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Abstract

Recent studies continue to support the proposition that non-neuronal components of the nervous 

system, mainly glial cells and associated chemical mediators, contribute to the development of 

neuronal hyperexcitability that underlies persistent pain conditions. In the event of peripheral 

injury, enhanced or abnormal nerve input is likely the most efficient way to activate 

simultaneously central neurons and glia. Injury induces phenotypic changes in glia and triggers 

signaling cascades that engage reciprocal interactions between presynaptic terminals, postsynaptic 

neurons, microglia and astrocytes. While some responses to peripheral injury may help the 

nervous system to adapt positively to counter the disastrous effect of injury, the net effect often 

leads to long-lasting sensitization of pain transmission pathways and chronic pain.

Introduction

Most recent studies continue to support the proposition that non-neuronal components of the 

nervous system, mainly glial cells and associated chemical mediators, contribute to the 

development of neuronal hyperexcitability that underlies persistent pain conditions. As 

microglia are considered innate immune cells of the so-called immune-privileged brain, their 

responses to peripheral injury with collaborative involvement of astroglia and cytokines are 

considered a type of neuroinflammation [1,2]. This type of neuroinflammation, however, is 

remote from the site of injury and characteristically distinct from the conventional meaning 

of “inflammation”. It is generally devoid of cardinal signs of inflammation in the brain and 

spinal cord, not necessarily deleterious to neurotransmission as seen in other degenerative 

neurological diseases, and most importantly, it depends upon enhanced afferent neuronal 

activity after peripheral injury. Thus, the central “neuroinflammation” induced by peripheral 

injury is deemed “neurogenic” [2-4], which consists of a plethora of mutual signaling 

between neurons and glia via chemical mediators and their receptors. While some of these 
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responses to peripheral injury may help the central nervous system (CNS) to adapt positively 

to counter the disastrous effect of injury, the net effect often leads to long-lasting 

sensitization of pain transmission pathways and chronic pain. We will briefly discuss some 

recent literature on injury-induced central neuron-glial interactions and their significance in 

persistent pain.

Glial response to peripheral injury in humans

Despite ample evidence from animal studies, it has been a challenge to directly demonstrate 

the involvement of glia in human chronic pain conditions [see 5]. Indirect evidence suggests 

that humans also exhibit glial response to injury. Increased levels of astroglial marker glial 

fibrillary acidic protein (GFAP) and S100β were observed in postmortem spinal cord dorsal 

horn tissues from Human Immunodeficiency Virus (HIV) patients with chronic pain [6]. 

Increased CNS inflammatory cytokine levels in chronic pain patients have been observed 

[see 7].

Utilizing an improved in vivo marker of glial activation with integrated positron emission 

tomography (PET)-magnetic resonance imaging (MRI), Loggia et al [8**] have recently 

provided the first observation suggesting brain glial activation in chronic pain patients. They 

imaged the translocator protein (18kDa) (TSPO) through its specific binding to a newly 

developed PET radio ligand 11C-PBR28 in patients suffering from chronic low back pain. 

The TSPO was first described as the peripheral-type benzodiazepine receptor or recognition 

site [9]. It was found later that TSPO was also expressed in microglia, astrocytes and 

neurons [see 10, 11]. Interestingly, TSPO has been selectively upregulated in spinal 

astrocytes and microglia, but not in neurons, following L5 spinal nerve injury in rats [11] 

and has been used as a marker of increased glial activity after CNS injury in imaging studies 

[see 8**]. Peripheral immune challenge with lipopolysaccharide (LPS) induced an increased 

TSPO binding in the mouse brain with another TSPO PET ligand 18F-PBR06 [12].

In comparison between matched pairs controlling TSPO polymorphism, age and sex, the 

levels of TSPO, assessed by standardized uptake values for 11C-PBR28, was significantly 

increased in the thalamus and other regions including the insula, middle and posterior 

cingulate cortex, and ventromedial prefrontal cortex in patients with low back pain. These 

observations are consistent with previous report that limb denervation injury leads to long-

lasting increase in binding of 11C(R)-PK11195, the earlier generation of the TSPO ligand, in 

the human thalamus [13]. The increased 11C-PBR28 tracer binding appeared 

somatotopically relevant in the somatosensory and motor cortices receiving input related to 

the pain in the lower back and leg, indicating correlation of increased glial activity with 

pain-related neuronal input [8**].

