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An Efficient Multiple-Testing Adjustment
for eQTL Studies that Accounts for
Linkage Disequilibrium between Variants

Joe R. Davis,1,6 Laure Fresard,2,6 David A. Knowles,3 Mauro Pala,4 Carlos D. Bustamante,1 Alexis Battle,5

and Stephen B. Montgomery1,2,*

Methods for multiple-testing correction in local expression quantitative trait locus (cis-eQTL) studies are a trade-off between statistical

power and computational efficiency. Bonferroni correction, though computationally trivial, is overly conservative and fails to account

for linkage disequilibrium between variants. Permutation-based methods are more powerful, though computationally far more inten-

sive. We present an alternative correction method called eigenMT, which runs over 500 times faster than permutations and has

adjusted p values that closely approximate empirical ones. To achieve this speed while also maintaining the accuracy of permuta-

tion-based methods, we estimate the effective number of independent variants tested for association with a particular gene, termed

Meff , by using the eigenvalue decomposition of the genotype correlation matrix. We employ a regularized estimator of the correlation

matrix to ensure Meff is robust and yields adjusted p values that closely approximate p values from permutations. Finally, using a com-

mon genotype matrix, we show that eigenMT can be applied with even greater efficiency to studies across tissues or conditions. Our

method provides a simpler, more efficient approach to multiple-testing correction than existing methods and fits within existing pipe-

lines for eQTL discovery.
Introduction

Existing correction methods for local-expression quantita-

tive trait locus (cis-eQTL) analysis are a trade-off between

computational efficiency and statistical power. The Bonfer-

roni correction is commonly used for adjusting p values

at the gene level. Though computationally efficient, this

correction is conservative for high variant densities, in

part because it fails to account for the linkage disequilib-

rium (LD) among variants. Calculation of empirical

p values via permutations offers a powerful alternative to

the Bonferroni correction. Permutations better approxi-

mate the null distribution of association statistics for a

given gene by directly accounting for the LD structure

among tested variants. However, this method is computa-

tionally expensive, requiring thousands of permutations

for tens of thousands of genes. As genotype density in-

creases along with improved genotyping and sequencing

technologies, this multiple-testing burden also increases.

Two classes of corrections have been proposed as alterna-

tives to take into account the dependence between variants

in multiple-testing corrections: principal component anal-

ysis (PCA) and analysis of regions in LDacross the genome.1

Among PCAmethods, an efficient correction that accounts

for the correlation structure among variants was first

proposed for genome-wide association studies (GWASs) by

Cheverud2 and then expanded.3,4 These approaches

approximate the permutation-based results, considered

the gold standard, while reducing computation by esti-
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mating the effective number of independent tests ðMeffÞ
from the sample genotype correlation matrix5 by using its

eigenvalues. However, for small sample sizes and dense

genotyping, the eigenvalue estimates are not robust and

can lead to anti-conservative results as compared to results

from permutations.6We propose an adaptation of previous

methods that are based on estimating the effective number

of independent tests through an improvement to the esti-

mation of the genotype correlation matrix. We show that

our method, called eigenMT, is computationally more

efficient than permutations, yielding similar adjusted p

values and a similar number of discoveries. Our method is

also well calibrated and does not discover more significant

associations than permutations. It integrates with the data

formats fromMatrix eQTL7 and is thus well suited to exist-

ing eQTL calling pipelines. We demonstrate that our

method better approximates the empirical p values than

Bonferroni correction does and requires minimal increase

in computation. In the case of expression studies across tis-

sues or conditions, we show that eigenMT can be applied

with speed on par with that of Bonferroni correction, but

with performance similar to that of permutations.
Methods

eigenMT
Given the p values pi from N hypothesis tests and significance

level a, Bonferroni correction attempts to control the family-

wise error rate (FWER) by setting a significance level of a=N for
epartment of Pathology, Stanford University, Stanford, CA 94305, USA;

SA; 4Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ri-

pkins University, Baltimore, MD 21218, USA

y of Human Genetics. All rights reserved.

