reference markers in each window and in

the overlap between adjacent windows. This permits an entire

chromosome or genome to be analyzed in a single analysis, with

only a single window of data stored in memory at any time. In

our experience, the loss in imputation accuracy due to using

sliding windows is small if the window is at least 5 cM in length

and the overlap is at least 0.5 cM in length. The software automat-

ically merges imputed data from adjacent windows.

Compact Representation of Reference Haplotypes
We employ two strategies to compress reference panel genotypes,

depending on the minor allele frequency of the reference marker.

For diallelic markers with minor allele frequency% 0.5%, we store

the index of the haplotypes carrying the minor allele as a sorted

list.We look up the allele on a haplotypewith index h by searching

the list for h using a binary search. If the binary search does not

find h in the list, we know that haplotype h carries the major allele

at the marker. This compression strategy extends in a natural way

to multi-allelic variants.

We divide the remaining variants (minor allele frequency >

0.5%) into sets of consecutive markers. The sets are chosen so

that the number of distinct reference allele sequences in each set

of markers is %256, which allows the index of an allele sequence

to be stored in one byte of memory. For each set of markers, we

store a list of distinct allele sequences and we store one array of

length jHj that records the index of the allele sequence carried

by each reference haplotype. This approach reduces memory re-

quirements because the number of distinct allele sequences in

the reference panel is typicallymuch less than the number of refer-

ence haplotypes when the reference panel is large.

Compact Representation of Imputed Allele

Probabilities
All HMM probability calculations are performed with 4-byte

floating point arithmetic. After an allele probability is estimated,

it is compressed and stored as a 1 byte value.We divide the interval

of probabilities (0 to 1) into 256 disjoint subintervals of equal

length. We store the 1 byte index of the subinterval that contains

the allele probability. When the allele probability is retrieved, the

mid-point of the subinterval is returned. Each subinterval has

length 1/256, so the maximal error in a posterior allele probability

that is introduced by this compression is 1/512 z 0.00195.

The posterior imputed allele probabilities sum to 1 at a variant. If

a variant has n alleles, we store allele probabilities for only the first

n � 1 alleles. When the last allele probability is needed, we
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compute the last allele probability as 1 minus the sum of the

n � 1 stored allele probabilities.
Memory-Efficient Probability Calculations
Each thread performs imputation, somemorymust be allocated to

store the HMM forward-backward values18 for each thread. Storing

forward and backward values can consume large amounts ofmem-

ory because there is a forward value and a backward value for each

model state. We use three strategies to reduce memory require-

ments when calculating allele probabilities.

First, as described above, we perform the HMM forward-back-

ward algorithm18 using only aggregate genotyped markers.

Markers that are unique to the reference panel are subsequently

imputed via linear interpolation. This reduces memory use

because the number of aggregate genotyped markers in the target

data is typically at least an order of magnitude smaller than the

number of reference markers.

Second, we employ a check-point algorithm19,20 when perform-

ing the forward-backward algorithm calculations. Forward values

are stored for only a sparse subset of the genotyped markers (the

checkpoints). Forward values for other genotyped markers are re-

calculated from the nearest preceding checkpoint when needed.

The use of checkpoints increases running time less than 2-fold

and reduces memory requirements for the HMM forward-back-

ward algorithm fromOðjM j Þ toOð ffiffiffiffiffiffiffiffiffijM jp Þ, where jMj is the number

of aggregate genotyped markers.

Third, we store the HMM backward algorithm values18 for only

one marker at a time. When the backward algorithm moves from

onemarker to theprecedingmarker,weupdate thebackwardvalues.
Binary Reference Panel
Beagle v.4.1 uses a standard file format called Variant Call Format

(VCF).21 If the reference panel has millions of samples and is

stored as a VCF file, the computation time for imputation can be

dominated by the time required to read and parse the reference ge-

notype data. One solution to this computational bottleneck is to

store the reference genotype data in a binary format that is similar

to the format used internally by the imputation program.

We created an open-source software program called ‘‘bref’’ (pro-

nounced ‘‘Bee Ref’’) that creates a binary reference file from a VCF

reference file or a VCF reference file from a binary reference file,

and we enhanced the Beagle software so that it can accept binary

reference files as input. Use of a binary reference file can reduce the

computation time required for Beagle to read in genotype data for

millions of reference samples by more than an order of magnitude

(data not shown).

VCF reference files and binary reference files produce identical

imputed genotypes, but the binary reference file is smaller, and

the compression ratio increaseswith the size of the reference panel.

For simulated reference panels with 50K, 100K, and 200K samples,

the size of the gzip-compressed VCF file is respectively 123, 143,

and 173 greater than the size of the binary reference file.