Activity-dependent microglial activity

Microglia are sensitive to their environment. In their resting state, microglia constantly scan 

and monitor their surroundings and respond to changes in homeostasis [see 14-16]. In a 

broader sense, changes in the extracellular milieu can also be induced by injury distant from 

the CNS, resulting from influx of chemical mediators and neurotransmitters released from 

afferent terminals activated by enhanced or abnormal input activity after injury. Studies have 
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shown the contribution of primary afferent input to increased microglial activity after injury 

[17] and the development of pain-related behavior is delayed after peripheral nerve block 

[18]. In fact, peripheral nerve injury leads to increased activity of microglia in brain regions 

directly related to pain, mood and affect, as well as reward circuitry [19].

Microglia maintain a relationship with neurons, which positions microglia to perceive 

changes in neuronal activity. In the cortex, Baalman et al. [20] show that a subset of 

perineuronal microglia are specifically associated with the axon initial segment through a 

single process. Cilium-like protrusions of microglial processes closely appose or wrap 

around dendritic spines, presynaptic terminals, synaptic cleft and even perisynaptic 

astrocytic processes (Fig. 1A,B) [21]. It is interesting to note that microglia adjust their 

morphology and location in a dynamic fashion to sensory input. Tremblay et al. [21] 

demonstrate that altering light exposure induces changes in microglia processes in the visual 

cortex of juvenile mice, involving microglial contact/apposition with synaptic structures and 

motility of microglial processes. Visual deprivation reduced microglial process motility, 

which was reversed after light-reexposure. Evo et al. [22*] observed that microglial 

processes converge at dendritic spines in mouse brain slices in response to reduced 

extracellular calcium. They describe this phenomenon as “microglial process convergence”, 

which is apparently mediated by purinergic signaling. Conceivably, a reduction in 

extracellular calcium might mimic the effect of intense synaptic activity. Even in the resting 

state, the transient contacts of microglial processes with synaptic neural elements are 

modulated by neuronal activity [23]. Thus, microglia behavior is clearly regulated by 

sensory-driven neural activity.

The microglial cell membrane expresses a diversity set of receptors. What chemical signals 

do microglia pick up as a sign of injury? Among a handful of candidates, purines, as 

neurotransmitters, appear on the top of the list [15, 24-28*], although ATP could also be 

derived from other sources such as astrocytes [29]. Microglia-neuronal contact alters with 

changes in neuronal input. In P2Y12 receptor (P2Y12R) knock-out mice, microglial process 

convergence towards neuronal dendrites was eliminated [22*]. Tatsumi et al [30] recently 

show that microglial P2Y12R signaling following nerve injury involves downstream Rho-

associated protein kinase (ROCK) that acts at actin. The ROCK inhibitor H1152 attenuated 

neuropathic pain behavior and reversed nerve injury and 2Me-SADP-induced retraction of 

microglial processes, implicating an effect on pain-related microglial motility.

The other top candidate that mediates neuronal input to microglia is the chemokine CX3CL1 

[chemokine (C-X3-C motif) ligand 1], or fractalkine [31-35]. CX3CL1 is expressed in spinal 

cord dorsal horn and dorsal root ganglion neurons but not glia and its receptor CX3C 

chemokine receptor 1 (CX3CR1) is expressed exclusively in microglia [36]. Mice lacking 

CX3CR1 exhibited a delay in the development of allodynia following administration of the 

chemotherapeutic agent vincristine [37]. Direct application of CX3CL1 to spinal slices 

strengthens synaptic transmission between primary afferent C-fibers and dorsal horn lamina 

I neurons via microglial activity [38*]. Interestingly, this synaptic facilitatory effect of 

CX3CL1 does not depend on neural activity, which is consistent with a cascade related to 

CX3CL1/CX3CR1 signaling after peripheral injury. The functional chemokine domain of 

CX3CL1 is normally tethered to the membrane and released after cleaving by proteases. The 
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cleavage of CX3CL1 is achieved by the cysteine protease cathepsin S (CatS) from 

microglia. Nerve injury induces CatS in spinal microglia in the region receiving damaged 

primary afferent terminals, followed by CX3CL1 cleavage [see 34]. Thus, direct application 

of CX3CL1 may bypass the cleavage step of the membrane-tethered CX3CL1 and produces 

an effect that is downstream to initial injury-related neuronal input.

