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Model-free Estimation of Recent Genetic Relatedness

Matthew P. Conomos,1,* Alexander P. Reiner,2,3 Bruce S. Weir,1 and Timothy A. Thornton1,*

Genealogical inference from genetic data is essential for a variety of applications in human genetics. In genome-wide and sequencing

association studies, for example, accurate inference on both recent genetic relatedness, such as family structure, andmore distant genetic

relatedness, such as population structure, is necessary for protection against spurious associations. Distinguishing familial relatedness

from population structure with genotype data, however, is difficult because both manifest as genetic similarity through the sharing

of alleles. Existing approaches for inference on recent genetic relatedness have limitations in the presence of population structure, where

they either (1) make strong and simplifying assumptions about population structure, which are often untenable, or (2) require correct

specification of and appropriate reference population panels for the ancestries in the sample, which might be unknown or not well

defined. Here, we propose PC-Relate, a model-free approach for estimating commonly used measures of recent genetic relatedness,

such as kinship coefficients and IBD sharing probabilities, in the presence of unspecified structure. PC-Relate uses principal components

calculated from genome-screen data to partition genetic correlations among sampled individuals due to the sharing of recent ancestors

andmore distant common ancestry into two separate components, without requiring specification of the ancestral populations or refer-

ence population panels. In simulation studies with population structure, including admixture, we demonstrate that PC-Relate provides

accurate estimates of genetic relatedness and improved relationship classification over widely used approaches. We further demonstrate

the utility of PC-Relate in applications to three ancestrally diverse samples that vary in both size and genealogical complexity.
Introduction

Relatedness inference from genotype data has been moti-

vated by a variety of applications in population genetics,

genetic association and linkage studies, genealogical

studies, and forensics. In genome-wide association studies

(GWASs) and sequencing studies, for example, genealog-

ical information on sampled individuals is often limited

or unavailable, where genealogy in this context can be

broadly defined to include both recent genetic relatedness,

such as pedigree relationships of close relatives, and more

distant genetic relatedness, such as population structure.

Reliable inference and estimation of genetic relatedness is

essential for population-based genetic association studies,

because it is well known that unaccounted-for pedigree

and population structure among sampled individuals can

result in spurious associations.1–4 Likewise, pedigree integ-

rity is paramount to the validity of genetic linkage and

family-based association studies, and relatedness inference

from genotype data is often necessary for the confirmation

of reported pedigree relationships and the identification of

misspecified relationships.

Genetic studies often sample individuals from popula-

tions with diverse ancestry. In heterogenous samples, dis-

tinguishing familial relatedness from population structure

using genotype data is challenging because both manifest

as genetic similarity through the sharing of alleles. Existing

approaches for the estimation of frequently used measures

of recent genetic relatedness, such as kinship coefficients

and identity by descent (IBD) sharing probabilities, have

limitations in the presence of population structure. For

example, a variety of maximum likelihood5–7 and method
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of moments8–10 estimators have been developed for relat-

edness inference from genotype data under a strong

assumption of sampling from a single population with

no underlying ancestral diversity. In samples with popula-

tion stratification, these methods that assume population

homogeneity have been shown11–13 to give extremely

biased estimates of recent genetic relatedness. The widely

used KING-robust method11 has been developed for infer-

ence on close pedigree relationships under an assumption

of sampling from ancestrally distinct subpopulations with

no admixture. However, KING-robust gives biased related-

ness estimates for pairs of individuals who have different

ancestry, which can result in incorrect relationship infer-

ence for relatives with admixed ancestry.4,12 The REAP12

and RelateAdmix14 methods have been proposed for relat-

edness estimation in samples from admixed populations.

To account for population structure in the relatedness

analysis, both of these methods use estimates of individual

ancestries and population-specific allele frequencies ob-

tained from model-based genetic ancestry estimation

methods implemented in widely used software, such as

ADMIXTURE15 or FRAPPE.16 A limitation of REAP and

RelateAdmix, however, is that reliable inference on related-

ness requires (1) prior information on and correct specifica-

tion of the underlying ancestral populations from which

the sampled individuals are derived, which might not be

completely known or well defined, and (2) appropriate

reference population panels for the ancestries in the sam-

ple, which might not be available.

In this paper, we consider the problem of genetic related-

ness inference in the presence of unknown or unspecified

structure. We propose a principal component analysis
SA; 2Department of Epidemiology, University of Washington, Seattle, WA

earch Center, Seattle, WA 98109, USA

y of Human Genetics. All rights reserved.

ican Journal of Human Genetics 98, 127–148, January 7, 2016 127

mailto:mconomos@uw.edu
mailto:tathornt@uw.edu
http://dx.doi.org/10.1016/j.ajhg.2015.11.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2015.11.022&domain=pdf


(PCA)-based method, which we refer to as PC-Relate, for

relatedness estimation and inference in samples with pop-

ulation stratification. PC-Relate uses principal components

calculated from genome-screen data to partition genetic

correlations among sampled individuals into two separate

components: a component for the sharing of alleles in-

herited IBD from recent common ancestors, which repre-

sents familial relatedness, and another component for

allele sharing due to more distant common ancestry,

which represents population structure. PC-Relate can be

viewed as a model-free approach for inference on recent

genetic relatedness because the method does not require

(1) model-based estimates of individual ancestry and pop-

ulation-specific allele frequencies, (2) a likelihood model

for IBD sharing, or (3) specification of a population genetic

model. Remarkably, without making strong assumptions

about the underlying population structure or using

external reference population panels, PC-Relate is able to

provide accurate estimates of IBD-sharing probabilities,

kinship coefficients, and inbreeding coefficients in sam-

ples with complex structure.

We assess the accuracy of PC-Relate under various types

of population structure, including admixture, through

simulation studies with sampled individuals related ac-

cording to a variety of genealogical configurations. Using

real genotype data, we evaluate relatedness inference and

relationship classification with PC-Relate in a sample con-

sisting of 955 individuals from 20 large, well-defined,

Mexican American pedigrees from the Type 2 Diabetes

Genetic Exploration by Next-Generation Sequencing in

Ethnic Samples (T2D-GENES) Consortium provided for

the Genetic Analysis Workshop 18 (GAW18).17 We also

directly compare the performance of PC-Relate to related-

ness estimation methods implemented in widely used

software, including PLINK,8 KING-robust, REAP, and

RelateAdmix, in simulation studies and in an application

to a sample consisting of 3,587 self-identified Hispanic

women who were genotyped for the Women’s Health

Initiative SNP Health Association Resource (WHI-SHARe)

study. Finally, we assess the performance of PC-Relate

in a small sample setting with an application to 86

admixed individuals from the Mexican Americans in Los

Angeles, California (MXL) population sample of release

3 of phase III of the International Haplotype Map Project

(HapMap),18 and we compare the results to a previously re-

ported relatedness analysis12 of this sample that was con-

ducted using REAP with reference population panels.
Material and Methods

Population Genetic Parameters
Consider a set N of individuals sampled from a structured popula-

tion with ancestry derived from K distinct subpopulations,

and assume that these subpopulations descended from a com-

mon ancestral population. Individuals in N can have admixed

ancestry from the K subpopulations, and let ai ¼ ða1i ;.; aKi ÞT be

the ancestry vector for individual i ˛ N, where aki is the proportion
128 The American Journal of Human Genetics 98, 127–148, January 7
of ancestry across the autosomal chromosomes for i from subpop-

ulation k ˛ {1,...,K}, with akiR0 for all k and
PK

k¼1a
k
i ¼ 1. Suppose

that individuals in N have genotype data for a set S of autosomal

SNPs, and for SNP s ˛ S, let ps ¼ ðp1s ;.; pKs ÞT be the vector of sub-

population-specific allele frequencies for some reference allele,

where pks is the reference allele frequency at SNP s in subpopulation

k. Assume that the pks are random variables that are independent

across s but with possible dependence across the ks, with mean

E½ps� ¼ ps1 andcovarianceCov[ps]¼ ps (1� ps)QK for every s,where

1 is a length K column vector of 1s and QK is a K 3 K matrix. In

genetic models incorporating population structure, the allele fre-

quency parameter ps is typically interpreted as the reference allele

frequency in the ancestral population, or some average of allele

frequencies across the subpopulations. The within- and between-

subpopulation correlations (or coancestry coefficients) of alleles re-

sulting from the population structure are specified by the diagonal

and off-diagonal elements of the matrix QK, respectively.
19–21 The

kth diagonal element of QK, denoted qk, is the correlation of a

random pair of alleles from subpopulation k relative to the total

population, and the [k,k0]th off-diagonal element of QK, denoted

qkk0, is the correlation of a random allele from subpopulation k

and a randomallele from subpopulation k0 relative to the total pop-

ulation. In most practical settings, the parameters K, QK, ps and ps
for all s˛ S, andai for all i˛N are partially or completely unknown.
Identity by Descent: Recent versus Distant Common

Ancestors
Measures of recent genetic relatedness are often based on probabil-

ities of sharing alleles that are identical by descent (IBD) at a locus;

e.g., the probability that a pair of individuals inherited two (or

more) copies of the same allele from a common ancestor. It is

important to note, however, that there is no absolute measure

for IBD, and which alleles are considered to be identical copies

of an ancestral allele is relative to some choice of previous refer-

ence point in time, with the implication being that more distant

allele sharing prior to that time is not considered in the determina-

tion of IBD.22 Consider, for example, two different time points,

and as a result, two different reference populations for the determi-

nation of IBD, as illustrated in Figure 1. When the ancestral popu-

lation at time t0 is considered to be the reference for allele sharing,

alleles can be IBD due to both distant genetic relatedness, which

manifests as population structure, as well as more recent genetic

relatedness, such as pedigree structure. Alternatively, if the refer-

ence population for assessing IBD is composed of the K subpopu-

lations at time tK, then the ancestral history from t0 to tK is ignored,

and only alleles that are recent copies of the same allele, i.e., since

time tK, are designated to be IBD.

The kinship coefficient for a pair of individuals i and j is

commonly defined to be the probability that a random allele

selected from i and a random allele selected from j at a locus are

IBD.We denote jij to be the kinship coefficient when the common

ancestral population from which the K subpopulations descended

is the reference population, and we denote fij to be the kinship co-

efficient when the reference population is composed of the K sub-

populations. In many applications, it is also of interest to estimate

an individual’s inbreeding coefficient, where the inbreeding coef-

ficient for individual i is defined to be the probability that i’s two

alleles at a locus are IBD. Analogous to the kinship coefficient, the

inbreeding coefficient also depends on the choice of reference

population. We use the notation Fi when inbreeding is considered

relative to the ancestral population, and fi is used when inbreeding
, 2016



Figure 1. Illustration of Identity by
Descent in Relation to Choice of Refer-
ence Population
Each solid dot in the figure represents an
allele. The K distinct subpopulations at
time tK descended from one common
ancestral population at time t0. The param-
eter qk is the correlation of a random pair
of alleles from subpopulation k relative to
the total population, and the parameter
qkk0 is the correlation of a random allele
from subpopulation k and a random allele
from subpopulation k0 relative to the total
population. The current population of al-
leles at time tN includes alleles descended
from all K subpopulations. A sample indi-
vidual drawn from this current population
might have alleles descended from multi-
ple subpopulations, resulting in admixed
ancestry. When the ancestral population
at time t0 is treated as the reference popu-
lation, alleles d, e, and h are IBD, because

all three descended from the same allele, a. Therefore, the parameters jij and Fi treat alleles d, e, and h as IBDwhenmeasuring relatedness.
On the other hand, when the ancestral history prior to time tK is ignored and the set of K subpopulations are treated as the reference
population, only alleles e and h are IBD, because both descended from the same allele, c. Allele d is not IBD to e and h, because allele
d descended from allele b, which is distinct from allele c at time tK. Therefore, the parameters fij and fi treat only alleles e and h as
IBD when measuring relatedness, because more distant sharing prior to time tK is ignored.
is considered relative to the subpopulation to which individual i

belongs. Fi and fi are often referred to asWright’s FITand FIS, respec-

tively.23 It is worth noting that the inbreeding coefficient can

also be expressed as a function of the corresponding self-kinship

coefficient, in regards to choice of reference population; i.e.,

Fi ¼ ð2jii � 1Þ and fi ¼ (2fii � 1). A description of the relationship

between IBD and these parameters is also presented in the legend

of Figure 1.