In this study, we use both VCF and binary reference files when

comparing Beagle to other imputation methods, and we use a bi-

nary reference file when investigating the performance of our

methodson immense referencepanelswithmillionsof individuals.
Data
We compare methods by using the 1000 Genomes Project10 phase

3 genotype data for chromosome 20, UK10K Project genotype data

for chromosome 20, and simulated sequence data.
ican Journal of Human Genetics 98, 116–126, January 7, 2016 119



The 1000 Genomes Project phase 3 data have 2,504 individuals

sampled from 26 populations.10 We randomly selected 2 individ-

uals from each population to include in the imputation target

(52 individuals total). The remaining 2,452 individuals were

used as a reference panel. We restricted the 1000 Genomes Project

data to diallelic SNVs having at least two copies of the minor allele

in the reference panel. After filtering, there were 957,209 reference

markers on chromosome 20.

The 1000 Genomes Project samples have been genotyped with

the Illumina Omni2.5 array, and the phased 1000 Genomes

phase 3 data includes the Omni2.5 array genotypes. We masked

genotypes at all markers not on the Omni2.5 array in the 52

target individuals. We then imputed the masked genotypes and

compared the masked and imputed minor-allele dose. After re-

stricting the Omni2.5 array markers to be a subset of the filtered

reference markers, there were 54,790 Omni2.5 markers on chro-

mosome 20.

The UK10K sequence data consist of low-coverage sequence

data on 1,927 individuals from the Avon Longitudinal Study of

Parents and Children (ALSPAC) and 1,854 individuals from the

TwinsUK cohort.22 The ALSPAC individuals are from the Bristol

area, and the TwinsUK individuals are from throughout the UK.

We downloaded the genotype data from the European

Genome-phenome Archive (EGA) in April 2014; the data are

the 20131101 release. We used only diallelic single-nucleotide

variants from chromosome 20, excluded variants that were

monomorphic in either of the two cohorts, excluded variants

with a Hardy-Weinberg p value < 10�6 in either of the two co-

horts, and excluded variants with an average read depth of less

than 2 per individual. After filtering, there were 406,878 reference

markers on chromosome 20. We used the combined ALSPAC and

TwinsUK cohorts as a reference panel (n ¼ 3,781) and imputed

chromosome 20 genotypes into the 503 designated European

samples from the 1000 Genomes Project phase 3 data.10 We

masked genotypes at all markers not on the Omni2.5 array in

the 503 target individuals. We then imputed the masked geno-

types and compared the masked and imputed minor-allele dose.

After restricting the Omni2.5 array markers to be a subset of

the filtered reference markers, there were 41,555 Omni2.5

markers on chromosome 20.

We used the MaCS program23 to simulate 10 Mb of sequence

data for 201,000 individuals from a Northwest European popula-

tion. The details of the demographic model have been described

previously.13 All simulated variants are diallelic. We selected

1,000 of the individuals to be the target data, and we created

three reference panels composed of 50,000, 100,000, and

200,000 of the remaining individuals. From each reference panel,

we excluded all variants with fewer than 2 copies of the minor

allele in the reference panel. After this filtering, the 50,000 mem-

ber reference panel had 382,425 markers and a mean marker den-

sity of 1 variant per 26 base pairs, the 100,000 member reference

panel had 650,561 markers and a mean marker density of 1

variant per 15 base pairs, and the 200,000 member reference

panel had 1,059,310 markers and a mean marker density of 1

variant per 9 base pairs.

A 1M SNP array has a mean marker density of approximately

3,333 markers per 10 Mb, so we selected a random set of 3,333

markers with minor allele frequency R 5% to represent the

markers in the 10 Mb region on 1M SNP array. We masked geno-

types at all markers not on this SNP array in the 1,000 target indi-

viduals, imputed the masked genotypes, and compared the

masked and imputed minor-allele dose.
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We also selected sets of 1,667; 3,333; 6,666; and 13,332 refer-

ence markers with minor allele frequency R 5% such that each

set is a subset of the next largest set. These sets represent the

markers in the 10 Mb region on SNP arrays with 0.5, 1, 2, and 4

million genome-wide SNP markers, and these marker sets are

used to evaluate the scalability of our method as the number of

genotypedmarkers increases. For each SNP array, wemasked geno-

types at all markers not on the SNP array in the 1,000 target indi-

viduals, imputed the masked genotypes, and compared the

masked and imputed minor-allele dose.

