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Abstract

As average life expectancy rises throughout the world, neurodegenerative diseases have emerged 

as one of the greatest global public heath challenges in modern times. Substantial efforts have 

been made in researching neurodegenerative diseases over the last few decades, yet their 

predominantly sporadic nature has made uncovering their etiologies challenging. Mounting 

evidence has suggested that factors like damage-associated molecular patterns (DAMPs) released 

by stressed and dying neurons are likely involved in disease pathology and in stimulating chronic 

activation of microglia that contributes to neuronal oxidative stress and degeneration. This review 

focuses on how the microglial integrin receptor Mac1 and its downstream effector NADPH 

oxidase (NOX2) contribute to maintaining chronic neuroinflammation and are crucial in 

inflammation-driven neurotoxicity in neurodegenerative diseases. Our hope is to provide new 

insights on novel targets and therapies that could slow or even halt neurodegeneration.

Introduction

Neurodegenerative diseases are characterized by a progressive, yet selective regional 

neuronal loss, whereby chronic neuroinflammation has been verified to contribute to the 

degenerative process [1–4]. Microglia are widely considered the predominant resident 

effector cells of the immune system in the central nervous system (CNS) and become 

activated in response to stimuli such as chemicals and toxins detected in their 

microenvironment. Microglia typically are activated until they, and other infiltrating 

leukocytes that may have been recruited, have sufficiently cleared the insult or source of 
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deleterious stimuli. Yet in condition where the deleterious stimuli persist, this results in 

unresolved neuroinflammation that can damage proximal neurons. Collateral damage to 

neurons releases endogenous proteins and cell membrane fragments that can re-stimulate the 

activation of microglia forming a chronic state of activation known as reactive microgliosis. 

Evidence suggests that this low-grade chronic neuroinflammation contributes to progressive 

neurodegeneration in diseases such as Parkinson’s and Alzheimer’s diseases. Though the 

receptors that detect microbial pathogens are shared among all innate immune cells 

including microglia, these cells are also attuned to detect endogenous cellular components 

released by cells during stress, injury and death through the same receptors [5]. Though the 

structure of these intrinsic and extrinsic stimuli are highly variable, they are thought to 

activate microglia through receptor-mediated signaling of pattern recognition receptors such 

as Toll-like receptors (TLRs), Nod-like receptors (NLRs), and RIG-1 like receptors (RLRs) 

or through scavenger, integrin, or RAGE receptors that have similarly promiscuous binding 

capabilities [1,6–11].

Traditionally, neuroinflammation was also described through the immunological activation 

of astrocytes, yet today the functional role of astrocytes during neuroinflammation is less 

clear. The expression of the above-mentioned receptors by astrocytes has been inconclusive 

and many of their immune functions are still controversial since they were historically 

confirmed in vitro using isolation methods that sill resulted in significant microglial 

contamination that could alter the outcome of the studies. A recent study from our group 

demonstrated that, contrary to much of the reported literature, astrocytes may not possess the 

ability to directly recognize innate immune stimuli such as the bacterial endotoxin LPS. In 

fact, they rather depend on crosstalk with activated microglia to elicit their activation and 

promote the release of neurotrophic factors as a counterbalance that supports neuronal 

survival from the collateral damage generated by activated microglia during 

neuroinflammation [12]. For this reason, we have chosen to focus on microglia with this 

review. Furthermore, even though circulating monocytes are known infiltrate the CNS and 

differentiate into microglial-like macrophages during neuroinflammation [13,14], we will 

also not be addressing the role of these infiltrating leukocytes since they are only thought to 

play a pivotal role in disease with high-grade neuroinflammation such as traumatic brain 

injury and multiple sclerosis and are not thought to be as important in conditions of low-

grade neuroinflammation.

Neuroinflammation is a self-defense reaction to combat pathogen infection or clear and 

restore injuries in the CNS; this reaction is initially carried out by microglia and shaped by 

reactive astrocytes and other infiltrating leukocytes. Neuroinflammatory responses are 

typically transient and help restore CNS homeostasis, however in pathological conditions 

neuroinflammation may continue unresolved becoming persistent [15]. Yet the mechanism 

by which acute neuroinflammation turns to chronic in neurodegenerative diseases remains 

largely unknown. Here we have reviewed the literature on reactive microgliosis and 

hypothesize that persistent Mac1 signaling on microglia is required for continuous activation 

of NADPH oxidase (NOX2), the main catalytic enzyme responsible for generating 

extracellular superoxide required to maintain self-propelling reactive microgliosis found in 

chronic neuroinflammation.
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Role of Toll-like receptors in the pathogenesis of acute and chronic 

neuroinflammation

Acute inflammation

Acute neuroinflammation is typically initiated by detecting the pathogen-associated 

molecular patterns (PAMPs) from microorganisms, or the damage-associated molecular 

patterns (DAMPs) molecules released from injured or dying neurons. At this stage, 

microglia are recruited to clear these signals by preventing infection or restoring injuries in 

the brain [16]. Toll-like receptors are the most extensively studied receptors stimulated by 

both PAMPs and DAMPs and are readily expressed on microglia [17]. TLRs signal through 

various adaptor molecules to stimulate the activation of nuclear factor-κB (NF-κB) and the 

mitogen-activated protein kinases (MAPKs) like extracellular signal-regulated kinase ½ 