For inference on recent genetic relatedness, the parameters fij

and fi are often of interest, because these represent IBD due to

recent sharing of alleles, such as between pairs of relatives in a

pedigree. In addition, when individuals i and j are assumed to be

outbred, estimation of the IBD sharing probabilities k
ð2Þ
ij , k

ð1Þ
ij ,

and k
ð0Þ
ij , which are defined to be the probability that i and j share

2, 1, or 0 alleles IBD at a locus, respectively, is also generally of

interest.

Convolution of Recent and Distant Genetic

Relatedness
A widely used empirical genetic relationship matrix (GRM) has

been proposed for inference on population structure (distant

genetic relatedness) in samples without close relatives,24 as

well as inference on recent kinship and heritability estimation

of complex traits in samples derived from a single popula-

tion.10,25 For i ˛ N and s ˛ S, let the random variable gis be the

number of copies of an arbitrarily chosen reference allele that in-

dividual i has at SNP s; thus, gis takes values of 0, 1, or 2 and has

expectation E½gis� ¼ 2ps. The entries in this GRM measure the ge-

notype correlations for pairs of individuals i, j ˛ N under the

assumption that the variance of gis is Var[gis] ¼ 2 ps (1 � ps),

which corresponds to population genotype frequencies in

Hardy-Weinberg (HW) proportions. The [i, j]th element of this

matrix is given by 2bjij, where

bjij ¼
1

j Sij j
X
s˛Sij

�
gis � 2bps

��
gjs � 2bps

�
4bps

�
1� bps

� ; (Equation 1)
The Amer
Sij is the subset of SNPs for which individuals i and j both have

non-missing genotype data,
��Sij

�� is the number of SNPs in this

subset, and bps is an estimate of the population allele frequency

at SNP s. Note that even if the genotypes are not in HW propor-

tions, this quantity is still a scaled measure of the genotype covari-

ance for i and j.

In samples with both distant and recent genetic relatedness, bjij

might not provide reliable inference on population structure or be

an appropriate estimator of kinship due to recent IBD sharing be-

tween familial relatives. As the number of independent SNPs in Sij
tends toN, and with the true ps assumed known for each s ˛ Sij, it

can be shown (see Appendix A) that

bjij/fij þ qij � bjði; jÞ; (Equation 2)

where qijhaT
i QKaj is the coancestry coefficient due to population

structure for the pair of individuals i and j and bjði; jÞ is a function

of the coancestry among i and j’s most recent common ancestors.

The estimator bjij measures genetic similarity due to both recent

and distant genetic relatedness. Furthermore, it can be shown

(Appendix A) that bjij/fij, the kinship coefficient for i and j

due to recent IBD sharing, only in a homogeneous population

(i.e., K ¼ 1). Similarly, when this empirical GRM is used for infer-

ence on population structure due to allele sharing from more

distant common ancestors, as measured by qij for all i, j ˛ N, there

is confounding by recent genetic relatedness. In the following sub-

sections, we describe methodology for partitioning genetic corre-

lations among sampled individuals due to distant versus recent ge-

netic relatedness into separate components.

Inferring Population Structure in the Presence of

Recent Genetic Relatedness
The widely used PCA approach for population structure inference

from SNP genotype data uses an empirical GRM to measure simi-

larity in genetic ancestry among sampled individuals, where the

[i, j]th element of the GRM is given by Equation 1.24 However,

Equation 2 shows that when there are familial relatives in a
ican Journal of Human Genetics 98, 127–148, January 7, 2016 129



sample, inference on measures of coancestry due to population

structure, qij, which are the desired parameters of interest in

this application, are convoluted by recent kinship, fij, among

the sampled individuals. As a consequence, PCA applied to

all sampled individuals can result in artifactual principal compo-

nents (PCs) for ancestry that are confounded by recent pedigree

structure.4

We recently developed the PC-AiR4 method for robust inference

on population structure (or distant genetic relatedness) in the

presence of recent genetic relatedness, known or cryptic, among

sampled individuals. PC-AiR uses SNP genotype data to identify

a mutually unrelated subset of individuals (i.e., fij z 0 for all pairs

i, j in this subset) that is representative of the ancestral diversity in

the entire sample. PCA is implemented with an empirical GRM

calculated for the selected unrelated subset of individuals, thus

providing PCs that are representative of population structure in

the sample, and PC values for all remaining sampled individuals

are predicted based on genetic similarities with individuals in

the unrelated subset.
Model-Free Estimation of Recent Kinship in Samples

with Unspecified Structure
The estimator bjij given in Equation 1 measures genetic similarity

between individuals i and j relative to the common ancestral pop-

ulation, and both recent familial relatedness and population struc-

ture contribute to this estimate, as shown by Equation 2. To re-

move the contribution of population structure from the kinship

estimate, the previously proposed REAPmethod uses a similar esti-

mator to that given in Equation 1, but with estimates of individ-

ual-specific allele frequencies, bmis, used in place of estimates of

population allele frequencies, bps, where mis is defined to be the ex-

pected allele frequency at SNP s conditional on i’s ancestral back-

ground. In REAP, bmis is obtained using estimates of individual

ancestry proportions and subpopulation-specific allele frequencies

from model-based ancestry estimation software, such as ADMIX-

TURE or FRAPPE. Model-based methods, however, have limita-

tions because the ancestral populations from which the sampled

individuals descended are often unknown or not well defined,

and ancestry estimates can be inaccurate when these populations

are either misspecified or not well represented by reference popu-

lation panels used in the analysis.12 In addition, it has been

shown4 that ancestry estimates from model-based methods can

be confounded by familial relatedness due to the inability of these

methods to adequately distinguish between ancestral groups and

clusters of close relatives. Consequentially, relatedness estimation

methods that rely on model-based ancestry estimates, such as

REAP and RelateAdmix, can give biased relatedness estimates.

We now describe the PC-Relate approach to relatedness infer-

ence that does not require specification of the ancestral popula-

tions, individual ancestry estimates, allele frequencies of the

subpopulations, or external reference population panels. Consider

a set N of sampled individuals, and let jN j be the number of

individuals in N. Assume that the top D PCs from the PC-AiR

method discussed in the previous subsection reflect the popula-

tion structure in this sample, and let V ¼ ½V1;.;VD� be an

jN j3D matrix whose column vectors correspond to the top D

PCs. Let gs be a length jN j vector of genotype values for all

sampled individuals at SNP s, and consider the linear regression

model E½gs jV� ¼ 1b0 þ Vb, where 1 is a length jN j vector of 1s,

and b ¼ (b1,...,bD)
T is a length D vector of regression coefficients

for each of the PCs. Because the top D PCs completely capture
130 The American Journal of Human Genetics 98, 127–148, January 7
the population structure in the sample, the expectation of gs con-

ditional on V is equivalent to the expectation of gs conditional on

the true ancestries of the sampled individuals. Therefore, the fitted

values from this linear regression model can be used to predict in-

dividual-specific allele frequencies from the PCs, and our proposed

estimator for mis at each SNP s ˛ S is

bmis ¼
1

2
bE�gis j V1

i ;.;VD
i

� ¼ 1

2

 bb0 þ
XD
d¼1

bbdV
d
i

!
; (Equation 3)

where Vd
i is the coordinate for individual i along the dth PC, Vd,

with d ˛ {1,...,D}. Because each PC has mean 0, ð1=2Þbb0 is equal

to the sample average allele frequency at SNP s, which can be in-

terpreted as an estimate of ps, the population allele frequency,

and each of the parameter estimates bbd can be viewed as a measure

of deviation in allele frequency from the sample average due to the

ancestry component represented by Vd. Using the estimator in

Equation 3, bmis can potentially fall outside of the [0,1] interval if

the minor allele frequency for SNP s is near 0 in the sample. If

this occurs, logistic regression could be used in lieu of linear regres-

sion for predicting bmis at SNP s, which would ensure predicted

values in the [0,1] interval. Logistic regression, however, is signif-

icantly more computationally expensive than linear regression

and should not be necessary in practice because genetic studies

with genome-wide data should have more than enough polymor-

phic markers for reliable inference on relatedness, and SNPs with

low minor allele frequencies can be excluded from the analysis.

Alternatively, one could set any bmis%0 equal to x and bmisR1 equal

to 1 � x, where x is some small positive value.

The PC-Relate estimator of the kinship coefficientfij for individ-

uals i and j is

bfij ¼
P

s˛Sij
ðgis � 2bmisÞ

�
gjs � 2bmjs

�
4
P

s˛Sij

�bmisð1� bmisÞbmjs

�
1� bmjs

��1=2; (Equation 4)

where bmis and bmjs are the estimated individual-specific allele fre-

quencies for individuals i and j, respectively, at SNP s. This

estimator accounts for population structure by using genotype

values centered and scaled by individual-specific allele fre-

quencies. Unlike the estimator in Equation 1, which is calculated

as an unweighted average of ratios across loci, the PC-Relate

kinship coefficient estimator can essentially be viewed as a

weighted ratio of averages across loci,23,26 which results in a

more stable estimator with lower sampling variability, particularly

when SNPs with low minor allele frequencies are included in the

relatedness analysis.27 The estimator bfij measures the scaled resid-

ual genetic covariance between i and j after conditioning on their

respective individual ancestries. An important feature of bfij is that

the estimator is constructed using residuals from linear regression

models that include PCs as predictors, and, therefore, the residuals

are orthogonal to the PCs. As a result, bfij measures genetic related-

ness due to alleles shared IBD between i and j from recent common

ancestors, because genetic similarities (or differences) due to more

distant ancestry, as represented by the PCs in V, have been re-

gressed out.

Derivations of the limiting behavior of bfij are presented in Ap-

pendix A. For unrelated pairs of individuals (i.e., fij ¼ 0), bfij/0

regardless of the underlying population structure in the sample.

For familial relatives, bfij/fij in the presence of discrete popula-

tion substructure with no admixture among the K subpopulations.

If i and j are related and have admixed ancestry, bfij might have a

small asymptotic bias for the estimation of fij; however, we
, 2016



demonstrate in simulation studies that this bias is negligible, and

PC-Relate provides accurate inference of pedigree relationships in

the presence of complex population structure with admixture

from divergent populations.

Estimating Inbreeding in the Presence of Population

Structure
The estimator bjii, which is bjij given by Equation 1 evaluated at

i ¼ j, can be used for the estimation of inbreeding coefficients rela-

tive to the common ancestral population. Let Si be the set of SNPs

for which i has non-missing genotype data. With the true ps
assumed known for all s ˛ Si, as the number of independent

SNPs in Si tends to N, it can be shown that

bFih
�
2bjii � 1

�
/fi

�
1� qMðiÞPðiÞ

�þ qMðiÞPðiÞ; (Equation 5)

where the indices M(i) and P(i) represent the mother and father of

individual i, respectively. This limiting value is an expression of

the total inbreeding coefficient, Fi (or FIT), relative to the ancestral

population, which might be more easily interpretable in the

setting of discrete population substructure, for which qM(i)P(i) ¼
qk (or FST) when M(i) and P(i) both belong to subpopulation k,

and bFi/fi½1� qk� þ qkhFi.
23 Analogous to the properties of bjij

for estimation of kinship coefficients, the estimator bFi is consis-

tent for fi (or FIS), the inbreeding coefficient due to recent family

relatedness, only in a homogeneous population.

The PC-Relate estimator for the inbreeding coefficient fi of indi-

vidual i is

bf ih
�
2bfii � 1

� ¼ P
s˛Si

ðgis � 2bmisÞ2
2
P

s˛Si
bmisð1� bmisÞ

� 1: (Equation 6)

Under similar assumptions to those used for deriving the limiting

value of bFi given in Equation 5, but with the true mis assumed

known for all s ˛ Si, it can be shown that

bf i/fi
�
1� bf ðiÞ

�þ bf ðiÞ; (Equation 7)

where bf (i) ¼ [qM(i)P(i) � qii] / [1 � qii], and qiihaT
i QKai. Similar to

the PC-Relate estimator bfij for kinship coefficients, the estimatorbf i provides a consistent estimate of fi in the presence of discrete

population substructure (since bf (i) ¼ 0), and the asymptotic

bias is expected to be small in general population structure set-

tings, including ancestry admixture.