We also created a series of large reference panels with 1 million

to 5 million individuals. The computational cost of simulating

more than 200K reference samples with MaCs was prohibitive,

so we took the 200K simulated reference samples, and we dupli-

cated each haplotype 5, 10, 15, 20, and 25 times to create reference

panels with 1, 2, 3, 4, and 5 million individuals. We increased the

marker density and haplotype diversity by including all variants

with at least one copy of the minor allele in the 200K reference

samples, resulting in 2,328,578 variants and a mean marker den-

sity of 1 variant per 4.3 base pairs in each large reference panel.

We used these large reference panels to explore the computational

performance of our imputationmethod when imputing frommil-

lions of reference samples.

Comparison of Imputation Methods
We compared our imputation method with Impute212,14 v.2.3.2

andMinimac315,24 v.1.0.12 with respect tomemory use, computa-

tion time, and imputation accuracy. We used default parameters

for each program, except as otherwise noted. The methods for

Minimac3 were unpublished at the time of this study.

We compared our imputation method with the unpublished

Minimac3method rather than the publishedMinimac224 method

because Minimac3 substantially outperformed Minimac2 in our

tests. Minimac2 required more memory than the available 128

GB of memory on our computer server to impute a 10 Mb region

from 50,000 reference samples, but Minimac3 could impute from

200,000 reference samples in this region. In addition, the Mini-

mac3 computation time was at least a factor of 3 less than theMin-

imac2 computation time in our tests.

We do not compare Beagle v.4.1 with Beagle v.4.011 because

version 4.0 performs a model-building step that scales quadrati-

cally in the number of reference samples, and consequently does

not scale to the large sample sizes considered in this study.

Weanalyzed the1000Genomes Project chromosome20data in a

single analysiswith eachmethod,which required setting Impute2’s

‘‘allow_large_regions’’ option. For the simulated data with 50K

reference samples, it was necessary to break up the 10 Mb region

when performing imputationwith Impute2. For the Impute2 anal-

ysis,wedivided the10Mbregion into six1.67Mbsegments andap-

pended a 250 kb buffer to each end of each segment, except for the

beginning of the first segment and the end of the last segment.We

imputed genotypes in each region in a separate analysis. After

imputation,we concatenated the imputeddata for the six segments

(excluding the 250 kb buffers) and assessed imputation accuracy.

Wedidnotbreakup the10Mbregionwhenperforming imputation

with Beagle v.4.1 or Minimac3.

Impute2 has the ability to use a smaller, custom reference panel

when imputing a target haplotype. The smaller reference panel is

selected to be genetically similar to the target haplotype, and its

size is specified by the user with Impute2’s ‘‘k_hap’’ param-

eter.12,14 This permits the user to trade reduced imputation accu-

racy for reduced computation time. In our primary analyses, we
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set the Impute2 k_hap parameter equal to the total number of

reference haplotypes to ensure that Impute2 achieves its highest

possible accuracy. In the Results and in the Supplemental Data,

we investigate the effect of reducing the k_hap parameter on Im-

pute2’s memory use, computation time, and imputation accuracy

when imputing from 50K reference samples.

Beagle v.4.1 and Impute2 require a user-specified genetic map.

We used the HapMap2 genetic map7,25 for analyses with real

data, and we used the true geneticmap for analyses with simulated

data.

Beagle v.4.1 and Minimac3 can accept pre-processed reference

files that reduce computation time (see Binary Reference Panel

above). We performed imputation using both VCF and pre-pro-

cessed reference panels for these two methods. Timing results for

analyses using pre-processed reference panels do not include the

computation time required to create the pre-processed reference

panel.

We evaluated accuracy using the squared correlation (r2) be-

tween the masked minor-allele dose and the imputed minor-allele

dose.17 The true minor-allele dose is the number of copies of the

minor allele carried by an individual. The imputed allele dose is

the sum of the posterior allele probabilities for the two haplotypes

of an individual. Imputation accuracy varies with minor allele fre-

quency, and there is little information to estimate squared correla-

tion for single markers when minor allele counts are low, so we

binned genotypes according to the minor allele count of the cor-

responding marker, and we calculated r2 for the genotypes in

each minor allele count bin.

Each imputation analysis was run on a 12-core 2.6 GHz com-

puter with Intel Xeon E5-2630v2 processors and 128 GB of mem-

ory. We report the wall clock time and the CPU time for each

imputation analysis. Computation time was measured using the

unix time command, which returns a real, a system, and a user

time. The real time is the wall clock time, which is the length of

time the program was running. The CPU time is the sum of the

system and user time. For multi-threaded computer jobs, the

CPU time includes the sum of the CPU time for each computa-

tional thread, so that it represents the total CPU resources

consumed by the program.