, 2016

mailto:smontgom@stanford.edu
http://dx.doi.org/10.1016/j.ajhg.2015.11.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2015.11.021&domain=pdf


Figure 1. Robustness of eigenMT to
Window Size
(A) Comparison of eigenMT adjusted
p values at window size 400 (x axis) to
eigenMT adjusted p values at window
sizes 50, 100, and 200 variants (y axis).
We observe a strong correlation between
values, and no difference is visible when
modifying the window size.
(B) Effect of window size on Meff estima-
tion. Genes were randomly chosen along
chromosome 19. A stabilization of Meff is
observed at window sizes greater than 50.
each individual test. In the context of association studies,

the hypotheses are association tests between variant genotypes

and a particular trait, e.g., height for GWAS or gene ex-

pression for cis-eQTL studies. N will therefore be the number

of genotyped variants tested, usually on the order of 103 for

cis-eQTL studies with whole-genome sequencing.8,9 With such

large N, Bonferroni correction becomes overly conservative,

especially given strong LD structure among variants. To

account for this structure, we estimate the effective number

of independent tests, denoted as Meff . We then use Meff

in place of N in the procedure above to generate adjusted p

values.

To obtainMeff , we consider anM3N genotypematrixGwhereM

is the number of samples andN is the number of variants. Here, we

consider only the case of biallelic variants. Observed genotypes are

encoded as the number of alternate alleles (0, 1, or 2) or as geno-

type dosages from imputation. Missing genotypes are imputed

to be the mean of the observed genotypes. We first construct the

sample covariance matrix bS. When N is near to or greater than

M, the eigenvalues of bS will exhibit higher variance than those

of the population covariance matrix S.10 To address this issue

and reduce the variance in our estimator, we use the Ledoit-

Wolf (LW) regularized estimator bSLW, which is asymptotically

consistent:

bSLW ¼ ð1� bÞbS þ b
tr
�bS�
N

I;

where b is a regularization term, estimated as described by Ledoit

and Wolf,10 and I is the identity matrix. We estimate the sample

correlation matrix bRLW from bSLW , and we calculate its eigen-

values, bl1;/; blN . We assume the eigenvalues are ordered such

that bliRblj for all i < j. Following the method outlined by Gao

et al.,11 we define the effective number of independent variants

to be

Meff ¼ argmin
i

 Pi
j¼1
bl jPN

j¼1
bl j

RC

!
;

where C is a threshold for the proportion of variance explained.

Meff can therefore be interpreted as the minimum number of sam-

ple eigenvalues required to explain a proportion C of the sample

variance. We note that other definitions for Meff exist2,4,11 and

that, in general, Meff will depend on factors like the p value

threshold and the sample size. Our additional regularization step

adds robustness to the estimation of Meff .
The American Journal of Human G
Parameter Choice
For eQTL studies, the genotype matrix

over variants tested as cis-eQTLs for a given
gene will be common variants (usually MAF R 0.05) within some

distance (usually 1Mb) of the transcription start site (TSS).8,9,12 For

studies with whole-genome sequencing, the matrix will contain

on the order of 103 variants. Computation on such large matrices

can be inefficient, so we divide the genotype matrix into disjoint

windows of adjacent variants. We recommend choosing a

window size between 50 and 200 variants because computation

increases quadratically with it (assuming window size is less

than sample size). Below this limit, the method loses power

because it fails to capture strong correlation between variants in

adjacent windows and approaches Bonferroni correction. Due

to the regularization, performance is robust with regard to

changes in window sizes above 50 variants (Figure 1). We also

recommend a minimum variance threshold of 99%. We have

shown empirically that lower thresholds lead to anti-conservative

results (Figures S1 and S2).