The parameters Fi and fi can alternatively be viewed as measures

of the departure of the observed genotype counts for individual i

from the expected counts assuming HW proportions. A positive

value indicates more homozygous genotypes than expected, and

a negative value indicates more heterozygous genotypes than

expected. For inbreeding coefficient estimators that assume popu-

lation homogeneity, such as bFi, expected genotype counts are

calculated based on population allele frequencies. The PC-Relate

estimator bf i, however, computes expected genotype counts based

on individual-specific allele frequencies, and this allows PC-Relate

to provide accurate estimates of recent inbreeding in the presence

of population structure.

It is worth noting that admixed individuals who are the

offspring of parents who have different ancestry will have more

heterozygous genotypes than expected based on HW proportions

calculated using individual-specific allele frequencies. Therefore,

the PC-Relate estimator can also be used for the detection of

individuals who are descendants of parents with large ancestry

differences. Specifically, for an outbred individual (i.e., fi ¼ 0),
The Amer
Equation 7 shows that bf i/bf ðiÞ, which can be rewritten as

�ð1=4Þ½ðaMðiÞ � aPðiÞÞTQKðaMðiÞ � aPðiÞÞ�=½1� qii� and is systemati-

cally negative when aMðiÞsaPðiÞ. This limiting value is biased for

the inbreeding coefficient, but it is an accurate representation of

the excess heterozygosity of an offspring from the mating of par-

ents with different ancestry. In practice, the magnitude of bf(i)

tends to be small unless M(i) and P(i) have large differences in

ancestry. Although this bias can confound the estimation of

inbreeding coefficients, it might provide inference on individuals

who are few generations removed from an admixing event with

two or more divergent populations.
Estimating Probabilities of Recent IBD Sharing in a

Structured Population
We now describe the PC-Relate approach for the estimation of IBD

sharing probabilities in samples with population structure. First,

consider a sample from an outbred homogeneous population.

For i ˛ N and s ˛ S, let the random variable gDis be an alternative

genotype coding that takes the values bps, 0, and ð1� bpsÞ in

lieu of the values 0, 1, and 2 taken by the traditional additive ge-

notype coding, gis, respectively. We refer to gDis as the dominance

genotype coding because it is constructed to be orthogonal to

the additive genotype coding assuming HW proportions (i.e.,

Cov½gis; gDis � ¼ 0). The gDis coding that we use is equivalent to a geno-

type coding previously proposed by Vitezica et al.28 up to a shift

and re-scaling.When genotype frequencies are in HWproportions

and the true ps is known, gDis has expectation E½gDis � ¼ psð1� psÞ and
variance Var½gDis � ¼ ½psð1� psÞ�2. Analogous to jij, which measures

the correlation of the genotype values gis and gjs without condi-

tioning on ancestry, we define the quantity dij to be the uncondi-

tional correlation between gDis and gDjs . An estimator of dij is

bdij ¼ 1

j Sij j
X
s˛Sij

�
gDis � bps

�
1� bps

���
gDjs � bps

�
1� bps

���bps

�
1� bps

��2 ; (Equation 8)

which is equivalent to the [i, j]th element of a previously proposed

empirical dominance genetic relationship matrix used for the esti-

mation of dominance genetic variance of quantitative traits with

linear mixed models.28 Additionally, bdij has been proposed29 as

an estimator of k
ð2Þ
ij , and for a sample from a homogenous popula-

tion with ps known and genotype counts in HW proportions, it

can be shown that bdij/k
ð2Þ
ij as the number of independent SNPs

in Sij tends to N (see Appendix B).

Now consider individuals in N sampled from an outbred popu-

lation with stratification. The estimator bdij is no longer a consis-

tent estimator of k
ð2Þ
ij due to confounding by distant genetic

relatedness. For the estimation of k
ð2Þ
ij in the presence of popula-

tion structure, we propose using a similar dominance genotype

coding to gDis given above, but with individual-specific allele fre-

quencies, bmis, used in lieu of bps for each i ˛ N and s ˛ S. Analogous

to the PC-Relate kinship coefficient estimator bfij given by Equa-

tion 4, the PC-Relate estimator of k
ð2Þ
ij is

bkð2Þ
ij ¼

P
s˛Sij

h
gDis � bmisð1� bmisÞ

�
1þ bf i

�ih
gDjs � bmjs

�
1� bmjs

��
1þ bf j

�i
P

s˛Sij
bmisð1� bmisÞbmjs

�
1� bmjs

� ;

(Equation 9)

where bf i, given inEquation6, accounts for thedepartures fromHW

proportions due to population structure. The estimator bkð2Þij /k
ð2Þ
ij

for unrelated pairs in general population structure settings and

pairs of familial relatives in the presence of discrete population
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substructure (see Appendix B). Similar to bfij, the estimator bkð2Þij also

has an asymptotic bias for admixed relative pairs, but our simula-

tion studies demonstrate that this bias tends to be small.

We also propose PC-Relate estimators for the probabilities of

sharing 0 and 1 alleles IBD in structured populations. For the esti-

mation of k
ð0Þ
ij , PC-Relate incorporates two estimators in combina-

tion, because we find each estimator is optimal, in terms of having

lower mean squared error, for different relationship types. For

pairs of individuals with estimated kinship coefficients consistent

with values expected for first-degree relatives, we use an estimator

that is a function of the number of opposite homozygote genotype

calls.11,12 For pairs of individuals with kinship coefficient esti-

mates that are less than what is expected for first-degree relatives,

an estimator calculated as a function of bfij and
bkð2Þij using the iden-

tities k
ð0Þ
ij þ k

ð1Þ
ij þ k

ð2Þ
ij ¼ 1 and fij ¼ ð1=2Þkð2Þij þ ð1=4Þkð1Þij is used.

The PC-Relate estimator for k
ð0Þ
ij is

bkð0Þ
ij ¼

8>>>>>>><>>>>>>>:

X
s˛Sij

1½ j gis�gjs j ¼2�X
s˛Sij

hbm2
is

�
1� bmjs

�2þð1� bmisÞ2bm2
js

i if bfij >2�5=2z0:177

1� 4bfij þ bkð2Þ
ij if bfij %2�5=2z0:177

:

(Equation 10)

The final IBD sharing probability, k
ð1Þ
ij , can be obtained from the

identities above and is simply estimated as bkð1Þij ¼ 1� bkð0Þij � bkð2Þij .

Estimating Familial Relatedness in Inbred

Populations
In populations with inbreeding, more careful consideration is

necessary for the estimation of pairwise relatedness measures.

The PC-Relate estimator bfij presented in Equation 4 is still an

appropriate estimator of the kinship coefficient due to recent pedi-

gree structure in inbred populations. The estimators bkð2Þij of Equa-

tion 9 and bkð0Þij of Equation 10, however, are not well defined in

an inbred population, because there are no longer only three

possible IBD states at a locus for a pair of individuals. For inbred

populations, there are nine possible condensed IBD states as given

by Jacquard,30 and developing methodology for accurate estima-

tion of IBD probabilities in inbred populations with heterogenous

ancestry is future work to be considered.

Simulation Studies
Simulation studies with familial relatives sampled from structured

populations are performed in order to (1) assess the accuracy of the

PC-Relate estimators for kinship coefficients, IBD sharing proba-

bilities, and inbreeding coefficients in the presence of population

structure, and (2) compare the performance of PC-Relate to exist-

ing relatedness estimation approaches that are commonly used.

We simulate individuals in pedigrees that have ancestry derived

from three subpopulations that all descended from a common

ancestral population. In order to investigate the asymptotic bias

of the different relatedness estimators, allele frequencies for

100,000 independent SNPs are generated for each subpopulation

using the Balding-Nichols model.31 More precisely, for each

SNP s, the ancestral allele frequency ps is drawn from a uniform

distribution on [0.1, 0.9], and the allele frequency pks in subpopu-

lation k˛ {1,2,3} is drawn from a beta distribution with parameters

ps (1 � qk) / qk and (1 � ps)(1 � qk) / qk, where qk is the k
th diagonal

entry of the population structure covariance matrix QK. We simu-

late divergent subpopulations, with population structure parame-
132 The American Journal of Human Genetics 98, 127–148, January 7
ters in the model having similar values to what has been estimated

among different continental populations.27,32 In particular, we set

the diagonal values ofQK to be q1 ¼ 0.05, q2 ¼ 0.15, and q3 ¼ 0.25.

The off-diagonal elements of QK are 0 in the Balding-Nichols

model.

We consider three population structure settings, which we refer

to as population structures I, II, and III. Population structures I and

II both consist of individuals with admixed ancestry. For popula-

tion structure I, pedigree founders have ancestry vectors, ai, drawn

from a Dirichlet(1,1,1) distribution, resulting in equal contribu-

tions of ancestry, on average, from each subpopulation. For popu-

lation structure II, founders for half of the pedigrees have ancestry

vectors drawn from a Dirichlet(6,2,0.25) distribution, resulting in

mean ancestry proportions of 0.73, 0.24, and 0.03 from subpopu-

lations 1, 2, and 3, respectively; the parameters of the Dirichlet dis-

tribution for subpopulations 1 and 2 are reversed for founders in

the other half of the pedigrees, with ancestry vectors drawn

from a Dirichlet(2,6,0.25) distribution. Population structure III

consists of non-admixed individuals, where approximately equal

numbers of pedigrees are sampled from each of the three subpop-

ulations. Population structure settings II and III result in ancestry

assortative mating, because the founder individuals in every pedi-

gree have either the same (population structure III) or similar (pop-

ulation structure II) ancestry, whereas population structure I has

completely random mating, allowing for the possibility of close

relatives with large ancestry differences. Genotypes for pedigree

founders are generated independently at each SNP, with the geno-

type value for founder i at SNP s drawn from a Binomial(2, aT
i ps)

distribution. Alleles are independently dropped down the pedigree

to generate genotypes for all descendants, with ancestry vectors

calculated as the average of their respective parents.

We compare the performance of PC-Relate to the PLINK and

KING-robust relatedness estimators, which assume population ho-

mogeneity and discrete population substructure, respectively. We

also consider the PC-Relate estimators under the assumption of

population homogeneity, where individual-specific allele fre-

quencies are replaced by sample average allele frequencies. The

unadjusted versions of the PC-Relate estimators are slight modifi-

cations of the estimators given by Equations 1, 5, and 8, and we

refer to them as the ‘‘homogeneous estimators.’’ All four of the

aforementioned methods estimate relatedness using only geno-

type data from the sampled individuals. We also conduct simula-

tion studies comparing the performance of PC-Relate to the

model-based REAP and RelateAdmix methods, which are provided

both individual ancestry proportions and subpopulation-specific

allele frequencies estimated from a supervised ancestry analysis

conducted with the ADMIXTURE software. For the ADMIXTURE

analysis, the number of ancestral populations is correctly set

to K ¼ 3, and reference population panels consisting of 50

randomly sampled unrelated individuals from each of the three

subpopulations are included as fixed groups. The PC-Relate relat-

edness estimates are calculated using the first two PCs from PC-

AiR, and for each individual i, we exclude SNPs from the PC-Relate

analysis with bmis less than 0.05 or greater than 0.95. The

relatedness estimation analyses with the PLINK, KING-robust,

REAP, and RelateAdmix software are conducted using the default

settings.
Classification of Relationship Types
Familial relationship types are inferred for all pairs of individuals

using the relatedness estimates from each of the methods
, 2016



Figure 2. Relatedness Estimation in the
Presence of Ancestry Admixture
Scatter plots of estimated kinship coeffi-
cients against estimated probabilities of
sharing zero alleles IBD, k(0), for each pair
of individuals from (A) PC-Relate, (C) the
Homogeneous Estimators, and (D) PLINK.
KING-robust (B) does not provide IBD
sharing probability estimates for struc-
tured populations, so estimated kinship
coefficients are plotted against the propor-
tion of SNPs where the pair of individuals
are opposite homozygotes; i.e., share zero
alleles identical by state (IBS). Each point
is color coded by the true relationship
type of the pair of individuals, and the
colored dashed lines show the theoretical
expected values for the corresponding rela-
tionship type.
considered. Using the criteria given in Manichaikul et al.,11 a pair

of individuals is classified to have a dth degree relationship if their

estimated kinship coefficient is in the interval (2�(dþ3/2),2�(dþ1/2));

note that monozygotic twins have d ¼ 0. For pairs of individuals

with kinship coefficient estimates corresponding to first-degree

relatives, an estimate of k(0) is used for all methods, except

KING-robust, to distinguish parent-offspring from full sibling rela-

tionships, where pairs with a k(0) estimate less than 2(�9/2) z 0.044

are classified as parent-offspring. Because KING-robust does not

provide IBD sharing probability estimates in structured popula-

tions, parent-offspring are distinguished from full siblings by us-

ing a threshold of 0.005 for the proportion of loci at which the

pair shares zero alleles identical by state. Double first cousins

have expected k(2) ¼ 0.0625 and f ¼ 0.125, and for all methods

except KING-robust, double first cousins are distinguished from

other second-degree relatives, such as half-sibling and avuncular

relationships, based on having an estimated k(2) greater than

2(�9/2) z 0.044.
Results

Evaluation of Genetic Relatedness Estimators without

Reference Panels

We considered relatedness inference and estimation under

population structures I, II, and III for a sample with 1,000

individuals from 40 non-inbred four-generation pedigrees,

where each pedigree has a total of 25 individuals, shown in

Figure S1. Figure 2 shows the relatedness estimation results

from PC-Relate, KING-robust, the homogeneous estima-
The American Journal of Human G
tors, and PLINK under population

structure I for the first- to fifth-degree

relatives and unrelated pairs. Mating

is completely at random for this

population structure setting, thereby

allowing for the possibility of close

relatives with very different ancestry.