(Erk1/2), p38, and JNK to induce the production of proinflammatory cytokines and 

chemokines [18]. DAMPs associated with the pathology of several neurodegenerative 

diseases act on TLRs [19] such as α-synuclein that acts on TLR2 [20] and both β-amyloid 

[21–23] and HMGB-1 that act on TLR2, TLR4 and TLR9 [24,25]. Furthermore, brains from 

patients with neurodegenerative diseases or that have undergone normal aging had far 

greater TLR gene expression and expression of pro-inflammatory genes associated with 

TLRs signal transduction [26,27] likely due to increased DAMPs during neurodegeneration. 

These results put forward the hypothesis that an aberrant TLR activation may contribute to 

the process of aging and neurodegenerative diseases.

Chronic inflammation

It is widely accepted that chronic low-grade neuroinflammation plays a key role in the 

pathogenesis of neurodegeneration. However, the molecular mechanism mediating chronic 

neuroinflammation is less clear. To avoid the excessive damage of host cells by harmful and 

inappropriate inflammatory responses during the acute phase of inflammation, TLR signals 

are often promptly dampened or terminated through multiple mechanisms, such as 

dissociation of adaptor complexes, degradation of signaling proteins, and transcriptional 

regulation (also known TLR tolerance) [28]. Although TLRs have been widely implicated in 

neuroinflammation, their role in maintaining reactive microgliosis and chronic 

neuroinflammaiton has not been well studied. For this reason, we suspect that although 

TLRs are crucial in the initiation of immune responses during the early phases of 

neurodegenerative diseases, the maintenance of chronic neuroinflammation is likely 

mediated by another receptor that detects neuronal DAMPs.

Microglial Mac1 is essential in maintaining chronic neuroinflammation

Our group and others have demonstrated in rodents that the integrin receptor Mac1 (also 

known as CD11b/CD18, complement receptor 3 [CR3], or αMβ2) is essential in maintaining 

chronic reactive microgliosis and in driving inflammation-mediated neurodegeneration [29–

31]. Historically, Mac1 has been recognized as an adhesion molecule that participates in cell 

signaling during cell-to-cell contact. Yet, during inflammation, Mac1 is required for 

chemotaxis and phagocytosis in activated neutrophils and macrophages [32,33]. 

Additionally, the expression of Mac1 is elevated in brains from patients with Alzheimer’s 
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disease [34] and in MPTP animal models of Parkinson’s disease [35]. Most importantly, 

microglial Mac1 is capable of binding neuronal DAMPs including α-synuclein [36], β-

amyloid [8], HMGB-1 [9], and myelin [37] that are typically associated with 

neurodegeneration to induce signaling and their subsequent activation. Furthermore, in vivo 

and in vitro studies have shown that the genetic ablation of Mac1 results in decreased 

neurodegeneration when stimulated with the neurotoxicant MPTP [31] or the administration 

of the exogenous DAMP peptides α-synuclein [36] and β-amyloid [8]. Based on these 

findings we suspect Mac1 on microglia is the DAMP receptor responsible for maintaining 

the self-perpetuating reactive microgliosis required in chronic neuroinflammation (Figure 1; 

[9]).

Mac1–NOX2 signaling bridges chronic neuroinflammation and progressive 
neurodegeneration

Recent studies have indicated microglial NOX2 activation as an important downstream 

effector of Mac1 signaling [9,29,38]. NOX2 is composed of cytosolic subunits (p47phox, 

p67phox, p40phox, and the small Rho GTPase, Rac1 or Rac2) and membrane-bound subunits 

p22phox and gp91phox [39]. Upon stimulation, cytosolic subunits of NOX2 translocate and 

bind to the membrane subunits to assemble the catalytically active form of NOX2 that 

produces extracellular superoxide [40]. When HMGB-1 binds to Mac1 it induces the 

expressions of several proinflammatory factors including TNF-α, IL-1β and NO through the 

activation of NF-κB signal pathway and the production of superoxide through the activation 

of NOX2 [9]. Further interrogation into the mechanism that links DAMPs binding to 

Mac1to NOX2 activation using β-amyloid shows that the conformational changes of Mac1 

upon binding increases the level of PI3K, phosphorylating p47phox and PIP3 to trigger their 

translocation from the cytosol to membrane-bound NOX2 to generate superoxide production 

[8]. Interestingly, when examining the chemotactic role of Mac1 towards aggregated α-

synuclein, NOX2 activation was required to produce superoxide that rapidly transmutes into 

H2O2 that activates tyrosine protein kinase Lyn to phosphorylate the F-actin–associated 

protein cortactin—mediating actin rearrangement required for directional microglia 

migration [36].