Implementation
We implemented the method as a python script, eigenMT.py, that

is designed to fit within the Matrix eQTL pipeline. Our script uses

the genotype matrix and variant and probe position files used by

Matrix eQTL for cis-eQTL calling. In addition, it takes as input

the variant-gene test results output by Matrix eQTL, a threshold

for distance around each probe position to perform multiple-

testing correction (default 1 Mb), a window size for partitioning

the genotype matrices (default 200), and a threshold for propor-

tion of variance explained (default 0.99). It outputs the best cis

variant per gene with its adjusted p value as well as Meff for the

gene. A sample command is given below:

python eigenMT:py y

�QTLhmatrix eQTL outputiy
�GENhgenotype matrixiy
�GENPOShvariant position fileiy
� PHEPOShprobe position fileiy
� CHROMhchromosome numberiy
�OUThoutput file nameiy
�window½window size; default 200�y
� var_thresh½variance explained threshold; default 0:99�
� cis_dist½distance threshold; default 1e6�

The user-defined distance threshold can specify any region

smaller than the one used to test for cis-eQTL, which provides flex-

ibility. Users can specify a large distance to test for eQTLs, say
enetics 98, 216–224, January 7, 2016 217



within 10 Mb of a TSS, then correct for multiple testing in a

smaller region, say 1 Mb, without re-performing cis-eQTL testing.

Finally, we have included an option to estimate Meff values on cis-

eQTL results with a separate genotype matrix than the one used

for initial testing. This option enables use of a unique genotype

matrix, including samples with genotype data that might not

have corresponding expression data; see our application to the

GTEx pilot study for an example. Additionally, with this option

it is possible to input only a subset of the cis-eQTL results, say

the single most-significant variant, with the nominal p value for

each gene and still perform correction with the full set of variants

available in the supplied genotype matrix. We note that, for accu-

rate results, the genotype matrix should be representative of the

population under study.

Datasets Used for eigenMT Test
GEUVADIS Dataset

We performed cis-eQTL detection with Matrix eQTL on 373

European individuals from the Genetic European Variation in

Health and Disease (GEUVADIS) RNA-sequencing (RNA-seq)

cohort.9 Raw FASTQ files (E-GEUV-1) were downloaded from

the European Nucleotide Archive. Reads were mapped with

Spliced Transcripts Alignment to Reference (STAR; default

parameters, reference h37d5). We calculated gene expression

by using HTSeq13 and performed variance stabilization by using

DESeq (default parameters).14 We corrected for hidden con-

founders by using probabilistic estimation of expression resid-

uals (PEER, 30 factors, default parameters with iteration number

extended to 10,000);15 residuals from PEER were then inverse

rank normalized.

We downloaded BED files for Illumina 650K (UCSC Genome

Browser, hg19) and HapMap3 (release 3; NCBI Genome Browser,

hg18) platforms and converted HapMap3 variant positions from

hg18 to hg19 reference genomes by using the Liftover tool from

the UCSC website.16 Bedtools intersect (v.2.21.0) was used to filter

the whole-genome variant datasets on tested platforms.17 The

whole-genome genotypes for 373 European individuals were ob-

tained from the GEUVADIS consortium.9 On human chromosome

19, we tested 10,018, 22,281, and 218,950 variants from Illumina

650K, HapMap3, and whole-genome sequencing platforms,

respectively. We only tested variants with a minor allele frequency

(MAF) at or above 1% and passing a Hardy-Weinberg equilibrium

filter (p value > 1e-6).

We called cis-eQTLs for chromosome 19 and the human leuko-

cyte antigen (HLA) region on chromosome 6 (variants located

between 24 Mb and 36 Mb) by using Matrix eQTL. We restricted

calling to within 1 Mb of the TSS. For each gene, we permutated

the expression values for the 373 tested samples 10,000 times.

We used the permuted p values to obtain empirical p values for

each gene. These empirical p values were then compared to Bon-

ferroni-adjusted and eigenMT-adjusted p values to assess the effi-

ciency, calibration, and discoveries of each method.