The PC-Relate estimators provided ac-

curate relatedness estimates, with low

variability, and relationships were

correctly inferred for all pairs of indi-

viduals, regardless of their ancestries (Figure 3A). All other

methods considered gave biased relatedness estimates that

were extremely variable due to the population structure.

Except for the first-degree relatives, it was not possible to

reliably distinguish between the different relationship

types with the relatedness estimates from these competing

approaches.

We found that the KING-robust kinship coefficient esti-

mator could be either negatively or positively biased in this

simulation setting, which is consistent with our analytical

results for this estimator (see Appendix A for derivation).

Pairs of individuals having different ancestries led to a

negative bias that increased as the ancestry difference be-

tween the pair increased (Figure 3B). This was most notice-

able in more distant familial relationships, where multiple

generations of admixture resulted in very different pro-

portional ancestry for some relative pairs, as well as in

unrelated pairs with different ancestries, for which kinship

coefficient estimates were negative. Many of the KING-

robust kinship coefficient estimates were negatively

biased, which resulted in 6 pairs (0.21%) of second-degree

and 68 pairs (5.15%) of third-degree relatives being incor-

rectly inferred to be unrelated. On the other hand, if either

individual in a pair was the offspring of parents with large

differences in ancestry, the kinship coefficient estimate

with KING-robust had a positive bias. As a consequence,

51 pairs (0.01%) of unrelated individuals and 59 pairs

(6.15%) of fourth-degree relatives were incorrectly inferred
enetics 98, 127–148, January 7, 2016 133



Figure 3. Kinship Coefficient Estimation
as a Function of Ancestry Difference
Scatter plots of estimated kinship coeffi-
cients against ancestry proportion dis-

tances, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1qkðaki � akj Þ2
q

, for

each pair of individuals for (A) PC-Relate,
(B) KING-robust, (C) the Homogeneous Es-
timators, and (D) PLINK. Each point is color
coded by the true relationship type of the
pair of individuals, and the colored dashed
lines show the theoretical expected value
for the corresponding relationship type.
to be third-degree relatives, while an additional 6 pairs

(0.45%) of third-degree relatives were mistakenly identi-

fied as second-degree relatives.

Both PLINK and the homogeneous estimators provided

inflated kinship coefficient estimates for pairs of individ-

uals with similar ancestry, which resulted in a large num-

ber of unrelated pairs being incorrectly identified as close

relatives (Figures 3C and 3D). For example, the inflation

of the kinship coefficient estimates from the homogeneous

estimator resulted in 134 pairs (0.03%) and 1,653 pairs

(0.34%) of unrelated individuals being incorrectly in-

ferred as second- and third-degree relatives, respectively.

Figure S2 shows that the estimators that assume popula-

tion homogeneity tended to give inflated k(2) estimates

and deflated k(0) estimates that were highly variable. In

contrast, PC-Relate provided accurate estimates of IBD

sharing probabilities with substantially lower variability.

A recent paper13 proposed an algorithm for correcting

PLINK estimates of recent genetic relatedness in structured

populations. For this approach, PCA is applied to a subset

of mutually unrelated pairs, as inferred using PLINK

kinship coefficient estimates, and SNPs that are highly

correlated with any of the top PCs are identified to be

‘‘ancestry informative markers’’ (AIMs), because the top

PCs are expected to be informative for population struc-

ture. A second relatedness analysis is then conducted

with PLINK excluding SNPs identified as AIMs in order to

decrease the bias in the relatedness estimates due to popu-
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lation structure. We applied this pro-

cedure to the simulated data. The

PLINK relatedness estimates were still

quite biased and highly variable, even

with the 30,837 SNPs identified to be

AIMs excluded from the analysis, and

there was only a modest improve-

ment in relatedness inference as

compared to the PLINK analysis

that used all of the SNPs (Figure S3).

For example, PLINK with inferred

AIMs excluded from the relatedness

analysis incorrectly identified 305

(0.06%) unrelated pairs as third-de-

gree relatives, as compared to 627

unrelated pairs (0.13%) that weremis-
classified when using all SNPs. Also, the PLINK analysis

with AIMs removed and the analysis using all SNPs

resulted in 24 pairs (0.95%) and 39 pairs (1.55%), respec-

tively, of unilineal second-degree relatives being incor-

rectly identified as double first cousins due to inflated k(2)

estimates. The substantial bias in the relatedness estimates

suggests that many SNPs not identified as AIMs by this al-

gorithm have substantial allele frequency differentiation

among the underlying populations, but their correlations

with the top PCs are not high enough to reach the algo-

rithm’s significance threshold. Identifying SNPs that

are uninformative for ancestry is a significant challenge

without the use of appropriate reference population panels

and prior knowledge about the ancestries in the sample,

and our simulation study results show that the proposed

approach for correcting PLINK relatedness estimates by

excluding inferred AIMs can perform poorly in samples

from admixed populations.

The relatedness estimation results under population

structure II are given in Figures S4–S6. In this population

structure setting, there is assortative mating for ancestry,

with founders of a pedigree having similar admixed

ancestry. As we expected, PC-Relate provided accurate esti-

mates and all other methods were biased in this setting.

The biases for the other methods were not as extreme or

variable for population structure II as compared to popula-

tion structure I. However, it was not possible to reliably

distinguish relationships more distant than second degree



Figure 4. Comparison of PC-Relate to
Model-Based Estimators
Scatter plots of estimated kinship coeffi-
cients against estimated probabilities of
sharing zero alleles IBD, k(0), for each pair
of individuals from (A) PC-Relate, (B) Rela-
teAdmix, and (C) REAP. Scatter plots of the
estimated probabilities of sharing two al-
leles IBD, k(2), against k(0) for each pair of
individuals from (D) PC-Relate, (E) Rela-
teAdmix, and (F) REAP. Each point is color
coded by the true relationship type of the
pair of individuals, and the colored dashed
lines show the theoretical expected value
for the corresponding relationship type.
with the competing methods. The negative bias in the

KING-robust estimator was pervasive for pairs of individ-

uals with different ancestry, but the positive bias was not

as prominent because matings in this simulation setting

were generally between individuals of similar ancestry.

Finally, we considered relatedness estimation under pop-

ulation structure III, where there is discrete population

substructure (Figures S7–S9). PC-Relate provided consis-

tent estimates of relatedness with low variability. For pairs

of individuals with the same ancestry, KING-robust also

provided consistent kinship coefficient estimates, which

was expected because the method’s assumption of ances-

trally distinct subpopulations without admixture is valid

in this simulation setting. KING-robust provided estimates
The American Journal of Human G
of kinship that were negative for un-

related pairs of individuals from

different subpopulations, and the

magnitude of this negative bias can

be written as a function of the differ-

entiation among subpopulations, as

specified by QK, and the proportional

ancestries of the individuals (see Ap-

pendix A). PLINK and the homoge-

neous estimators performed poorly

in this setting, with large positive

biases within, and negative biases

across, subpopulations.

Comparison of PC-Relate to

Model-Based Relatedness

Estimators

We performed simulation studies un-

der population structure II to

compare the performance of PC-

Relate to the model-based REAP and

RelateAdmix methods that were

developed for relatedness inference

in samples from admixed popula-

tions. Both REAP and RelateAdmix

were provided individual ancestry

and subpopulation-specific allele fre-

quency estimates from a supervised
individual ancestry analysis with the ADMIXTURE soft-

ware, for which the number of ancestral populations was

correctly specified, and 50 reference samples from each

of the three underlying populations were included as fixed

groups. All three methods performed well in this setting, as

can be seen in Figure 4. Remarkably, the model-free PC-

Relate method performed as well as the model-based

methods despite not being provided any information

about the underlying ancestral populations, external refer-

ence population samples, or individual ancestry and sub-

population-specific allele frequency estimates. In addition,

kinship coefficient estimates with PC-Relate had the small-

est bias and variability formost relationship types (Table 1).

Kinship coefficient estimates with RelateAdmix were
enetics 98, 127–148, January 7, 2016 135



Table 1. Comparison of Kinship Coefficient Estimates by Relationship Type from PC-Relate and Model-Based Estimators

Relationship Type Expected PC-Relate RelateAdmix REAP

Parent-offspring 0.2500 0.2505 (0.0023) 0.2503 (0.0007) 0.2452 (0.0038)

Full siblings 0.2500 0.2501 (0.0021) 0.2480 (0.0019) 0.2442 (0.0027)

2nd degree 0.1250 0.1252 (0.0022) 0.1216 (0.0023) 0.1196 (0.0035)

3rd degree 0.0625 0.0626 (0.0020) 0.0581 (0.0024) 0.0572 (0.0030)

4th degree 0.0313 0.0311 (0.0019) 0.0259 (0.0024) 0.0254 (0.0026)

5th degree 0.0156 0.0156 (0.0017) 0.0108 (0.0022) 0.0106 (0.0022)

Unrelated 0.0000 0.0000 (0.0017) 0.0006 (0.0006) �0.0024 (0.0028)

The values presented in the table for each of the estimators are mean (SD) of the estimated kinship coefficients from the simulation setting with outbred pedigrees
under population structure II.
slightly negatively biased (Figure 4B) and the k(0) estimates

were slightly positively biased (Figure 4E) for all relation-

ship types except for parent-offspring and unrelateds;

note that RelateAdmix restricts estimates to be between

0 and 1, which probably explains why there is no apparent

bias for these two relationship types. The REAP kinship co-

efficient and k(2) estimates were both slightly negatively

biased (Figures 4C and 4F) for all relationship types. Addi-

tionally, the REAP estimates were more variable than the

estimates from either PC-Relate or RelateAdmix for all rela-

tionship types.

The slight bias observed in the REAP and RelateAdmix

relatedness estimates is caused by the bias in the individual

ancestry proportion estimates and variability in the

subpopulation-specific allele frequency estimates from

ADMIXTURE (Figure S10). Bias of relatedness estimates

with model-based approaches has previously been demon-

strated12 in a setting where the number of ancestral popu-

lations contributing to the sample was misspecified in the

individual ancestry analysis. It is important to note, how-

ever, that the relatedness estimates with the model-based

approaches had a small bias in this simulation study

despite the ancestral populations being correctly specified

and the supervised ADMIXTURE analysis being provided

reference population samples directly from the ancestral

populations from which the admixed individuals were

derived. As previously reported,4 individual ancestry pro-

portion estimates obtained from model-based methods

such as ADMIXTURE can be biased in the presence of fam-

ily structure, even when the population structure parame-

ters are correctly specified. We re-ran REAP using the true

individual ancestry proportions and subpopulation-spe-

cific allele frequencies used to simulate the data, and

the relatedness estimates had no bias and reduced standard

errors (Figure S11).