During chronic neuroinflammation, microglia maintain chronic low-grade 

neuroinflammation through continuous transcription of mRNA of pro-inflammatory factors 

such as TNF-α, IL-1β, COX2 as well as NOX2 [41]. The importance of NOX2-generated 

superoxide in the progression of inflammation-driven degeneration in both in vitro and in 

vivo models has been established by using microglia derived from NOX2 knockout mice and 

using NOX2 inhibitors diphenyleneiodonium (DPI) or apocynin [42–44]. Interestingly, the 

genetic ablation of CD11b, the alpha subunit of the Mac1 receptor in mice, showed a similar 

ability to prevent superoxide release and attenuated neurodegeneration during 

neuroinflammation [31,38]. This attenuation occurs by preventing reactive microgliosis 

along the Mac1-NOX2 axis, whereby microglial Mac1 re-stimulated microglial activation in 

response to neuronal-derived DAMPs to induce receptor-mediated signal transduction that 

activates NOX2 to generate superoxide [31]. This pathway, beyond that of TLRs, is crucial 

for maintaining chronic neuroinflammation and driving inflammation-mediated oxidative 

stress that leads to neurodegeneration.
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Neuronal NOX2 increases neuronal oxidative stress in aging and inflammatory conditions

How microglia-produced proinflammatory factors cause neuronal damage or death is a 

critical question in neurodegeneration that has not been clarified yet. Evidence suggests that 

ROS produced from the Mac1-NOX2 signaling pathway plays a crucial role in 

neuroinflammation-mediated oxidative stress in neurons that results in their degeneration 

[40]. Neurons are highly sensitive to oxidative stress. During inflammatory conditions, 

continuous bombardment of pro-inflammatory factors released from microglia gradually 

increase intracellular ROS (i.e. hydrogen peroxide and peroxynitrite produced by a reaction 

between superoxide and nitric oxide) within neighboring neurons. ROS-related oxidative 

stress impairs neuronal mitochondrial functions by the reduction of membrane potential, 

inhibition of ATP production, and greater production of mitochondria-derived ROS [41,45]. 

Moreover, upregulation of neuronal NOX expression results from the increased level of 

ROS and further enhances the production of ROS inside neurons. This feed forward chain 

reaction likely drives another vicious cycle within neurons generating even more ROS as 

mitochondria begin to fail until ROS over-production and oxidative stress begin to form 

protein aggregates, lysosomal malfunction and impaired clearance of dysfunctional 

mitochondria overall driving neuron death (Figure 2) [40].

Novel anti-inflammatory therapeutic strategies for neurodegenerative diseases by 
targeting NOX2

Oxidative stress and neuroinflammation are among the most common features shared in all 

neurodegenerative diseases. Antioxidant therapy has been considered as a strategy to treat 

neurodegenerative diseases, however the administration of antioxidants (e.g., vitamin C, 

vitamin E and co-enzyme Q10) showed marginal symptomatic improvements and was 

unable to halt disease progression in clinical trials for Alzheimer’s and Parkinson’s disease 

[46–49]. Since anti-oxidants are designed to neutralize unpaired electrons of free radicals, 

they are ineffective against hydrogen peroxide and peroxynitrite, the two species thought to 

be most effective at driving oxidative stress in neurons. Furthermore, targeting inflammation 

as a method of neutralizing inflammation-mediated oxidative stress in neurodegenerative 

diseases has also been investigated using nonsteroidal anti-inflammatory drugs (NSAIDs) in 

clinical trials with similar ineffective results. This is partly because anti-inflammatory 

therapies target the production of specific cytokines or prostaglandins rather than the 

mechanism underlying chronic neuroinflammation generation (i.e., the Mac1-NOX2 axis). 