Using multiple computational threads within one analysis can

be more memory efficient than running multiple parallel analyses

because data can be shared between threads. However, there is

some loss in computational efficiency. In particular, when allow-

ing a program to use n computational threads, the wall clock

time will be greater than the CPU time divided by n because

some portions of a program (e.g., reading and writing from disc)

cannot be multi-threaded.

Because Beagle is designed for multi-threaded analysis, we used

12 computational threads for all Beagle analyses in this study.

Impute2 is limited to single-threaded analysis. All analyses with

Minimac3 used one computational thread. Minimac3 has an op-

tion that permits multi-threaded analysis, but using Minimac3

with one computational thread provided better overall computa-

tional performance on our computer servers. In tests using the

simulated 50K reference panel, increasing the number of Mini-

mac3 threads from 1 to 12 increased CPU time by 490% but

reduced memory per thread and wall clock time by only 10%

and 25%, respectively.

We used the Oracle Java HotSpot virtual machine when running

Beagle. The maximal memory used by a computer job was ob-

tained with the Oracle Grid Engine ‘‘qacct -j’’ command. The

Oracle Java HotSpot virtual machine will use more memory than
The Amer
is required if additional memory is available, so we used the Java

virtual machine’s ‘‘–Xmx’’ parameter to restrict the java heap

size. By performing a grid search over a range of heap sizes, we

determined the minimal amount of memory required for Beagle

to analyze each dataset.
Results

Comparison of Methods

We compared Beagle v.4.1, Impute2, and Minimac3 when

imputing genotypes from the 1000 Genomes Project phase

3 reference panel, the UK10K project reference panel, and

the 50K simulated reference samples. We also compared

Beagle v.4.1 and Minimac3 when imputing genotypes

from the 100K and 200K simulated reference samples.

The 50K member reference panel was the largest reference

panel that we were able to analyze with Impute2 on our

computer servers.

Beagle v.4.1, Impute2, and Minimac3 are expected to

have similar accuracy because they are based on the same

haplotype frequency model,2,16,17,24 and we observed

similar accuracy for all methods with one understandable

exception (Figure 1). Impute2 had lower accuracy at the

lowest frequency variants when imputing from 50,000

reference samples. For this Impute2 analysis, it was neces-

sary to divide the 10 Mb of simulated data into six overlap-

ping segments as described in Material and Methods

because of Impute2’s memory requirements. This partition

of the data results in loss of information from phased geno-

types that are outside the window being analyzed. These

accuracy results for these data do not necessarily reflect

the imputation accuracy that might be obtained from

other reference or target panels because imputation accu-

racy depends on the specific populations, genotyped

markers, genotype error rate, and phasing error rate in

the reference and target data.

For the 1000 Genomes reference panel and the UK10K

reference panel, all three methods could impute the chro-

mosome 20 markers in a single analysis (Tables S1 and S2).

Imputation analyses using larger simulated reference

panels reveal differences in computation time and mem-

ory requirements that impose different limits on the num-

ber of reference samples that can be analyzed with each

method (Tables S3–S5).

The Impute2 k_hap parameter allows a user to reduce

computation time by selecting a smaller, custom reference

panel for imputing each target haplotype. Imputation ac-

curacy results for Impute2 in Figure 1 use all reference

haplotypes (i.e., k_hap ¼ 100,000 for the 50K reference

samples). For the 50K reference samples, we also ran

Impute2 using custom reference panels of 10% (k_hap ¼
10,000), 3% (k_hap ¼ 3,000), and 1% (k_hap ¼ 1,000) of

the reference haplotypes (Figure S1 and Table S3). Using

k_hap ¼ 10,000 reduced Impute2’s computation time by

a factor of 6.2 with only a negligible loss in imputation ac-

curacy. Using k_hap ¼ 3,000 reduced Impute2’s computa-

tion time by an additional 24%, but resulted in a small
ican Journal of Human Genetics 98, 116–126, January 7, 2016 121