Robustness of Relatedness Inference with PC-Relate to

Choice of PCs

The appropriate number of PCs that should be used to

adjust for population structure in a PC-Relate analysis

will depend on the sample structure. A reasonable set of

PCs can often be selected by examining scatter plots and
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parallel coordinates plots of the top PCs to identify which

ones appear to reflect population structure, and by exam-

ining a scree plot of the eigenvalues to identify a point of

separation between PCs that explain a significant propor-

tion of the total variation in the data and those

that explain little variation. However, making the appro-

priate choice can be challenging, so we investigated the

sensitivity of relatedness inference with PC-Relate to the

number of PCs used in the analysis. Consider population

structure II, where there are only two dimensions of popu-

lation structure (i.e., ancestry contributed by three sub-

populations). Figure S12 displays the kinship coefficient

estimates from PC-Relate using varying numbers of PCs.

Relatedness estimates with PC-Relate were nearly identical

when using the top 2, 5, 10, or 20 PCs. However, including

the top 100 PCs, which is 50 times more PCs than are

required to explain the population structure in the sample,

resulted in a substantial increase in variability. In this

particular setting, choosing the number of PCs to be

within a factor of 10 of the appropriate number allowed

for accurate relatedness inference with PC-Relate. These re-

sults suggest that PC-Relate is quite robust to the choice of

PCs, provided that there are a sufficient number of PCs

included in the relatedness analysis to fully capture the

population structure in the sample.

Performance in Inbred Populations

We also examined the effect of inbreeding on the PC-

Relate and KING-robust kinship coefficient estimators

under population structure III, where there is discrete pop-

ulation substructure, since this is a setting in which both

estimators provide consistent kinship coefficient estimates

for outbred relative pairs. We generated a sample of 1,000

individuals from 50 inbred pedigrees, where each pedigree

consisted of 20 individuals and included a first-cousinmat-

ing as well as a mating between first cousins once removed,

both with two offspring, as shown in Figure S13. PC-Relate

provided consistent kinship coefficient estimates with

low variability, even in the presence of inbreeding. In

contrast, KING-robust provided consistent estimates only

for pairs of individuals who were both outbred and from

the same subpopulation (Figure S14). If at least one of
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the individuals in a pair was inbred, then the KING-robust

kinship coefficient estimate was negatively biased. The

magnitude of this negative bias became larger with higher

levels of inbreeding for each individual, and the derivation

of the relationship between this bias and the amount of

inbreeding is given in Appendix A. The same pedigree

configuration was also considered under population struc-

tures I and II, and PC-Relate provided accurate kinship

coefficient estimates for all pairs of individuals in the pres-

ence of both ancestry admixture and inbreeding.

We also estimated and compared inbreeding coefficients

using PC-Relate and the homogeneous estimator under

each population structure setting (Figures S15–S17). The

estimates from the homogeneous estimator were both in-

flated and highly variable, with many outbred individuals

having estimates that were consistent with being inbred.

In comparison, the PC-Relate estimates were accurate,

and the offspring of a first-cousin-once-removed or a

first-cousin mating could reliably be identified as being

inbred. We also found that offspring of parents with large

ancestry differences have excess heterozygosity relative to

what would be expected under HW proportions calculated

using individual-specific allele frequencies. As expected

from Equation 7, the PC-Relate inbreeding coefficient esti-

mates were negative for these individuals (Figure S15),

demonstrating that this estimator could potentially be

used as a diagnostic tool for identifying very recently ad-

mixed individuals with parents who have highly differen-

tiated ancestries.

WHI-SHARe Hispanic Cohort

The Women’s Health Initiative (WHI) is a long-term na-

tional health study in the United States for which a total

of 161,838 postmenopausal women aged 50–79 years old

were recruited from 40 clinical centers between 1993 and

1998. Information regarding these clinical centers, partici-

pating studies and trials, recruitment methods, and

detailed cohort characteristics have all previously been re-

ported.33,34 The WHI SNP Health Association Resource

(WHI-SHARe) Hispanic cohort consists of 3,587 women

from WHI who self-reported to be Hispanic/Latino, pro-

vided consent for DNA analysis, and were successfully gen-

otyped at Affymetrix on the Genome-wide Human SNP

Array 6.0.

Hispanic populations are known to have population

structure due to admixture of three major continental an-

cestries: European, Native American, and African. Further-

more, a recent study35 has shown additional subcontinen-

tal population structure within U.S. Hispanic populations.

From a set of 656,852 autosomal SNPs that passed QC,36

we filtered SNPs with sample MAF less than 5% and LD

pruned using an r2 threshold of 0.10. This filtering resulted

in 87,180 SNPs that were used in a PC-AiR analysis for

inference on distant genetic relatedness due to population

structure without using reference population panels. To

estimate individual ancestry proportions, we performed

a supervised ADMIXTURE analysis with the number
The Amer
of ancestral populations set to K ¼ 4, for which the

HapMap CEU (Utah residents with ancestry from northern

and western Europe from the Centre d’Etude du Polymor-

phisme Human collection) and YRI (Yoruba in Ibadan,

Nigeria) samples were included as the reference population

panels for European and African ancestry, respectively, the

HapMap CHB (Han Chinese in Beijing, China) and JPT

(Japanese in Tokyo, Japan) samples were included jointly

as the reference population panel for East Asian ancestry,

and the Human Genome Diversity Project (HGDP)37 sam-

ples from the Americas were included as the reference pop-

ulation panel for Native American ancestry. From the

collection of SNPs genotyped in each of WHI-SHARe,

HapMap, and HGDP, filtering based on a sample MAF

less than 5% and LD pruning based on an r2 threshold of

0.10 in the WHI-SHARe cohort resulted in 59,969 SNPs

used for the ADMIXTURE analysis.

The average estimated European, Native American, Afri-

can, and East Asian individual ancestry proportions from

the supervised ADMIXTURE analysis are 0.62 (SD ¼
0.19), 0.29 (SD ¼ 0.19), 0.08 (SD ¼ 0.12), and 0.01 (SD ¼
0.05), respectively. Figure S18 shows that only the top six

PCs from PC-AiR reflect identifiable population structure,

and we found high concordance between these PCs and

the ADMIXTURE estimates of individual ancestry from

the four continental populations. The top two PCs from

PC-AiR nearly perfectly captured the three prominent con-

tinental ancestries in WHI-SHARe, with R2 values of 0.99

for both European and African ancestry and an R2 of 0.97

for Native American ancestry. Note that the HGDP

Native American reference samples that were used for the

ADMIXTURE analysis were previously found38 to have

both recent European admixture and population substruc-

ture, which could have potentially confounded the

proportional ancestry estimates. In addition, PC-AiR PCs

3–6 explain 93% of the variability in the estimated

East Asian ancestry proportions, and they also reflect

additional structure that might be representative of more

fine-scale structure, such as subcontinental structure, that

is not identifiable with the supervised ADMIXTURE

analysis.

Inferring Recent Genetic Relatedness in WHI-SHARe

Hispanics

There is no reported genealogical information available for

WHI-SHARe, but a previous analysis12 used the REAP

method with reference population panels for the identifi-

cation of close familial relationships in the sample.

We applied PC-Relate, PLINK, and KING-robust to the

WHI-SHARe Hispanics for inference on recent genetic

relatedness without using reference population panels.

Relatedness estimates for all three methods were calculated

with the same 87,180 SNPs used in the PC-AiR analysis dis-

cussed in the previous subsection. The PC-Relate analysis

was adjusted for the top six PCs from PC-AiR. Because

the proportion of the genome that is shared IBD for

relative pairs varies as a result of the stochastic nature of
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Figure 5. Comparison of Kinship Coeffi-
cient Estimates in the WHI-SHARe His-
panic Cohort from Estimators without
Reference Panels
Scatter plots of estimated kinship coeffi-
cients from PC-Relate versus (A) KING-
robust and (B) PLINK for each pair of
individuals. The shaded gray box indi-
cates estimates where both methods
infer pairs to be more distant than
third-degree relatives or unrelated (both
classified as ‘‘unrelated’’ here). Each
point is color coded by the relationship
type of the pair of individuals, as in-
ferred from PC-Relate, and the colored
dashed lines show the theoretical
kinship values for the corresponding
relationship type. The relationship type

abbreviations in the legend are as follows: MZ, monozygotic twins; FS, full siblings; PO, parent/offspring; 2nd Deg., second-degree
relatives; 3rd Deg., third-degree relatives; Unrelated, more distant than third-degree relatives or unrelated.
segregation and recombination, distinct clustering is not

expected for third-degree or more distant relatives39,40

when using aggregate measures of relatedness from across

the genome. In addition, there is random error in the

estimation of IBD sharing from genome-screen data. We

therefore inferred pedigree relationships in the WHI-

SHARe Hispanics up to third-degree, and pairs of individ-

uals with kinship coefficient estimates less than the lower

threshold for third-degree relatives (i.e., 2(�9/2) z 0.044)

were classified as ‘‘unrelated.’’

Figure 5 provides a direct comparison of the PC-Relate

kinship coefficient estimates to those from KING-robust

and PLINK for all 6,431,491 pairs of individuals. Table 2

provides a comparison of the relationship assignments

for PC-Relate and KING-robust. There was perfect concor-

dance between PC-Relate and KING-robust for all first-de-

gree relatives. The majority of second- and third-degree

relatives identified by PC-Relate were also identified by

KING-robust. However, among pairs of individuals that

PC-Relate identified as unrelated, KING-robust identified

an additional 73 pairs (0.001%) of second-degree relatives

and 2,395 pairs (0.037%) of third-degree relatives. KING-

robust appears to be overestimating kinship for these pairs,

which is consistent with the results from our simulations

with ancestry admixture under population structure I.

Relationship inference with PLINK was also perfectly

concordant with PC-Relate for first-degree relatives. How-

ever, as expected from the simulation study results, PLINK

performed even worse than KING-robust in this admixed

sample, where 36,351 pairs (0.565%) that were identified

as being unrelated with PC-Relate were inferred to be

third-degree relatives (Table S1). We also examined the

distribution of the number of inferred relatives for each

individual in the sample from each method. The results

for PC-Relate (mean ¼ 0.089, maximum ¼ 3) were much

more consistent with the population-based sampling

design used for WHI-SHARe than the results for either

KING-robust (mean ¼ 1.463, maximum ¼ 118) or PLINK

(mean ¼ 20.360, maximum ¼ 2,897), where such large

numbers of close relatives is not plausible.
138 The American Journal of Human Genetics 98, 127–148, January 7
We also applied the previously proposed algorithm13 for

correcting relatedness inference with PLINK in structured

populations by excluding SNPs inferred to be AIMs. Only

60,642 of the 656,852 SNPs were not significantly associ-

ated with any of the top seven PCs that appeared to reflect

population structure from a PCA conducted on a subset of

2,008 individuals inferred to be mutually unrelated by

PLINK. We re-ran PLINK on all samples using this set of

60,642 SNPs inferred to be non-AIMs, and the resulting

kinship coefficient estimates are directly compared to

those from PC-Relate and the original PLINK analysis in

Figure S19. Surprisingly, the number of pairs identified as

unrelated with PC-Relate but inferred to be third-degree

relatives by PLINK actually increased from 36,351

(0.565%) in the original analysis to 59,913 (0.932%) by im-

plementing this procedure (Table S2). Similar to our simu-

lation studies, the proposed algorithm for identifying and

excluding AIMs for improved relatedness inference with

PLINK failed due to the complex ancestry admixture in

this sample.

We evaluated the robustness of PC-Relate to LD pruning

of SNPs for relatedness estimation in the WHI-SHARe His-

panic cohort. We performed PC-Relate using all 656,852

SNPs, and Figure S20 compares the kinship coefficient esti-

mates to those from our original analysis with PC-Relate

that used 87,180 LD pruned SNPs. The estimates are nearly

identical, with a correlation of 0.999 between kinship coef-

ficient estimates for pairs of individuals inferred to be rela-

tives with PC-Relate when using either the full set or the

subset of SNPs. Although these results suggest that LD

pruning might not be necessary for robust relatedness

inference with PC-Relate, we would still typically recom-

mend it, because it provides a reduction in the computa-

tional burden of relatedness estimation.