GTEx Pilot Dataset

We obtained genotype, expression, and covariate files in Matrix

eQTL format from the Genotype Tissue Expression (GTEx) pilot

study18 via the dbGaP website. We analyzed the two tissues, skel-

etal muscle and whole blood, with the largest sample size over-

lap (122 individuals). Unlike the files for the GEUVADIS dataset,

the GTEx genotype files contained genotype dosages from impu-

tation, not hardcoded genotypes. Prior to cis-eQTL calling, we

corrected each gene expression matrix for 19 covariates, consist-

ing of the first three genotype principal components, 15 PEER
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factors,15 and gender. Expression residuals were then inverse

rank normalized. The genotype matrix remained unchanged.

For each tissue, we tested a total of 159,750 variants on chromo-

some 19, with MAF 5%, for association with expression. We per-

formed eQTL calling on 1,468 and 1,541 expressed genes on

chromosome 19 for skeletal muscle and whole blood, respec-

tively, by using Matrix eQTL together with 10,000 permutations,

as described above. We ran eigenMT twice for each tissue, once

with the genotype matrix of the 122 tested individuals and

once with the genotypes of all 175 individuals available from

the GTEx pilot study.

Comparison to eGene-MVN
We ran eGene-MVN19 on the GEUVADIS dataset (chromosome

19) for sample sizes M ¼ 50 and M ¼ 373. We imputed missing

genotypes to be the nearest integer to the mean observed geno-

type for a given variant. We performed cis-eQTL calling by using

the Pearson correlation coefficient. For each sample size, we used

1,000,000 (1 M) iterations (default) with seed set to 100. For the

running time analysis, we also ran eGene-MVN with 10,000

(10 K) iterations. For the small sample size, we estimated a

correction factor by using 10,000 iterations on 100 randomly

chosen genes. The estimated correction factor (1.3631) was

then used for the multivariate normal (MVN) sampling. The

correction factor used for the large sample size was 1. For all

runs with eGene-MVN, we set the optional argument window

size to 500,000 (500 kb), as recommended, for genes with

more than 2,000 tested SNPs. We compared eGene-MVN and ei-

genMT adjusted p values to empirical p values by using the error

measure

ai ¼ j1� p0i
ei

j

where p0i and ei are the adjusted and empirical p values, respec-

tively, and ai is the error for the ith gene.

Running Time Estimation
To estimate the running time for permutations, we ran different

jobs performing 10;20;/;50 permutations on one thread, both

for chromosome 19 and the HLA region. We then regressed the

running times against the number of permutations, obtaining R2

of 0.998 and 0.977 for chromosome 19 and the HLA region,

respectively. We estimated the time needed to perform 10,000 per-

mutations with the fitted linear equation.

Running times for Bonferroni correction and eigenMT were ob-

tained from runs on a single thread for all of chromosome 19 and

the HLA region. We calculated running time for eGene-MVN by

summing the running times for each gene on chromosome

19 (1,057 genes), and each run was on a single thread.
Results

GEUVADIS Dataset

Increased Accuracy over Bonferroni

We performed multiple-testing correction for cis-eQTLs by

using Bonferroni correction, eigenMT, or permutations on

chromosome 19 and the HLA region of chromosome 6 for

the GEUVADIS European samples9. We then compared the

adjusted p values from the Bonferroni correction and ei-

genMT to the empirical p values (from permutations),
, 2016



Figure 2. eigenMT Performance
(A) Comparison of empirical p values to adjusted p values from Bonferroni correction (green), eigenMT without regularization (light
blue), and eigenMT including regularization (blue). The added regularization prevents anti-conservative results as compared to those
from permutations.
(B) Comparison of cis-eQTL discoveries at a FDR of 5% by platform and correction methods.
(C) Effect of sample size on cis-eQTL discovery for the three correction methods. Our method discovers more cis-eQTLs than Bonferroni
correction does across all sample sizes.