There is still much to be learned on the nature of inputs that switch microglia from a 

surveying phenotype to an active state; and it is not fully understood how glial cells decode 

information encoded by multiple integrated chemical mediators. It is interesting to note that 

application of ATP alone promoted motility of microglia, while application of a list of 

neurotransmitters [glutamate, substance P, gamma-Aminobutyric acid (GABA), serotonin 

(5-HT) etc.], neurotrophic factors (nerve growth factor, brain-derived neurotrophic factor), 

and chemokines [chemokine (C-C motif) ligand 2 (CCL2), CX3CL1 etc.], even direct nerve 

stimulation, had no effect [22*,39]. To induce release of CatS in microglia, ATP alone was 

insufficient. Only with priming by LPS, ATP activates P2X7R on microglia and leads to 

release of CatS. It seems that to reproduce a full spectrum of ‘activated’ microglia 

phenotype after injury, a combination of signals that more closely mimic in vivo conditions 

are necessary. The factors that help to maintain microglia in the resting state are also worth 

attention. CD200R is expressed in microglia and interacts with neuronal CD200, the OX-2 

membrane glycoprotein. Loss of CD200-CD200R signaling facilitates microglial activation 

in CNS after peripheral injury [see 32]. Down-regulation of CD200/CD200R1 in the knee 

synovium is associated with a painful condition [40].

Astroglia and neuronal activity after injury

Unlike microglia developed from macrophages of mesodermal hematopoietic cells, 

astrocytes are derived from the ectoderm and are involved in synaptic activity through their 

intimate anatomical relationship with neurons originating from the same germ layer. Ample 

evidence supports a role of astrocytes in the development of persistent pain hypersensitivity 

after injury [41-43]. Inhibition of astrocyte activity has been associated with the 

antihyperalgesic effect of pioglitazone, a peroxisome proliferator-activated receptor gamma 

agonist [44]. Direct nerve stimulation induced astroglial activity and cytokine release [45] 

and prolonged local anesthesia block of afferent neurons delayed the onset of pain-related 

behavior and reduced nerve injury-induced astrocytic responses [46], indicating that 

astrocytic response is regulated by neural input. Studies have shown that activation of 

microglia usually preceded reactive astrocytosis after injury [47,48*]. However, this 

phenomenon is not universal. In chemotherapy-induced peripheral neuropathic pain, glial 

activation is only seen for astrocytes, but not microglia [49, also see 50]. In a female bone 

cancer pain model, reactive astrocytosis occurred earlier than microglial activation and 

microglia did not appear to be involved in the initiation, but was critical in the maintenance, 

of persistent pain hypersensitivity [28*].

Astrocytes release gliotransmitters that contribute to synaptic activity. D-serine as a 

coagonist of the NMDA (N-methyl-D-aspartate, GluN) receptor is released from astrocytes. 

From an activity-dependent point of view, a recent work shows that release of D-serine from 

astrocytes in culture can be induced by ATP through astrocytic P2X7 receptors [51]. This 
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release is not calcium-dependent, consistent with growing awareness that astrocytic Ca2+ 

dynamics is not necessarily linked to synaptic activity [see 52]. The ATP-stimulated D-

serine release from astrocytes, however, requires functional pannexin-1 channels [51]. 

Pannexin-1 is homologous to the invertebrate gap junction protein innexin, but does not 

structurally bridge neighboring cells [53]. The major function of pannexins is to facilitate 

communication between the extra- and intra-cellular compartments. Apparently, pannexin 

plays a role in neuron-astrocytic signaling after injury. Blocking pannexin-1 attenuated 

neuropathic pain behavior in rats [54].

A unique contribution of astrocytes to excitatory synaptic activity is removal of glutamate 

from the extracellular fluid through glutamate transporter-1 (GLT-1, EAAT2), which is a 

major determinant of glutamate receptor activation and related neuronal excitability. 

Peripheral nerve injury down-regulates GLT-1 in the spinal cord dorsal horn [55], which 

may lead to accumulation of glutamate in the synaptic cleft. Restoring GLT-1 with 

ceftriaxone relieved hyperalgesia [56]. The down-regulation of GLT-1 results in an 

enhanced extrasynaptic NMDA receptor activation, likely involving glutamate spillover to 

the extrasynaptic site [57].

It is important to appreciate that the activity of GLT-1 is not limited to glutamate recycling. 