We also investigated how the choice of PCs impacted

relatedness inference with PC-Relate in the WHI-SHARe

Hispanic cohort (Figure S21). As expected, a PC-Relate

analysis that did not adjust for any PCs or adjusted for

only the top two PCs did not appropriately account for

all population structure in the sample, which resulted in
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Table 2. Pairwise Relationship Assignment from PC-Relate and KING-robust in the WHI-SHARe Hispanic Cohort

KING-robust

PC-Relate

MZ FS PO 2nd 3rd Unrel Total

MZ 1 0 0 0 0 0 1

FS 0 71 0 0 0 0 71

PO 0 0 8 0 0 0 8

2nd 0 0 0 17 5 73 95

3rd 0 0 0 1 53 2,395 2,449

Unrel 0 0 0 0 3 6,428,864 6,428,867

Total 1 71 8 18 61 6,431,332 6,431,491

The values in the table are the number of pairs of individuals inferred to be each relationship type. Relationship types are as follows: MZ, monozygotic twins; FS, full
siblings; PO, parent/offspring; 2nd, second-degree relatives; 3rd, third-degree relatives; Unrel, more distant than third-degree relatives or unrelated.
inflated kinship coefficient estimates. PC-Relate gave

nearly identical relatedness estimates when using the top

6, 10, or 20 PCs. Hence, including more than three times

as many PCs as we considered necessary had no impact

on relatedness inference with PC-Relate in theWHI-SHARe

Hispanics. This is consistent with our simulation study re-

sults where we demonstrated the robustness of PC-Relate

to choice of the number of PCs used for ancestry

adjustment.

Model-Free versus Model-Based Relatedness

Estimation in WHI-SHARe Hispanics

We also estimated recent genetic relatedness in the WHI-

SHARe Hispanics with the model-based methods REAP

and RelateAdmix using the same external reference popu-

lation panels and 59,969 SNPs used in the supervised

ADMIXTURE analysis previously discussed. Relatedness es-

timates from each of these methods, as well as PC-Relate,

are presented in Figure 6. For first- and second-degree rela-

tives, there was perfect concordance between PC-Relate

and RelateAdmix and nearly perfect concordance between

PC-Relate and REAP, where REAP identified two additional

second-degree relative pairs that both PC-Relate and

RelateAdmix inferred to be third-degree relatives. There

was also high concordance among all three methods for

third-degree relationships. However, the model-based

methods provided slightly higher kinship coefficient

estimates than PC-Relate for some pairs (Figure S22),

which resulted in RelateAdmix and REAP identifying

26 and 59 additional pairs as third-degree relatives, res-

pectively, that did not reach the minimum third-degree

relationship threshold with PC-Relate (Tables S3 and S4).

We computed and compared the distribution of the

number of inferred relatives for each individual, and

both RelateAdmix (mean ¼ 0.102, maximum ¼ 6) and

REAP (mean ¼ 0.121, maximum ¼ 11) inferred, on

average, slightly more relatives per individual than PC-

Relate (mean ¼ 0.089, maximum ¼ 3).

Onepossible explanation forwhyREAPandRelateAdmix

provided slightly higher kinship estimates for some pairs is
The Amer
that these model-based approaches utilized estimates of in-

dividual ancestry proportions and subpopulation-specific

allele frequencies from the ADMIXTURE analysis, which

accounts for only continental ancestry differences among

sampled individuals in the relatedness analysis. As dis-

cussed above, there appears to be additional population

structure beyond continental structure in this Hispanic

cohort, and it has previously been shown that failure to ac-

count for all sample structure with model-based methods

can lead to inflated relatedness estimates.12 In contrast,

PC-Relate accounted for both continental and subconti-

nental population structure in the sample by using

ancestry-representative PCs from PC-AiR, which were

calculated without any prior assumptions about the under-

lying population structure, including the number of ances-

tral populations contributing to the sample.

T2D-GENES Pedigree Data

We also evaluated relatedness inference with PC-Relate in a

sample of 955 individuals from 20 large multigenerational

Mexican American pedigrees using SNP genotype data for

odd-numbered autosomes provided by the T2D-GENES

Consortium for GAW18. The number of individuals with

available genotype data in each pedigree ranged from 22

to 86, with an average of 47.75. Previous studies41,42 found

that the individuals in the T2D-GENES Mexican American

pedigrees are primarily admixed with European and Native

American ancestry, and a few individuals have a significant

amount of ancestry derived from either Africa or East

Asia. There were 242,566 SNPs available from the odd-

numbered autosomes, and we excluded SNPs with sample

MAF less than 5% and LD pruned using an r2 threshold of

0.10 to obtain a subset of 40,297 SNPs for population struc-

ture and relatedness inference. A PC-AiR analysis of the

T2D-GENES Mexican American pedigrees revealed four

PCs that appeared to reflect population structure.

We applied PC-Relate to the T2D-GENES Mexican Amer-

ican pedigrees using the LD pruned subset of SNPs from the

odd-numbered autosomes. The top four PCs from PC-AiR

were used in the PC-Relate analysis to adjust for population
ican Journal of Human Genetics 98, 127–148, January 7, 2016 139



Figure 6. Relatedness Estimation in the WHI-SHARe Hispanic Cohort with PC-Relate and Model-Based Estimators
Scatter plots of the estimated kinship coefficients against the estimated probabilities of sharing zero alleles IBD, k(0), from (A) PC-Relate,
(B) RelateAdmix, and (C) REAP. Each point is color coded by the relationship type of the pair of individuals, as inferred from the respec-
tive method, and the colored dashed lines show the theoretical expected values of eachmeasure for the corresponding relationship type.
The relationship type abbreviations in the legend are as in Figure 5.
structure. Histograms of the PC-Relate kinship coefficient

estimates for pairs of individuals reported to be first- to

fifth-degree relatives, as well as for pairs reported to be unre-

lated, are given in Figure 7. For each reported relationship

type, the mean of the PC-Relate kinship coefficient esti-

mates was not significantly different from the theoretical

kinship coefficient based on the pedigree configurations,

even for the more distant fourth- and fifth-degree relation-

ships, indicating no systematic bias in the relatedness esti-

mates with PC-Relate.We also used the PC-Relate estimates

to infer degree of relatedness up to fifth degree for all pairs,

despite the fact that substantial overlap in the distribution

of realized kinship coefficients for third-, fourth-, and

fifth-degree relationships is expected due to biologically

driven variation in IBD sharing due to the stochastic nature

of segregation and recombination.39,40 Relationship-type

inference was highly accurate with PC-Relate for close rela-

tives (Table 3). Of the reported first- and second-degree rela-

tive pairs, 99.80% and 96.94%, respectively, were correctly

classified. Additionally, PC-Relate correctly identified two

pairs of reported monozygotic twins. As expected, there

was more misclassification of relationship types among

pairs of individuals reported to be third-, fourth-, and

fifth-degree relatives. However, these pairs still received

the correct classification most frequently, and relationship

classification was accurate within one degree of relatedness

for 99.23% of reported third-degree relatives and 95.28% of

reported fourth-degree relatives, as can be seen in Table 3

and Figure 7. The classification accuracy of PC-Relate was

remarkably high, despite using genotype data from only

the odd-numbered autosomes. We would expect to have

even higher accuracy with PC-Relate in an analysis of data

across the entire genome.

For many genetic analyses, such as analyses in popula-

tion-based studieswhere related individualsmust be identi-

fied and removed from samples that are intended to be

random representatives of their populations, the identifica-

tion of relatives is of primary importance, and inference on

the exact relationship type is of lesser importance. To inves-
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tigate the performance of PC-Relate for this binary classifi-

cation, we used the lower kinship coefficient threshold for

fourth-degree relatives (i.e., 2(�11/2) z 0.022) as the

threshold for classifying pairs of individuals in the T2D-

GENESMexican American pedigrees as either related or un-

related. PC-Relate showed very high sensitivity, identifying

99.63% of pairs reported to be third-degree relatives or

closer as relatives (92.31% of pairs reported to be fourth-de-

gree relatives or closer), as well as excellent specificity,

identifying 99.99% of pairs reported to be unrelated as un-

related. It is worth noting that relationship concordance

rates with PC-Relate were calculated under an assumption

that the pedigree relationships are correctly specified. Re-

ported pedigrees, however, often contain some errors, and

in the T2D-GENES Mexican American pedigrees, PC-Relate

identified some cryptic relatedness and a few reported pedi-

gree relationships that appear to be misspecified.

HapMap MXL Data

We applied PC-Relate to 86 HapMapMXL individuals with

available genotype data to evaluate the accuracy of the

method for relatedness inference in a small sample setting

with admixture. PC-AiR and PC-Relate were run using the

same set of 150,872 autosomal SNPs from a previously re-

ported12 relatedness analysis of the HapMapMXL that was

conducted using REAP with reference population samples.

Only the first PC from PC-AiR appeared to reflect popula-

tion structure, and it was used for ancestry adjustment

with PC-Relate. The PC-Relate estimates were very similar

to those from the REAP analysis (Figure S23), and relation-

ship classification with both methods matched for all pairs

except two, for which the REAP kinship coefficient esti-

mates were slightly above the threshold to be classified as

third-degree relatives, whereas the PC-Relate kinship coef-

ficient estimates were marginally below the threshold.

Assessment of Computation Time

The computation time for each of the relatedness estima-

tion methods considered depends on both the sample
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Figure 7. PC-Relate Kinship Coefficient
Estimates by Reported Degree of Rela-
tionship in T2D-GENES Pedigrees
Histograms showing the distribution of
the PC-Relate kinship coefficient estimates
calculated from the odd-numbered auto-
somes for pairs of individuals reported to
be first- through fifth-degree relatives, as
well as pairs reported to be unrelated. The
values printed in the top right corner of
each panel give the observed mean and
standard deviation of the estimates for
pairs reported to have the specified degree
of relatedness. The colored vertical line in
each panel indicates the theoretical pedi-
gree-based kinship coefficient for the spec-
ified relationship type, which is also
printed in the panel title. The colored
bars beneath each histogram show the
range of estimated kinship coefficient
values for which we classify a pair of indi-
viduals to have a particular degree of relat-
edness (blue for first, green for second,
purple for third, orange for fourth, lime
for fifth, and black for unrelated).
size and the number of SNPs being analyzed. To analyze all

3,587 individuals in the WHI-SHARe Hispanic cohort with

87,180 SNPs took PC-Relate 12.1 min, KING-robust

5.0 min, and PLINK (v.1.9) 4.2 min on a 2.5 GHz Intel

Core i7 MacBook Pro with 8 GB of 1,333 MHz DDR3

RAM. To analyze all 3,587 individuals with 59,969 SNPs

took REAP 73.2 min on the same laptop. RelateAdmix

could not be run on the same system because of the

increased computational demand, and was instead paral-

lelized on a 12 core 2.6 GHz computer cluster with 128

GB of RAM; the total computation time for RelateAdmix

on the dataset with 59,969 SNPs was 8.3 days. All of these

computation times are only for relatedness estimation and

do not include any prior analyses for ancestry inference

such as PC-AiR or ADMIXTURE. Although the PLINK and

KING-robust implementations are the fastest computa-

tionally, we have demonstrated that they both provide

biased estimates in samples from admixed populations.

Additionally, it is important to note that KING-robust

does not provide IBD sharing probability or inbreeding co-

efficient estimates. PC-Relate can also be run without the

computation of IBD sharing probabilities, which took

only 5.9 min on the same laptop.

Discussion

Reliable estimation of genetic relatedness from genotype

data is essential to many areas of genetic research. In
The American Journal of Human G
large-scale genomic studies, the gene-

alogy of sampled individuals is often

unknown, and accurate inference on

both recent genetic relatedness (such

as pedigree relationships of close

relatives) and more distant genetic
relatedness (such as population structure) is necessary.

Statistical methods used for identifying closely related in-

dividuals often make simplifying assumptions about pop-

ulation structure, such as population homogeneity or

simple endogamous subpopulations, which are not valid

for samples from many populations. We specifically

addressed the problem of recent genetic relatedness infer-

ence and estimation in samples with unspecified popula-

tion structure. We developed PC-Relate, a PCA-based

method for robust estimation of IBD-sharing probabilities

and kinship coefficients that is applicable to general sam-

ples with population structure. PC-Relate provides accurate

estimates of frequently used measures of recent genetic

relatedness in the presence of complex sample structure,

without requiring specification of the ancestries contrib-

uting to the sample, which are often unknown or not

well defined, or external reference population panels.