Figure 3. Error Plot of eigenMT, Bonferroni Correction, and
eGene-MVN Adjusted p Values Compared with Empirical
p Values
An error of 0 indicates that adjusted p values match empirical
p values. The vertical line indicates the significant threshold
(FDR 5% here). After this threshold, we observe that eigenMTerror
trends toward 0.
which we consider as a reference. We consider the tested

methods as accurate if the adjusted p values are close to

but less significant than the empirical p values. We found

that eigenMT offered a much closer approximation to

the empirical p values than Bonferroni correction

(Figure 2A, Figure 3). The average error in the adjusted

p values, when compared to permutation-based p values,

was found to be 1.335 for Bonferroni correction and

0.686 for eigenMT. The average error for eigenMT without

regularization was even lower at 0.433; however, this

version has the disadvantage of being anti-conservative

with respect to the permutation results. The improved ac-

curacy for eigenMT was also confirmed for the HLA region

on chromosome 6 (Figure S3), which can be challenging to

study due to its molecular complexity.20 It is important to

note that although the permutation p values are consid-

ered as a reference for our analysis, these p values are

merely estimates of the true, unknown p value p. They

will have an asymptotic variance of ðpð1� pÞÞ=K where K

is the number of permutations. To achieve highly accurate

estimates from permutations, i.e., to ensure small

confidence intervals on the permutation p values, K

should be on the order of 100=p. Thus, for permutation

p values < 10�2, estimates will have high variance.

Decreased Computation Time

For chromosome 19, when using 373 individuals and

218,950 variants, calculation of adjusted p values by ei-

genMT required 2.14 hr on a single central processing

unit (CPU), rather than the estimated 1,063.3 hr required

for the permutation analysis (Table 1). When decreasing

the window-size parameter to 50 (from the default 200),

eigenMT becomes more than 1,000 times faster than per-

mutations. For the HLA region, eigenMT performed 300

times faster than permutations, with a window size set to

200. More generally, for M individuals and a window size

of N variants, our algorithm computes the sample correla-

tion matrix and its eigenvalues, requiring OðM N2Þ and

OðN3Þ time, respectively. For M > N, the first term will
The Amer
dominate and the overall complexity will be OðM N2Þ.
Importantly, our regularization step does not significantly

impact the efficiency. Our method is therefore as fast as

and more robust than other PCA-based methods, which

have the same complexity.2–4

Robustness

To characterize the robustness of ourmethodwith regard to

variant density, we tested eigenMT by using variant sets

from Illumina 650K and HapMap3 platforms (Figure 2B).

Across all sets, our method is less conservative than
ican Journal of Human Genetics 98, 216–224, January 7, 2016 219



Table 1. CPU Time (hr) Usage for p Value Correction Methods on cis-eQTL Results for Chromosome 19 (58.36 Mb) and HLA Region (12 Mb)
on 1 Thread

Method CPU Time, chr19 (hr) Speedup,a chr19 (CPU Time) CPU time, HLA region (hr)
Speedup, HLA region
(CPU Time)

Bonferroni correction 0.0206 51,7283 0.048 9,3873

eigenMT, WS 50b 0.79 1,3393 ND ND

eigenMT, WS 200 2.14 4973 1.28 3533

permutations 1,063.3 13 451 13

eGene-MVN, 10 K 30 35.43 ND ND

eGene-MVN, 1 Mc 2,105.8 0.5053 ND ND

Abbreviations are as follows: WS, window size; ND, not determined.
aThe speedup is calculated by comparison to the estimated time needed to perform 10,000 permutations.
bWhen decreasing the window size, eigenMT becomes even faster.
cThis method is thus able to perform 1 M samplings with a similar computation cost to 10,000 permutations.
Bonferroni correction and better approximates the per-

mutation results. As the variant density increases,

our method, like permutations, discovers more cis-eQTLs

at a false discovery rate (FDR) of 5%, whereas Bonferroni

correction becomes more conservative and yields fewer.