For this reason, therapies that disrupt the Mac1-NOX2 axis could be more effective 

strategies in extinguishing chronic neuroinflammation, limiting the neuronal oxidative stress 

that contributes to neurodegeneration. There are two known anti-inflammatory compounds 

that reduce Mac1 expression, the natural flavonoid baicalin derived from the roots and 

leaves of the Scutellaria baicalensis plant [50] and the pharmaceutically synthesized 

leumedin NPC 15669 [51]. Unfortunately, NPC 15669 failed during Phase I clinical trials 

for undisclosed safety reasons. Interestingly, our group has shown that inhibition of NOX2 

in the Mac1-NOX2 axis provides great efficacy at preventing inflammation-driven 

neurodegeneration in pre-clinical studies of Parkinson’s disease. Our laboratory has 

identified several compounds including morphinans (e.g. dextromethorphan, sinomenine, 

naloxone and naltrexone) [52–55], peptides (e.g. dynorphine and Gly-Gly-Phe) [56,57], and 
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adrenergic receptor agonist (e.g. salmeterol) [58] that inhibit NOX2-generated superoxide to 

limit inflammation-driven oxidative stress and neurodegeneration (Fig. 3). Among the most 

recently published compounds, the established NOX inhibitor diphenyleneiodonium (DPI) 

was precluded from use in humans due to its high toxicity at micromolar concentrations. 

Interestingly, when DPI was administered in vivo at subpicomolar concentrations it not only 

had high specificity with long-term NOX2 inhibition but also resulted in no detectable acute 

cytotoxicity [42]. DPI was so effective, as it was shown to protect mice in multiple models 

of Parkinson’s disease even when administered post disease onset [42]. Though DPI had 

such great initial preclinical success, we are currently screening several novel blood-brain-

barrier permeable NOX2 inhibitors with even greater efficacy and specificity that might 

become promising clinical therapeutics to extinguish chronic neuroinflammation in 

neurodegenerative diseases by targeting the Mac1-NOX2 axis.

Conclusions

The role of low-grade, chronic neuroinflammation in the pathogenesis of neurodegenerative 

diseases continues to be strengthened. Yet our lack of understanding of the cellular and 

molecular mechanisms that shift inflammation from a tightly controlled acute event into a 

self-propelling cycle that causes collateral damage has prevented us from developing better 

targeted interventions to prevent chronic neuroinflammation. The most recent hypothesis 

based on data collected from healthy and diseased human brain tissue and animal models 

suggests that gradual increased release of neuronal DAMPs likely drive and maintain 

reactive microgliosis in neurodegenerative diseases. Although studies have shown that TLRs 

could be the central receptors for DAMPs during the progression of neurodegenerative 

disease, we present data that supports the Mac1-NOX2 signaling pathway is not only 

stimulated by DAMPs but also necessary for neuroinflammation to become sustained and 

pathological. Unlike TLRs, Mac1 can undergo multiple activations without tolerance-like 

modulations which more closely resemble the pattern of chronic neuroinflammation seen in 

neurodegenerative diseases. Thus, we believe designing therapies that disrupt the Mac1-

NOX2 axis will likely show great promise in breaking the vicious cycle of uncontrolled 

neuroinflammation that drives oxidative stress and neurodegeneration in neurodegenerative 

diseases.
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1. Neuroinflammation is a key risk factor in neurodegenerative diseases.

2. Mac1 signaling bridges chronic neuroinflammation and progressive neuronal 

loss.

3. NADPH oxidase could be a novel therapeutic target for neurodegenerative 

diseases.
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Figure 1. 
Reactive microgliosis drives chronic and progressive neurotoxicity. Microglia can initiate 

neurotoxicity by recognizing pro-inflammatory stimuli, such as cytokines, pathogen 

associated molecular patterns (PAMPs) from microbial pathogens to become activated and 

producing cytotoxic factors to damage neurons. Damage-associated molecular patterns 

(DAMPs) released from damaged/dead neurons can sustain microglia activation (reactive 

microgliosis), which cause further neuronal damage/death. Microglia Mac1 could recognize 

DAMPs and activate downstream NADPH oxidase (NOX2) to produce superoxide anions 

and its associated reactive oxygen species (ROS), such as hydrogen peroxide, which play a 

critical role in reactive microgliosis and driving the chronic neurodegeneration.
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Figure 2. 
Inflammation-derived oxidative stress leads to a vicious cycle inside the damaged neurons 

and causes neuronal death. Sustained release of neurotoxic factors from activated microglia 

continually bombards neurons and increases neuronal oxidative stress during chronic 

neuroinflammation. The oxidative stress causes mitochondria dysfunction, which could 

upregulate the expression of neuronal NOX, produce more ROS and lead to progressive 

neurodegeneration.
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Figure 3. 
The novel promising anti-inflammatory therapies. The conventional therapies target a 

limited number of pro-inflammatory factors and failed to block disease progression. The 

novel anti-inflammatory therapy targets upstream neuro-inflammatory signaling by 

inhibiting microglial NOX2, which in turn reduces superoxide production and over-

activation of microglia and thereby reducing the release of most pro-inflammatory and 

detrimental factors.
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