In simulation studies under a variety of genealogical

configurations, we demonstrated that PC-Relate provides

accurate estimates of kinship coefficients and IBD sharing

probabilities, allowing for accurate relationship classifica-

tion between pairs of individuals in the presence of com-

plex population structure, including ancestry admixture.

We also showed the improvement offered by PC-Relate

over widely used approaches, including KING-robust and

the method of moments estimators implemented in

PLINK. The relatedness estimators implemented in PLINK

gave biased estimates of relatedness for all relationship
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Table 3. Relationship Classification Concordance with PC-Relate by Reported Relationship in the T2D-GENES Mexican American Pedigrees

Reported Degree Number of Pairs

PC-Relate Inferred Degree

1st 2nd 3rd 4th 5th >5th

1st 2,046 0.9980 0.0020 0.0000 0.0000 0.0000 0.0000

2nd 2,814 0.0025 0.9694 0.0274 0.0004 0.0000 0.0004

3rd 4,161 0.0000 0.0646 0.8056 0.1221 0.0070 0.0007

4th 3,963 0.0000 0.0003 0.1675 0.5884 0.1968 0.0469

5th 1,634 0.0000 0.0000 0.0098 0.2203 0.4302 0.3397

Unrel 440,546 0.0000 0.0000 0.0000 0.0001 0.0035 0.9965

For each reported relationship type (first-degree, etc.), the values in the corresponding row are the proportion of pairs inferred to have the specified degree of
relatedness with PC-Relate; >5th indicates pairs inferred to be more distant than fifth-degree relatives or unrelated.
types considered in samples with population structure.

KING-robust provided unbiased relatedness estimates in

populations with discrete substructure, but the method

was severely biased in admixed populations, where kinship

estimates were deflated for pairs of individuals with

different ancestry and inflated for the offspring of parents

with different ancestry. Additionally, we simulated inbred

samples with population stratification and demonstrated

that PC-Relate provides accurate inbreeding and kinship

coefficient estimates in this setting, whereas KING-robust

provides a negatively biased kinship estimate when at least

one individual in a pair is inbred.

We also compared the performance of PC-Relate to the

model-based methods REAP and RelateAdmix. Despite

REAP and RelateAdmix being provided both individual

ancestry and subpopulation-specific allele frequency esti-

mates from a supervised individual ancestry analysis with

ADMIXTURE that utilized reference population panels,

our simulations demonstrated that our model-free PC-

Relate approach performed as well as, or better than, these

two model-based methods. Furthermore, we observed that

REAP and RelateAdmix can provide biased relatedness esti-

mates due to bias and variability in the individual ancestry

proportion and subpopulation-specific allele frequency es-

timates. This bias can be reduced by increasing the number

of reference population samples in the supervised individ-

ual ancestry analysis; however, in practice, high-quality

reference population panels are often limited in size or

might not be available for some populations. Additionally,

in our simulations, we provided reference population sam-

ples from the same subpopulations from which the

sampled individuals were derived, and there was still a

slight bias in the relatedness estimates. In many settings,

the appropriate reference populations are often a priori

partially or completely unknown. If the number of ances-

tral populations is misspecified, or if the reference popula-

tion panels chosen are not representative of the true

underlying populations, then the ancestry of the admixed

sample individuals might not be well represented, and

relatedness estimates obtained from these model-based

methods might be biased.12
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We applied PC-Relate and widely used relatedness esti-

mation methods to the WHI-SHARe Hispanic cohort, a

large population-based sample with ancestry admixture.

As expected from the simulation study results, PC-Relate

significantly outperformed KING-robust and PLINK in

this sample due to the presence of complex ancestry

admixture, where KING-robust and PLINK identified thou-

sands and tens of thousands of close relative pairs, respec-

tively, that were inferred to be unrelated by PC-Relate,

REAP, and RelateAdmix. The analyses of the WHI-SHARe

Hispanic cohort with REAP and RelateAdmix used

HapMap and HGDP reference population panels and

individual ancestry estimates from a supervised analysis

with ADMIXTURE for relatedness estimation. Remarkably,

without using external reference population samples or

making prior assumptions about the underlying ancestries

in the sample, PC-Relate gave nearly identical genetic relat-

edness inference to both REAP and RelateAdmix for the

vast majority of pairs of individuals. We also found that

relatedness estimates with REAP and RelateAdmix were

slightly inflated, as compared to our model-free PC-Relate

approach, which was probably a consequence of these

methods not being able to appropriately account for fine-

scale population structure in the sample. In contrast, PC-

Relate was able to account for both continental and sub-

continental population structure in the sample by using

PCs obtained from PC-AiR. Furthermore, we demonstrated

that PC-Relate provided less variable relatedness estimates

than REAP. PC-Relate is also substantially more computa-

tionally efficient than RelateAdmix, with the relatedness

analysis of the WHI-SHARe Hispanics requiring more

than 8 days with RelateAdmix but only 12 min with PC-

Relate.

We further demonstrated the accuracy and utility of

PC-Relate in an application to 20 large, well-defined T2D-

GENES Mexican American pedigrees with predominantly

European and Native American ancestry. Relatedness in-

ferencewithPC-Relatewas remarkably accurate despite hav-

ing SNP genotype data only for the odd-numbered

autosomes. The difference between the average of the PC-

Relate kinship coefficient estimates and the theoretical
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kinship coefficient for each reported relationship type was

close to 0, even for relationships as distant as fifth degree.

Furthermore, PC-Relate identified 99.7% of pairs reported

to be third-degree relatives or closer, and it identified more

than 99.9%of pairs reported to be unrelated as unrelated in-

dividuals. We also demonstrated that PC-Relate works well

in small sample settings. In an application to the 86 individ-

uals in theHapMapMXLwithgenotypedata, PC-Relatepro-

vided reliable estimates of relatedness that were nearly iden-

tical to those from a supervised REAP analysis that utilized

referencepopulation samples of knownancestry. In general,

we expect that PC-Relate will provide accurate relatedness

inference, even in small samples, as longas there are enough

unrelated individuals in the sample to obtain PCs that are

informative for ancestry.

In both simulation studies and in the analysis of theWHI-

SHARe Hispanics, we showed that PC-Relate is quite robust

to the choice of the number of PCs used in the relatedness

analysis, provided that a sufficient number of PCs are

included in the analysis to fully explain the population

structure in the sample. We do not, however, recommend

foregoing visual examinations of the PCs or choosing an

arbitrary number of PCs when implementing PC-Relate.

Including a large number of extraneous PCs that do not

explain population structure can result in increased vari-

ability of the relatedness estimates from PC-Relate. In addi-

tion, standard PCA approaches, such as EIGENSTRAT,1

have been shown to give artifactual PCs for ancestry in sam-

ples with familial relatedness. Using PCs that reflect family

structure in a sample, instead of population structure, can

result in biased relatedness estimates with PC-Relate. There-

fore, it is important to use PCs in a PC-Relate analysis from a

method, such as PC-AiR, that provides robust inference and

correction of population structure in the presence of family

structure. PC-AiR, however, relies on the identification

of close familial relatives to obtain population structure

inference that is robust to recent genetic relatedness. We

have demonstrated that PC-Relate is more accurate than

competing methods in the presence of unspecified struc-

ture, and relatedness inference from PC-Relate could poten-

tially be used to further improve the performance of PC-AiR

for population structure inference. This realization suggests

that an iterative procedure alternating between PC-AiR and

PC-Relate can potentially provide improved inference on

both population structure (with PC-AiR) and recent genetic

relatedness (with PC-Relate).We have found that this works

well in practice, and generally two iterations of PC-AiR and

PC-Relate is sufficient.

Although we have proposed PC-Relate as a model-free

approach to recent genetic relatedness inference, the

method can also easily incorporate model-based individual

ancestry estimates from methods such as ADMIXTURE or

FRAPPE. In settings where the underlying ancestral popu-

lations contributing to the sample are known a priori

and suitable reference population panels for the ancestries

in the sample are available, the PC-Relate analysis can be

conducted by using vectors of individual ancestry propor-
The Amer
tion estimates for adjustment of population structure in

lieu of PCs. An advantage of using PC-Relate over REAP

or RelateAdmix in this setting is that PC-Relate does not

require external allele frequency estimates at each SNP

for each of the ancestral populations, which can be

confounded when calculated from a sample with popula-

tion stratification and familial relatives.

Heritability estimation and genetic association testing

with linear mixed models (LMMs) in population-based

samples are currently active areas of research. An empirical

GRM with entries calculated using an estimator similar to

that in Equation 1 is often used to obtain sample-based her-

itability estimates10,25 and it is also widely used in associa-

tion testing with LMMs to control for sample struc-

ture.3,43,44 We have shown that this empirical GRM

reflects sample structure due to the entire sample geneal-

ogy, including both recent and distant genetic relatedness.

Heritability estimates calculated with this GRM can

be inflated in the presence of population structure,45

and LMMs utilizing this GRM might not provide adequate

correction of population stratification at all SNPs genome-

wide.4,46,47 PC-Relate provides a tool for partitioning ge-

netic correlations among sampled individuals into two

separate components corresponding to population struc-

ture (or distant genetic relatedness) and recent genetic relat-

edness. Thepartitioningof sample structure into recent and

distant genetic relatedness in LMMs might provide better

calibrated and more powerful association test statistics, as

well as more accurate heritability estimates, in samples

from recently admixed populations. This is an important

directionof future research thatwe are exploring for genetic

studies in ancestrally diverse populations.

We have implemented PC-Relate in the R language as

part of the GENESIS package that is freely available from

Bioconductor (see Web Resources).
Appendix A. Limiting Values of GRM, PC-Relate,

and KING-robust Kinship Coefficient Estimators in

a Structured Population

Here we derive the limiting values for the empirical GRM,

PC-Relate, and KING-robust kinship coefficient estimators.

We first derive the expectations of the products of geno-

type values for a pair of individuals in terms of our general

population genetic parameters. We then use the expecta-

tions to find the limiting values of each of the kinship co-

efficient estimators. Derivations of the limiting values for

the empirical GRM-based and PC-Relate inbreeding coeffi-

cient estimators are not presented, but are straightforward

to obtain from what is provided below.
Expectation of the Product of Genotype Values for

Admixed Pairs

The individual-specific allele frequency, mis, for individual i

at SNP s is defined to be the expected allele frequency for

individual i, conditional on i’s ancestral background. In
ican Journal of Human Genetics 98, 127–148, January 7, 2016 143



Thornton et al.,12 this quantity is expressed as a linear

combination of individual i’s ancestry vector, ai, and the

vector of subpopulation-specific allele frequencies, ps;

i.e., mis ¼ aT
i ps, where both ai and ps are treated as fixed

vectors. Here, we similarly treat ai as fixed, but we allow

ps to be a random vector with the properties E½ps� ¼ ps1

and Cov[ps] ¼ ps (1 � ps) QK for all s ˛ S. Therefore:

E½mis� ¼ E
�
aT
i ps

� ¼ aT
i E
�
ps

� ¼ �aT
i 1
�
ps ¼ ps; (Equation A1)

and

E
�
mismjs

� ¼ X
k¼1

K X
k0¼1

K

aki a
k0
j E
�
pksp

k0
s

�
¼
X
k¼1

K X
k0¼1

K h
aki a

k0
j

�
ps
�2 þ aki a

k0
j

�
E
�
pksp

k0
s

�� �ps�2�i
¼ �ps�2X

k¼1

K

aki
X
k0¼1

K

ak
0
j þ

X
k¼1

K X
k0¼1

K �
aki a

k0
j Cov

�
pks ; p

k0
s

��
¼ �ps�2 þ ps

�
1� ps

�
qij;

(Equation A2)

where we have defined qijhaT
i QKaj to be the coancestry

coefficient due to population structure for a pair of individ-

uals i and j.

Define the setMij to be the set of sharedmost recent com-

mon ancestors of individuals i and j, possibly including in-

dividuals i or j. For example, if j is a direct descendant of i,

thenMij ¼ {i}; if i and j are siblings, thenMij is their two par-

ents; if i and j are cousins, thenMij is their two shared grand-

parents, etc. The quantity nim gives the length of the path in

the pedigree from individual i tom, including both of these

individuals. For example, if i andm are the same individual,

nim ¼ 1; if i is the child of m, nim ¼ 2, etc. Through a path-

counting argument tracing back alleles to the individuals

from which they descended, the kinship coefficient can

be written as

fij ¼
X

m˛Mij

"

1

2

�ðnimþnjm�1Þ�
1þ fm

�# ¼
X

m˛Mij

fij j m;

(Equation A3)

where fij jmhð1=2Þðnimþnjm�1Þð1þ fmÞ is defined to be the

contribution to the kinship for individuals i and j through

alleles shared IBD from common ancestor m.