Figure 1. Genotype Imputation Accu-
racy for Beagle v.4.1, Minimac3, and
Impute2
Genotype imputation accuracy when
imputing genotypes from reference panels
of increasing size. The 1000 Genomes
Project data for chromosome 20 were
divided into a reference panel with 2,452
sequenced individuals and an imputation
target with 52 individuals genotyped on
the Illumina Omni2.5 array and having
all other sequenced variants masked. The
UK10K Project data for chromosome 20
was used to impute the 503 designated Eu-
ropean samples from the 1000 Genomes
Project. The target samples were geno-
typed on the Illumina Omni2.5 array and
had all other sequenced variants masked.
The three largest reference panels have 10
Mb of simulated sequence data for
50,000, 100,000, and 200,000 individuals.
For each simulated reference panel, the
imputation target was 1,000 simulated in-
dividuals genotyped for 3,333 markers in
the 10 Mb region, corresponding to a
genome-wide array with 1M SNPs.
Imputed genotypes were binned according
to the minor allele count of the marker in
the reference panel. The squared correla-
tion between the imputed minor-allele
dose and the true minor-allele dosage is re-
ported for the genotypes in each minor
allele count bin. The horizontal axis in
each panel is on a log scale. Impute2 was
not run with the 100,000 and 200,000
member reference panels because of mem-
ory constraints. When running Impute2
with 50,000 reference samples, the 10 Mb
region was broken into six 1.67 Mb win-
dows with a 250 kb buffer appended to
the end of each window in order to
avoid exceeding the available computer
memory.
decrease in imputation accuracy (Figure S1 and Table S3).

Varying the k_hap parameter did not reduce Impute2’s

memory requirements. When Impute2’s k_hap parameter

was set to avoid loss of accuracy (k_hap ¼ 10,000), Im-

pute2’s wall clock computation time was 1343 greater

than Beagle’s wall clock time. Because memory constraints

permit only one Impute2 analysis to be run a time on our

computer servers, Beagle’s imputation throughput was

1343 greater than Impute2’s throughput (Table S3).

When imputing from 50K, 100K, and 200K reference

samples, we imputed the 10 Mb region in a single analysis

with Beagle v.4.1 and Minimac3. For these analyses, we set

Beagle’s window parameter so that the entire 10 Mb simu-

lated region was included in a single marker window.

The performance of Beagle v.4.1 and Minimac3 using a

VCF reference panel is compared in Figure 2 and Tables

S3–S5. For the imputation from the 50K, 100K, and 200K

reference samples, Minimac3 required 113–263 more

memory per computational thread than Beagle, 473–
122 The American Journal of Human Genetics 98, 116–126, January 7
913 more wall clock time than Beagle, and 83–153

more CPU time than Beagle. For each of these measures,

the performance gap between the two methods increased

as the number of reference samples increased (Figure 2).

If a pre-processed reference panel exists, and if one does

not wish to combine the reference samples with any addi-

tional in-house or external reference data, then imputation

can be performed directly from the pre-processed reference

panel. The performance of Beagle v.4.1 and Minimac3 us-

ing pre-processed reference panels in bref format (Beagle

v.4.1) and m3vcf format (Minimac3) is compared in

Figure 3 and Tables S3–S5. For imputation from the 50K,

100K, and 200K reference samples, Minimac3 required

53–193 more memory per computational thread than

Beagle, 93–143 more wall clock time than Beagle, and

1.43–1.93 more CPU time than Beagle. For each of these

measures, the performance gap between the two methods

increased as the number of reference samples increased

(Figure 3).
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Figure 2. Memory Use and Computation Time for Beagle v.4.1
and Minimac3 for VCF Reference Data
Three reference panels in VCF format with 50,000, 100,000,
and 200,000 individuals and 10 Mb of simulated sequence
data were used to impute genotypes in 1,000 individuals geno-
typed on a SNP array with 3,333 markers in the 10 Mb region,
corresponding to a genome-wide array with 1M SNPs. Beagle
v.4.1 was run with 12 computational threads, and Minimac3
was run with one computational thread. CPU time includes
the sum of the computation time consumed by each computa-
tional thread.

Figure 3. Memory Use and Computation Time for Beagle v.4.1
and Minimac3 for Pre-processed Reference Data
Three reference panels with 50,000, 100,000, and 200,000 individ-
uals and 10 Mb of simulated sequence data were used to impute
genotypes in 1,000 individuals genotyped on a SNP array with
3,333 markers in the 10 Mb region, corresponding to a genome-
wide array with 1M SNPs. Reference data are in bref format
(Beagle) and m3vcf format (Minimac3). Beagle v.4.1 was run
with 12 computational threads, and Minimac3 was run with 1
computational thread. CPU time includes the sum of the compu-
tation time consumed by each computational thread.
Scaling Properties of Beagle v.4.1

Imputation accuracy for a fixed low minor allele count im-

proves slightly as the number of reference samples in-

creases (Figure 1). Computation time increases suprali-

nearly with the number of reference samples when the

number of imputed markers also increases with the num-

ber of reference haplotypes (Tables S3–S5).

Computation time is relatively insensitive to the num-

ber of genotyped markers (Figure S2). Increasing the num-

ber of genotyped markers by a factor of 8 (from 500K to

4M) resulted in less than a 2-fold increase in the wall clock

time and provided a modest increase in imputation

accuracy.