Sodium is cotransported with glutamate into astrocytes so that neuronal sodium load can be 

reduced. Sodium imaging in brain slices shows that neuronal activity triggers a transient 

increase in Na+ in astrocytes [58, also see 59]. Interruption of glutamate transport and 

associated uptake of extracellular K+ via activity of astrocytic Na+-K+ ATPase led to 

elevated neuronal sodium and prolonged epileptiform burst activity in mouse hippocampal 

slices [58]. Thus, astrocytes are crucially important for neuronal sodium homeostasis 

particularly in the phase of intense activity.

Astrocytes form functional syncytium through gap junction proteins such as connexin43 

(Cx43, GJ1). Six connexins assemble into a connexon and two connexons from adjacent 

cells face each other to form a gap junction channel. Gap junctions allow flow of ions and 

chemical mediators thus facilitating intercellular communication. Connexons that are not 

opposing a counterpart from other cells form hemichannels that provide an additional form 

of intra- and extra-cellular communication. Administration of carbenoxolone, a non-

selective gap junction decoupler, has been shown to attenuate behavioral pain 

hypersensitivity in animal models [48*, 60-63], suggesting that astrocytic gap junctions are 

involved in persistent pain. Potential involvement of gap junctions in persistent pain gives a 

hint on the mechanisms underlying spread of excitation to a non-injured territory, possibly 

mirroring pain that occurs contralateral to the site of injury [60].

The proposed contribution of astrocytic gap junctions to persistent pain, however, requires 

further attention. In an in vitro astrocyte scratch injury model, the spread of injury involves 

an increase in Cx43 hemichannel, but not gap junction channel activity [64]. In mouse 

hippocampal slices, LPS induces astroglial Cx43 hemichannel opening without an effect on 

gap junction activity [65]. Chen et al. [48*] show that tumor necrosis factor (TNF)-activated 

astroctytes induce mechanical allodynia involving Cx43. However, the effect of TNF was on 

Cx43 hemichannel activity in astrocytes as shown by ethidium bromide uptake in cultures, 
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but not on gap junction channels [48*]. While an involvement of astrocytic gap junctions 

cannot be ruled out, further studies should distinguish the role of Cx hemichannels in injury-

induced pain hypersensitivity.

Integrated neuron-glial signaling in persistent pain

Studies on neuron-immune interactions in pain have led to a concept that the basic 

functional unit for spinal/trigeminal pain processing is tetrapartite, likely consisting of four 

components, presynaptic terminals (primary afferents), postsynaptic neurons/dendrites, and 

astrocyte and microglial processes [66-68]. Although there is no direct evidence at the spinal 

level, this concept is supported by functional anatomy data from brain that demonstrate 

mutual contacts between the four components in the brain and their dynamic sensitivity to 

sensory input and signaling molecules [20-22*] (Fig. 1).

Ample evidence has shown comprehensive reciprocal neuron-glial and glia-glial signaling 

following peripheral nerve or tissue injury, involving neurotransmitters/modulators, 

cytokines/chemokines, growth factors, proteases, and their receptors/substrates [69,70]. For 

example (Fig. 1C), ATP released from primary afferent central terminals can engage P2X3R 

on neurons [see 26], P2X4R/P2Y12R on microglia [see 24,30], and P2X7R on astrocytes 

[51]. Microglia release CatS that cleaves CX3CL1 tethered to spinal neurons and TNF/

interleukin (IL)-18 that acts on astrocytes [48*, 71**]. Astrocytes can interact with C-C 

chemokine receptor type 2 (CCR2) on microglia through release of Chemokine (C-C motif) 

ligand 7 (CCL7) [72], and with chemokine (C-X-C motif) receptor 2 (CXCR2) on neurons 

through CXCL1 [48*,62]. Astrocytic IL-17 facilitates NMDA receptor phosphorylation 

through IL-17R on neurons [73]. Both microglia and astrocytes can release IL-1β that 

activates neuronal IL-1R [74,75]. Activation of IL-1R facilitates NMDA receptor 

phosphorylation in neurons [74], enhances glutamate release from primary afferents in 

spinal dorsal horn [76], increases endocytosis of GLT [77], and inhibits GABAergic 

neurotransmission (Fig. 2A) [78**]. All these signaling events can be triggered by 

peripheral injury or induced by inflammatory agents, and are mediated by cellular pathways 

involving multiple protein kinases and auxiliary factors, and importantly, linked to 

behavioral hyperalgesia.