The additional discoveries made with eigenMT overlap

with those made by permutations. Even at lower densities,

our estimate of Meff is less than that of the Bonferroni

correction (Figure S4). We observe a mean reduction factor

ranging from 1.2 when using the Illumina 650K variant set

to 2 when using whole-genome sequencing. Our results

show that eigenMT is well calibrated and and that it closely

approximates permutations without making more signifi-

cant discoveries.

Additionally, eigenMT is robustwith regard to sample-size

variability (Figure 2C). For sample sizes ranging from 50

to 373 individuals, eigenMT consistently discovers more

cis-eQTLs than Bonferroni correction does and runs faster

than permutations. As a consequence, eigenMT can be

used for a wide range of sample sizes using different variant

densities and still outperform Bonferroni correction.

Comparison to eGene-MVN

Many methods have been developed to handle the burden

of multiple testing in GWASs,21–23 some of them based on

the calculation of Meff.
5,11,24 Other methods based on

resampling approaches and early stopping with permuta-

tions have been developed for eQTL studies.19,25 We

compared our results on chromosome 19 with those of

eGene-MVN.19 This method uses a sampling procedure

from aMVN distribution to accurately approximate empir-

ical p values. Given the cheap computational cost of

sampling, this method can perform on the order of 1 M

samples for the cost of 10,000 permutations—a significant

time reduction. We tested two different sample sizes: (1)

M ¼ 50 (to investigate the robustness of the methods

with regard to low sample sizes) and (2) M ¼ 373 (Figures

4A–4C, Figure S5). eGene-MVN achieves lower errors

than eigenMT does and has an average error of 0.303

versus eigenMT’s average error of 0.686 (Figure 3). We

observe that as empirical p values become more signifi-
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cant, the eigenMT estimates become more accurate. As

stated above, for small ð< 10�2Þ empirical p values, the per-

mutation estimates will be noisy. The error estimate for

eGene-MVN is therefore likely inflated by the variance in

the permutation p values. Excluding the most extreme

empirical p values, i.e., p value < 1e-4, the error decreased

to 0.060 and 0.587, respectively. This result is in keeping

with our expectation that eGene-MVN would offer better

accuracy given that its 1 M sample size is roughly equiva-

lent to 1 M permutations. For sample size M ¼ 373,

eGene-MVN requires an estimated 2,105.8 hr to perform

1 M iterations (the default number) and generate adjusted

p values (Table 1). We also estimated the running time of

eGene-MVN at 10 K iterations. This run required approxi-

mately 30.0 hr to complete. In contrast, eigenMT requires

roughly 2.14 hr for the same task, a speedup of over 9003

in comparison to the default 1M samplings or over 103 for

10 K samplings with eGene-MVN.

Both methods discover the cis-eQTL genes found via

permutations. For M ¼ 373 individuals, we discovered 416

out of the 430 eQTL genes thatwere identified as significant

(FDR < 5% ) by permutations (N ¼ 10,000) (Figure 4C).

eGene-MVN with 1 M samplings detected 431 genes, all

overlapping with the permutation results except for

one, which was close to significance after permutations

(FDR< 5:4% ). With 10 K samplings, eGene-MVN detected

429 eGenes, all overlapping with the permutation results.

At low sample size, eigenMT found 35 out of 46 cis-eQTL

genes. eGene-MVN discovered 45 significant hits, three of

which were not found by permutations (Figure 4D). In all,

eigenMT is slightly more conservative than eGene-MVN

but has much faster computation.

GTEx Pilot Data

We chose two tissues, skeletal muscle and whole blood,

fromtheGTExpilot study18 for cis-eQTLanalysis to confirm

theaccuracyofourmethodona separate andmore complex

dataset.Wefirst tested the effect of population stratification

on the accuracy of eigenMT (Figure 5). Looking at the first

two principal components (PCs) of the genotype matrix
, 2016



Figure 4. Comparison of eigenMT to eGene-MVN
(A and B) Comparison of empirical p values to adjusted p values from Bonferroni correction, eigenMT, and eGene-MVN for (A) 50 and (B)
373 samples.
(C) Number of cis-eQTL discoveries.
(D) Overlap of cis-eQTL discoveries from tested correction methods with permutation results.
for the 122 samples, we saw evidence of separation into two

potential clusters (Figure 5A). When performing cis-eQTL

calling followed by eigenMT correction without taking

into account this structure, we obtained anti-conservative

results (Figure 5B). After removing the effects of

population stratification from the expression matrix (as

described in the Methods section), we show that our

method gives well-calibrated p values compared to those

given by permutations (Figure 5C).