Define the random variable xisr to be the indicator that

individual i’s allele r ˛ {1,2} at SNP s is the reference

allele. By definition gis ¼ ðxis1 þ xis2Þ, so E½gisgjs
��ps� ¼

4E½xisr xjsr0
��ps�. It can therefore be shown through a similar

path counting argument that

E
h
gisgjs j ps

i
¼ 4

X
m˛Mij

�
fij j mmmsð1� mmsÞ

�þ 4mismjs:

(Equation A4)

Taking the expectation of this quantity over the distribu-

tion of ps (i.e., taking the expectations of the individual-
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specific allele frequencies), the unconditional expectation

is found to be

E
h
gisgjs

i
¼ 4

�
ps
�2 þ 4ps

�
1� ps

�24fij þ qij �
X

m˛Mij

fij j mqmm

35;
(Equation A5)

where qmmhaT
mQKam is the coancestry coefficient due to

population structure for individual m with itself.

The expectation E½g2is� can be obtained directly from the

observed genotype probabilities for individual i condi-

tional on ps; however, these probabilities might not be

what is expected under HW proportions based on mis.

The observed genotype probabilities are presented in Table

S5, and they take into account i inheriting one allele each

from i’s mother, M(i), and father, P(i), at every locus. Using

these probabilities, we calculate

E
�
g2is
� ¼ 4

�
ps
�2 þ 2ps

�
1� ps

��
1þ fi

�
1� qMðiÞPðiÞ

�þ qMðiÞPðiÞ
�

¼ 4
�
ps
�2 þ 2ps

�
1� ps

�½1þ Fi�;
(Equation A6)

where Fihfið1� qMðiÞPðiÞÞ þ qMðiÞPðiÞ is the total inbreeding

coefficient for individual i relative to the ancestral popula-

tion, which is often referred to as FIT.

The derivations below make the following assumptions,

which can be relaxed as described. (1) The true values of

the ancestral and individual-specific allele frequencies

are known, so that the estimators bps ¼ ps and bmis ¼ mis.

However, the convergence results will still hold in the

limit as long as the estimators are consistent for the true

values. (A discussion of the small sample bias induced

by using the sample allele frequency as the estimator bps
can be found in Zheng and Weir.21) (2) The ps for every

s ˛ S are independent and identically distributed (i.i.d.)

random variables from some unspecified distribution on

[0,1]. Each kinship estimator involves a summation over

s ˛ Sij, and under this assumption, the unconditional

expectation of each term in the summation is the same

for every choice of s. Additionally, we show that the

limiting values do not depend on ps, implying that this

i.i.d. assumption can be relaxed. (3) Genotypes at

different SNPs are independent, and
��Sij

��/N. However,

the independence of SNPs is not necessary, and a suffi-

cient condition is that the effective number of indepen-

dent SNPs in Sij tends to N.

Empirical Genetic Relationship Matrix

Under the assumptions above, by plugging the result from

Equation A5 into the empirical genetic relationship matrix

(GRM) estimator from Equation 1, we have

bjij/
E
h
gisgjs

i
� 4

�
ps
�2

4ps
�
1� ps

�
¼ fij þ bj1

ði; jÞ � bj2
ði; jÞ;

(Equation A7)
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where the two bias terms are given by

bj1
ði; jÞhqij (Equation A8)

and

bj2
ði; jÞh

X
m˛Mij

fij j mqmm: (Equation A9)

The bias terms, bj1
ði; jÞ and bj2

ði; jÞ, result from using

population allele frequencies to center and scale the geno-

type values, respectively. For an unrelated pair of in-

dividuals, fij ¼ 0 and Mij ¼ {}, so bj2
ði; jÞ ¼ 0 and bjij/qij,

resulting in inflated estimates of recent kinship for pairs

with similar ancestry. With discrete population substruc-

ture, if i, j, and their ancestors all belong to subpopulation

k, then qij ¼ qk, the kth diagonal element of QK, and

qmm ¼ qk for all m ˛ Mij, so bjij/fij þ qk � fijqk. Homoge-

neous populations are the only setting for which bjij/fij.

In the homogenous setting, K ¼ 1, so the random vector

of subpopulation-specific allele frequencies, ps, becomes

the scalar value ps. Because ps ¼ ps is a degenerate random

variable, QK ¼ 0 and bj1
ði; jÞ ¼ bj2

ði; jÞ ¼ 0.

PC-Relate

Because mjs is a fixedquantity conditional onps, it can easily

be seen that E½gismjs� ¼ E½mjsE½gis jps�� ¼ 2E½mismjs�. The expec-
tation of the denominator of the PC-Relate kinship coeffi-

cient estimator is not straightforward to calculate, but

we can define it to be E½½misð1� misÞmjsð1� mjsÞ�1=2�h
psð1� psÞ½1� dfði; jÞ�, where dfði; jÞ is some function of ai,

aj, andQK. Therefore, by plugging the appropriate expecta-

tions in for Equation 4, we obtain

bfij/
E
h
gisgjs

i
� 4E

�
mismjs

�
4E
h�
misð1� misÞmjs

�
1� mjs

��1=2i
¼ fij � bfði; jÞ;

(Equation A10)

where the one bias term is given by the function

bfði; jÞh
X

m˛Mij

fij j m



qmm � dfði; jÞ
1� dfði; jÞ

�
: (Equation A11)

Using ancestry-adjusted genotype values that are centered

by individual-specific allele frequencies removes the first

bias term that appears in the limiting value of the empirical

GRM. As a result, bfij/0 for unrelated pairs of individuals,

regardless of their ancestry and the underlying population

structure. Because the scaling of genotype values can not

be fixed entirely without prior knowledge of the ancestries

of all individuals in the setMij, consistency of bfij can not be

shown in all population structure scenarios for related

pairs of individuals. However, we can show that PC-Relate

provides consistent estimates for relatives in the presence

of discrete population substructure. If i, j, and their ances-

tors are all from subpopulation k, then mis ¼ mjs ¼ pks , and

the expectation of the denominator simplifies to

E½pks ð1� pks Þ� ¼ psð1� psÞ½1� qk�. This implies that
The Amer
dfði; jÞ ¼ qk ¼ qmm for every m ˛ Mij, so bfði; jÞ ¼ 0 andbfij/fij. Furthermore, we have demonstrated through sim-

ulations that the bias of the PC-Relate estimator tends to be

very small, even in admixed populations from highly

divergent populations.

KING-Robust

The KING-robust kinship coefficient estimator can be

written as

bkij ¼
P

s˛Sij

h
gisð1� gisÞ þ gjs

�
1� gjs

�
þ gisgjs

i
P

s˛Sij

h
gisð2� gisÞ þ gjs

�
2� gjs

�i :

(Equation A12)

Plugging the expectations given by Equations A5 and A6

into Equation A12, we have

bkij/fij þ bk1ði; jÞ � bk2ði; jÞ; (Equation A13)

where we have defined the two bias terms for this esti-

mator to be

bk1ði; jÞh
qij � 1

2

�
Fi þ Fj

�
1� 1

2

�
Fi þ Fj

� (Equation A14)

and

bk2ði; jÞh
X

m˛Mij

fij j m

 
qmm � 1

2

�
Fi þ Fj

�
1� 1

2

�
Fi þ Fj

�
!

: (Equation A15)

Similar to the empirical GRM, for an unrelated pair of indi-

viduals, bk2ði; jÞ ¼ 0 because M ¼ {} and bkij/bk1ði; jÞ. Inter-
estingly, the value of bk1ði; jÞ can be either positive or

negative; dissimilar ai and aj contributes negatively, while

dissimilar pairs (aM(i) and aP(i)) or (aM(j) and aP(j)) contribute

positively. To see this, consider a pair of outbred individuals

(i.e., fi ¼ fj ¼ 0, so Fi ¼ qM(i)P(i) and Fj ¼ qM(j)P(j)) in two sce-

narios. (1) If these individuals are the offspring of matings

between parents with different ancestry, where the parents

of individual i are from different subpopulations and the

parents of individual j are from different subpopulations,

then Fi ¼ Fj ¼ 0 and bk1ði; jÞ ¼ qij, the same as bj1
ði; jÞ. This

results in a positive bias when i and j have similar ancestry.

(2)When the parents of individual ihave the same ancestry

(ai ¼ aM(i) ¼ aP(i)) and the parents of individual j have the

same ancestry (aj ¼ aM(j) ¼ aP(j)), then Fi ¼ qii, Fj ¼ qjj, and

bk1ði; jÞ ¼
qij � 1

2

�
qii þ qjj

�
1� 1

2

�
qii þ qjj

�

¼
�1

2

�
ai � aj

�T
QK

�
ai � aj

�
1� 1

2

�
qii þ qjj

� :

(Equation A16)
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This results in a bias that is systematically negative when i

and j have different ancestry, withmagnitude that increases

as the difference in their ancestry proportions increases. In

the presence of discrete population substructure, KING-

robust provides consistent estimates for outbred pairs of in-

dividuals from the same subpopulation. If i, j, and their an-

cestors all belong to subpopulation k, then qij¼ qii ¼ qjj ¼ qk
and qmm ¼ qk for everym ˛Mij, so bk1ði; jÞ ¼ bk2ði; jÞ ¼ 0 andbkij/fij. However, even in this population structure setting,

if either individual i or j is inbred, then KING-robust pro-

vides deflated kinship estimates, where

bkij/fij �
1

2

�
fi þ fj

�
1� 1

2

�
fi þ fj

� : (Equation A17)

Of the three kinship coefficient estimators presented here,

KING-robust is the only one that is biased by the presence

of inbreeding.
Appendix B. Limiting Values of Estimators Based

on the Dominance Genotype Coding

Below we show that the estimators bdij and bkð2Þij are consis-

tent for k
ð2Þ
ij under homogenous and discrete population

structure settings, respectively. (The derivation under gen-

eral population structure with admixture is not tractable.)

The same set of assumptions presented in Appendix A are

also used here.

Outbred Homogeneous Population

We assume that the true population allele frequency is

known, so ps can be used to construct gDis in this setting.

Therefore, it can easily be shown that E½gDis � ¼ psð1� psÞ
and Var½gDis � ¼ ½psð1� psÞ�2. The expectation of the product

of the dominance genotype values for a pair of individuals

can be calculated by considering the number of copies of

independent alleles among the two individuals, condi-

tional on the possible IBD states (sharing 0, 1, or 2 alleles).

This calculation yields E½gDis gDjs � ¼ ½psð1� psÞ�2ðkð2Þij þ 1Þ.
Plugging this expectation in for Equation 8, we find

bdij/E
h
gDis g

D
js

i
� �ps�1� ps

��2�
ps
�
1� ps

��2 ¼ k
ð2Þ
ij : (Equation B1)

Outbred Population with Discrete Substructure

We derive E½gDis gDjs � under discrete population substructure.

Individual-specific allele frequencies, mis, are used to

construct gDis , and for relatives i and j from subpopulation

k, mis ¼ mjs ¼ pks . Because fi ¼ fj ¼ 0 and HW proportions

hold in this setting, E½gDis
��ps� ¼ E½gDjs

���ps� ¼ pks ð1� pks Þ, and
the same argument given in the previous subsection can

be used to show that the conditional expectation of the

product of dominance genotype values for i and j is

E½gDis gDjs
��ps� ¼ ½pks ð1� pks Þ�2ðkð2Þij þ 1Þ. Therefore, taking the
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expectations of these quantities over the distribution of

ps and plugging them into Equation 9, we have

bkð2Þ
ij /

E
h
gDis g

D
js

i
� E
h
pks
�
1� pks

�2i
E
h�
pks
�
1� pks

��2i ¼ k
ð2Þ
ij : (Equation B2)

The PC-Relate estimator bkð2Þij provides a consistent estimate

of k
ð2Þ
ij in outbred populations with discrete substructure.

Although we can not show consistency of this estimator

for relatives in the presence of ancestry admixture, similar

to the PC-Relate kinship coefficient estimator, simulations

show that the bias is generally small.
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