Sensitivity of Beagle v.4.1 to Parameter Values

We used the UK10K reference panel to investigate the

sensitivity of memory use, wall clock time, and imputation

accuracy to the values of the ‘‘ne,’’ ‘‘err,’’ and ‘‘cluster’’ anal-

ysis parameters which set the effective population size, the

allele error rate, and the cM length of the interval used to

define aggregate genotyped markers. The default values

of these parameters are ne ¼ 106, err ¼ 10�4, and cluster

¼ 0.005.

The optimal value for the ne parameter will depend on

the historical effective population size, which can be esti-

mated from census or genetic data;26 however, imputation

accuracy is relatively insensitive to the ne parameter, and

parameter values in the 104–106 range give good accuracy

for these data (Figure S3). Imputation accuracy is also rela-

tively insensitive to the err parameter, and parameter

values in the 10�5–10�3 range give good accuracy for these

data (Figure S4). The cluster parameter is a tuning param-

eter that permits accuracy to be traded for computation

time. The default cluster parameter value does not appear

to result in any significant loss in imputation accuracy (Fig-

ures 1 and S5).
The Amer
Imputation from Millions of Reference Samples

We investigated Beagle’s computational performance

when imputing from reference panels with one million

to five million samples. For the imputation from these

largest reference panels, we used Beagle’s built-in window-

ing capability, with a window size of 1,300,000 reference

markers and an overlap of 120,000 reference markers be-

tween adjacent marker windows. This corresponds to a

window size of approximately 5 Mb and an overlap of

approximately 500 kb between consecutive windows.

When there are millions of reference samples, use of a bi-

nary reference file can reduce wall clock computation time

by >80% (data not shown). With a binary reference file

and a mean reference marker density of 1 SNV per 4 base

pairs, wall clock computation time was 170 min

(¼2.8 hr) when imputing 10 Mb of sequence data from

1M reference samples into 1,000 target samples (Figure 4).

When using 12 computational threads, the imputation

analysis required 19.6 GB of memory. For each additional

1M reference samples, total memory requirements increase

by approximately 15 GB and wall clock time increases by

approximately 135 min when using 12 computational

threads (Figure 4). There is some variability in the rate of

increase in memory requirements with each additional

1M reference samples because memory use is dynamically

controlled by the Java virtual machine.

At the time of this study, servers with 36 cores and 60 GB

of memory could be rented on the internet for less than

USD$0.50 per hour. If the cost to run our 12-core computer

servers were $0.50 per hour, then the imputation cost per

sample for a 3,000 Mb genome when imputing from 1M

reference samples into 1,000 samples would be

ð3;000 Mb=genomeÞ3ð2:8 hrÞ3ð$0:50=hrÞ=ð1;000 samples

3 10 Mb=sampleÞ ¼ $0:42=genome:

This calculation shows that imputation using millions of
reference samples is feasible using existing methods and
ican Journal of Human Genetics 98, 116–126, January 7, 2016 123



Figure 4. Memory Use and Computation Time for Beagle v.4.1
for Millions of Reference Samples
Beagle’s memory requirements and computation time for
imputing 10 Mb of simulated sequence data from binary reference
files having one million to five million reference samples, each
with 1,294,053 markers. The simulated imputation target was
1,000 individuals genotyped on a 1M SNP array (3,333 markers
in the 10 Mb region). CPU time includes the sum of the computa-
tion time consumed by each computational thread. All Beagle an-
alyses used 12 computational threads. The wall clock computation
time required to prepare each binary reference file was approxi-
mately four to five times greater than the wall clock imputation
time reported in this figure.
computational resources. Compared to the cost of recruit-

ing, phenotyping, and genotyping target samples, the cost

of genotype imputation is insignificant.
Discussion

We have presented a genotype imputation method that

has the accuracy of the Impute2 and Minimac3 methods

but has much lower computation time and memory re-

quirements when imputing from large reference panels.

We have shown that this genotype imputation method

scales to reference panels with millions of samples.

Reference panels with millions of sequenced samples are

not yet available; however, very large reference panels

could be available soon. The National Human Genome

Research Institute has announced plans to sequence hun-

dreds of thousands of individuals (see Web Resources).

When reference panels with millions of samples become

available, we anticipate that the computational cost per

imputed sample could be substantially less than the cost

estimated in this study due to improvements in computing

technology over time.