We then tested whether eigenMT functions accurately

across phenotype measurements, namely tissue expression

in this example, for the same set of genotyped indi-

viduals. We compared the eigenMT and Bonferroni

adjusted p values to empirical p values for skeletal muscle

(Figure 6A) and whole blood (Figure 6B). Again, we found

that eigenMT demonstrated greater overlap with discov-
The Amer
eries from permutations than with those from Bonferroni

correction, independently of the tissue. For skeletal muscle

(Figure S6A) and whole blood (Figure S6B), we were able to

find 53 and 76 cis-eQTLs, respectively, by using eigenMT,

which amounts to 4 and 5 more than what we obtained

after Bonferroni correction and closer to the 59 and 84 ob-

tained after permutations. Our method therefore performs

robustly across tissues.

Our correction method relies only on the sample geno-

type matrix for estimation of Meff for a given gene. We

hypothesized that using a genotype matrix from a larger

sample with individuals not included in the RNA-seq anal-

ysis for each tissue would improve estimation of Meff and

the accuracy of our adjusted p values in comparison to per-

mutation-based values. We tested our correction by using

the genotype information from all GTEx pilot study
ican Journal of Human Genetics 98, 216–224, January 7, 2016 221



Figure 5. Population Stratification for GTEx Pilot Data
(A) Principal component analysis of the sample genotype
matrix. Individuals are not uniformly spread across the two
first PCs.
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individuals (175 instead of the 122 for our chosen tissues),

and we found that, with this approach, the average error

for eigenMT decreased from 0.99 and 1.01 to 0.86 and

0.90 for skeletal muscle and whole blood, respectively (Fig-

ures 6A and 6B). This improvement in accuracy results

from improvement in the estimation of Meff (Figure S7).

Considering all individuals in the sample genotype matrix

stabilizes (decreases the variance of) the estimate of the

sample genotype correlation matrix and thereby of Meff.

These results indicate that, in cases of multi-tissue or

multi-condition analysis, or in studies where more individ-

uals are genotyped than assayed for gene expression,

eigenMT can be run once using the genotype matrix for

all individuals to calculate the number of effective tests,

Meff. The Meff estimates can then be used for every assayed

tissue or condition; in this context, eigenMT will be as

computationally efficient as Bonferroni correction. Other

permutation-based methods incur the same computa-

tional cost for each tissue. Finally, it is expected that the

accuracy of eigenMT relative to that of permutations will

continue to increase with sample size; however, our cur-

rent datasets are limited in this respect.
Discussion

Standard approaches for identification of cis-eQTLs rely on

estimates of gene-level p values, describing the significance

of association between that gene and any nearby SNP. This

entails two stages of multiple-testing correction. In the first

stage, for each gene, association statistics are computed for

each variant independently and then combined, selecting

themost strongly associated variant and estimating a gene-

level p value which accounts for the number of variants

tested. In the second stage, these gene-level p values are

corrected to control the FDR at a specified level, usually

5%. Various methods can be employed to estimate gene-

level p values. Permutation-based methods are typically

employed for their simplicity and power, though they are

computationally intensive, with complexity increasing

linearly with sample size, number of permutations, and

number of variants tested. On the other extreme, Bonfer-

roni correction is highly conservative but computationally

trivial. With our method, we sought to discover the results

from permutations while preserving the computational

efficiency of the Bonferroni correction. A number of other

methods are being developed to address the computa-

tional burden of cis-eQTL detection. Some, like eGene-

MVN19 and FastQTL,26 seek to provide fast and accurate

approximations to empirical p values, whereas others,
(B) Comparison of empirical and adjusted p values when ignoring
the population stratification. This approach leads to anti-conser-
vative results.
(C) Comparison of empirical and adjusted p values after regressing
out the first three genotype PCs from the expressionmatrix before
cis-eQTL calling. Our method is efficient when dealing with pop-
ulation stratification under this approach.
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Figure 6. eigenMT Performance for GTEx Pilot Data
Change in error relative to permutations by genotype sample size
matrices of M ¼ 122 (limited) andM ¼ 175 for (A) skeletal muscle
and (B) whole blood. When increasing the number of genotyped
individuals for eigenMT correction, we decrease the error, better
approximating the empirical p values.
like TreeQTL,27 use hierarchical FDR correction. Our

method seeks to directly account for the local LD structure

around tested genes while remaining computationally

tractable.

We developed a method based on existing approaches

in the GWAS literature.2–5 These methods estimate an effec-

tivenumber of independent tests, termedMeff . This estimate

attempts to capture the number of association tests per-

formed for each gene by accounting for the LD structure

amongvariants. Inourmethod,weestimateMeff as thenum-

ber of ranked eigenvalues of the regularized genotype corre-

lationmatrix required to explain 99% of the observed geno-

type variance. We compute a regularized estimate of the

correlation matrix to account for the high variance in the
The Amer
eigenvalues of the sample correlation matrix.10 Without

regularization, we find that the adjusted p values are anti-

conservative in comparison to permutation results, poten-

tially inflating the number of false discoveries. We show

that the regularized estimator yields conservative results in

comparison to those frompermutations and that the regula-

rization step does not significantly impact the time

complexity of our algorithm. Thus, we offer a more robust

solution thanGWASmethodswithout sacrificing efficiency.

We tested the performance of our method on two large

RNA-seq studies: the GEUVADIS Consortium RNA-seq

study9 and the GTEx Pilot Study.18 We evaluated each

method based on its approximation of empirical p values,

the number of cis-eQTLs discovered, and computational

efficiency. We show that eigenMT discovers more cis-

eQTLs than does Bonferroni correction while maintaining

a high overlap with permutation results. We also demon-

strated the robustness of our method to changes in variant

density, sample size, and tissue or condition. We showed

that the running time of our algorithm is roughly two

orders of magnitude faster than that of permutations. For

example, the running time for 10,000 permutations on

1 thread for chromosome 19 of the GEUVADIS dataset

would require over 40 days to complete. In contrast, our

method with default parameters requires little over 2 hr.

The robustness of ourmethod across tissues allows for an

even greater improvement in efficiency. Permutations

need to be run separately for each tissue, each time incur-

ring a significant computational cost. In contrast, because

our method operates only on the sample genotype matrix,

we only need to run the method once to calculate the Meff

values for each tested gene. These values can be stored

and used for each separate tissue or condition, with an ef-

ficiency on par with that of Bonferroni correction.We have

also shown that estimation of Meff need not be limited to

the samples in common across tissues, but can incorporate

all available samples from the same population. Including

additional samples in the genotype matrix improves the

accuracy of our adjusted p values relative to the empirical

p values. Thus, for large cis-eQTL studies like GTEx across

multiple tissues or conditions, or for studies that have

acquired gene expression on a subset of individuals, our

method offers significant reductions in computational

cost. We note that eGene-MVN also only relies on the sam-

ple genotype matrix to perform sampling and could there-

fore be used in a similar manner across tissues to reduce

overall computational cost.

We have implemented our algorithm as a simple, easy-

to-use python script, which integrates easily with popular

eQTL packages, including Matrix eQTL7. Required inputs

are simply cis-eQTL test results with nominal p values,

genotype matrix, and probe and variant position files.
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dbGaP, http://www.ncbi.nlm.nih.gov/gap
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