A large reference panel with accurately phased genotypes

permits highly accurate imputation of low-frequency vari-

ants. For example, with a reference panel containing

200,000 simulated European individuals, we find that

markers with at least nine copies of the minor allele in the

reference panel can be imputed with high accuracy (r2 >

0.8) in target samples that have been genotyped with a

1M SNP array (Figure 1). With simulated data, we

also observe that the smallest minor allele count that is

imputed at high accuracy decreases as reference panel size

increases (Figure 1). With 1M reference samples, 10 copies

of the minor allele corresponds to a minor allele frequency

of 5 3 10�6. However, the actual imputation accuracy that
124 The American Journal of Human Genetics 98, 116–126, January 7
will be obtained in real data of this size will depend on the

population or populations, the genotyped markers, the ge-

notype error rate, and the phasing error rate.

Our imputation software is designed to make efficient

use of memory and CPU resources on multi-core com-

puters. Imputation is parallelized by sample across multi-

ple computational threads, and input data are shared

across threads. An attractive feature of our software is its

use of overlapping marker windows to control memory

use, which allows entire chromosomes or genomes to be

imputed in a single analysis, without having to split input

data and concatenate output data.

The computational efficiency of our software makes it

suitable for performing imputation on public imputation

servers (Fuchsberger et al., 2014, ASHG, conference) and

for imputing genotype data in large public reposi-

tories.27,28 Beagle v.4.1 is open source software so that it

can also be used to impute genotypes in human, animal,

and plant samples that are not permitted to be copied to

a public imputation server or repository.

The new imputation method has some limitations. The

efficiency of the parallel computation decreases when the

number of target samples is small. In the extreme case

where the number of target samples is less than the num-

ber of available computational threads, some threads will

sit idle while other threads impute genotypes.

If the reference panel contains millions of samples, or if

the target panel contains only a few samples, a substantial

proportion of the computation time can be spent reading,

parsing, and constructing a compressed representation of

the reference panel data. We solve this problem by

providing an open-source software tool that creates a bi-

nary reference file that can be read by our software. For

large reference panels (n R 50,000), the binary reference

file is more than an order of magnitude smaller than the

corresponding gzip-compressed reference VCF file.

The results presented here show that the capabilities of

imputation methods have now outstripped the available

reference panels. The largest reference panel at the time of

this writing, the HRC1 panel from the Haplotype Reference

Consortium (Das and The Haplotype Reference Con-

sortium, 2014, ASHG, conference), is more than two orders

of magnitude smaller than the reference panels that can be

usedwithBeaglev.4.1.Thus thepresent challenge is thegen-

eration of high-coverage, accurately phased sequence data

that are consented for use in imputation reference panels.
Supplemental Data

Supplemental Data include five figures and five tables and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.
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BEAGLE, http://faculty.washington.edu/browning/beagle/beagle.
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Luan, J., Mägi, R., et al.; MAGIC; Procardis Consortium

(2010). Association analyses of 249,796 individuals reveal

18 new loci associated with body mass index. Nat. Genet.

42, 937–948.

5. Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafs-

son, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L.,

Mora, S., et al.; Global Lipids Genetics Consortium (2013). Dis-

covery and refinement of loci associated with lipid levels. Nat.

Genet. 45, 1274–1283.

6. Wellcome Trust Case Control Consortium (2007). Genome-

wide association study of 14,000 cases of seven common dis-

eases and 3,000 shared controls. Nature 447, 661–678.

7. Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L.,

Gibbs, R.A., Belmont, J.W., Boudreau, A., Hardenbol, P., Leal,

S.M., et al.; International HapMap Consortium (2007). A sec-

ond generation human haplotype map of over 3.1 million

SNPs. Nature 449, 851–861.

8. Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin,

R.M., Gibbs, R.A., Hurles, M.E., and McVean, G.A.; 1000 Ge-
The Amer
nomes Project Consortium (2010). A map of human genome

variation from population-scale sequencing. Nature 467,

1061–1073.

9. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo,M.A., Durbin,

R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., and McVean,

G.A.; 1000 Genomes Project Consortium (2012). An inte-

grated map of genetic variation from 1,092 human genomes.

Nature 491, 56–65.

10. Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang,

H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean,

G.A., and Abecasis, G.R.; 1000 Genomes Project Consortium

(2015). A global reference for human genetic variation. Nature

526, 68–74.

11. Browning, B.L., and Browning, S.R. (2009). A unified approach

to genotype imputation and haplotype-phase inference for

large data sets of trios and unrelated individuals. Am. J.

Hum. Genet. 84, 210–223.

12. Howie, B.N., Donnelly, P., and Marchini, J. (2009). A flexible

and accurate genotype imputationmethod for the next gener-

ation of genome-wide association studies. PLoS Genet. 5,

e1000529.

13. Browning, B.L., and Browning, S.R. (2013). Detecting identity

by descent and estimating genotype error rates in sequence

data. Am. J. Hum. Genet. 93, 840–851.

14. Howie, B., Marchini, J., and Stephens, M. (2011). Genotype

imputation with thousands of genomes. G3 (Bethesda) 1,

457–470.

15. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., and

Abecasis, G.R. (2012). Fast and accurate genotype imputation

in genome-wide association studies through pre-phasing. Nat.

Genet. 44, 955–959.

16. Li, N., and Stephens, M. (2003). Modeling linkage disequi-

librium and identifying recombination hotspots using sin-

gle-nucleotide polymorphism data. Genetics 165, 2213–

2233.

17. Li, Y., Willer, C.J., Ding, J., Scheet, P., and Abecasis, G.R.

(2010). MaCH: using sequence and genotype data to estimate

haplotypes and unobserved genotypes. Genet. Epidemiol. 34,

816–834.

18. Rabiner, L.R. (1989). A tutorial on HiddenMarkov-models and

selected applications in speech recognition. Proc. IEEE 77,

257–286.

19. Grice, J.A., Hughey, R., and Speck, D. (1997). Reduced space

sequence alignment. Comput. Appl. Biosci. 13, 45–53.

20. Wheeler, R., andHughey, R. (2000). Optimizing reduced-space

sequence analysis. Bioinformatics 16, 1082–1090.

21. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E.,

DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T.,

Sherry, S.T., et al.; 1000 Genomes Project Analysis Group

(2011). The variant call format and VCFtools. Bioinformatics

27, 2156–2158.

22. Huang, J., Howie, B., McCarthy, S., Memari, Y., Walter, K.,

Min, J.L., Danecek, P., Malerba, G., Trabetti, E., Zheng, H.F.,

et al.; UK10K Consortium (2015). Improved imputation of

low-frequency and rare variants using the UK10K haplotype

reference panel. Nat. Commun. 6, 8111.

23. Chen, G.K., Marjoram, P., and Wall, J.D. (2009). Fast and flex-

ible simulation of DNA sequence data. Genome Res. 19,

136–142.

24. Fuchsberger, C., Abecasis, G.R., and Hinds, D.A. (2015). mini-

mac2: faster genotype imputation. Bioinformatics 31,

782–784.
ican Journal of Human Genetics 98, 116–126, January 7, 2016 125

http://www.UK10K.org
http://www.UK10K.org
http://browser.1000genomes.org
http://faculty.washington.edu/browning/beagle/beagle.html
http://faculty.washington.edu/browning/beagle/beagle.html
http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-15-001.html
http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-15-001.html
http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-15-026.html
http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-15-026.html
http://www.uk10k.org/
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref19
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref19
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref23
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref23
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref23
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref24
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref24
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref24


25. International HapMap Consortium (2005). A haplotype map

of the human genome. Nature 437, 1299–1320.

26. Browning, S.R., and Browning, B.L. (2015). Accurate non-para-

metric estimation of recent effective population size from seg-

ments of identity by descent. Am. J. Hum.Genet. 97, 404–418.

27. Mailman, M.D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Ba-

goutdinov, R., Hao, L., Kiang, A., Paschall, J., Phan, L., et al.
126 The American Journal of Human Genetics 98, 116–126, January 7
(2007). The NCBI dbGaP database of genotypes and pheno-

types. Nat. Genet. 39, 1181–1186.

28. Lappalainen, I., Almeida-King, J., Kumanduri, V., Senf, A.,

Spalding, J.D., Ur-Rehman, S., Saunders, G., Kandasamy,

J., Caccamo, M., Leinonen, R., et al. (2015). The European

Genome-phenome Archive of human data consented for

biomedical research. Nat. Genet. 47, 692–695.
, 2016

http://refhub.elsevier.com/S0002-9297(15)00491-7/sref25
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref25
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00491-7/sref28

	Genotype Imputation with Millions of Reference Samples
	Introduction
	Material and Methods
	Imputation Method
	Hidden Markov Model
	Imputation of Ungenotyped Variants
	Computational Complexity
	Parallelization
	Memory-Efficient Computation
	Marker Windows
	Compact Representation of Reference Haplotypes
	Compact Representation of Imputed Allele Probabilities
	Memory-Efficient Probability Calculations
	Binary Reference Panel
	Data
	Comparison of Imputation Methods

	Results
	Comparison of Methods
	Scaling Properties of Beagle v.4.1
	Sensitivity of Beagle v.4.1 to Parameter Values
	Imputation from Millions of Reference Samples

	Discussion
	Supplemental Data
	Acknowledgments
	Web Resources
	References