The tetrapartite model of the spinal pain-processing unit should be understood in the context 

of different synaptic circuitry. In a GABAergic “inhibitory” synapse, decreased synaptic 

activity can be induced following LPS-induced IL-1β release from microglia, suppressed 

astrocytic GLT activity, and reduced GABA synthesis in presynaptic neurons (Fig.2A) 

[77,78**]. Spinal pain processing is subject to descending modulation. Descending 

serotonin produces facilitation by activating 5-HT3 receptors on spinal neurons, followed by 

upregulation of glial markers and behavioral hyperalgesia in rats [71**]. These effects of 5-

HT are mediated by a signaling cascade that involves neuronal CX3CL1, microglial IL-18, 

astrocytic IL-1β and their respective receptors CX3CR1 (microglia), IL18R (astrocytes) and 

IL-1R (neurons) (Fig. 2B). Thus, pain-related neuron-glial signaling in the spinal cord can 

also be triggered or modulated by brainstem centrifugal input.
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Neuroprotection, antinociception and glial activity

Further analysis of PET/MRI data indicated that the increased TSPO in the thalamus in 

human chronic pain patients is negatively associated with levels of pain and 

proinflammatory cytokine IL-1β [8**], suggesting a protective role of glial activation. 

Neuroprotection is in fact a major function of glia, although the net effect of increased glial 

activity after injury is often pronociceptive [3,79,80]. The TSPO agonist has been shown to 

attenuate persistent pain in animal models [10,11]. This raises the possibility of targeting 

TSPO for pain relief. Glia secrete anti-inflammatory cytokine IL-10 that enhances analgesia 

[81,82]. The A3 adenosine receptor agonist IB-MECA attenuated paclitaxel-induced pain-

related behavior by reducing proinflammatory TNF and IL-1β and increasing anti-

inflammatory IL-10. IB-MECA also attenuated nitration of astrocytic GLT-1 and glutamine 

synthetase [83], suggesting recovery of function of these proteins in synaptic glutamate 

homeostasis. Thus, in manipulating glia for pain relief, it is intuitive to selectively engage 

their protective mechanisms, not simply suppress glial activity.

Concluding remarks and additional comments

Neuron-glial interactions continue to attract major interest in searching for mechanisms and 

treatment of chronic pain. In the event of peripheral injury, the enhanced or abnormal nerve 

input is likely the most convenient and efficient way to alert simultaneously central neurons 

and glia, although infiltration of peripheral immune cells and immune mediators through a 

compromised blood-brain barrier/blood-spinal cord barrier may also play a role [50]. Injury-

triggered signaling cascade engage reciprocal activation between presynaptic terminals, 

postsynaptic neurons, microglia and astrocytes, leading to long-lasting persistent pain.

It is unclear whether oligodentrocytes, the third major glia type in the CNS, interact 

similarly with neurons and other glial cells in response to peripheral injury. Gritsch et al. 

[84**] report that genetic ablation of oligodendrocytes induced cold and mechanical pain 

hypersensitivity in mice. It was found that the occurrence of pain hypersensitivity after 

diphtheria toxin-induced oligodendrocyte loss correlated with axon degeneration in the 

spinothalamic tract and upregulation of amyloid precursor proteins, a marker of axonal 

pathology. However, the microglial and astrocytic responses occurred about 3 weeks later 

except an early upregulation of one microglial marker, Iba-1 (ionized calcium-binding 

adapter molecule 1). It seems that interruption of interaction between oligodendrocytes and 

axons is sufficient to induce hyperalgesia and microglia/astrocytes do not contribute to the 

initiation of pain hypersensitivity in these mice. The dissociation of persistent pain 

hypersensitivity and glial responses has also been noticed in other models [85,86]. Further 

studies are expected to delineate a distinct role of neuron-glial interactions under specific 

pain conditions.

There has been a continuing effort in translating preclinical findings on neuron-glial 

interactions in pain. However, the clinical trials of agents targeting glia and pain-related 

chemokines/receptors have not been successful [see 1,8**,87 for further details]. For 

example, it is disappointing that a well-studied glial modulator propentofylline did not 

produce pain relief in post-herpetic neuralgia patients [88]. Minocycline, a microglial 

inhibitor, did not produce clinically meaningful pain relief [89,90]. AZD2423, a CCR2 
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antagonist, is ineffective against posttraumatic neuralgia [91]. To search for answers to 

negative clinical findings, Landry et al. [88] have provided some clues regarding potential 

relevant differences in function of microglia and macrophages between humans and rodents, 

which might explain observed failure in clinical trials. Finding explanations of failed trials is 

no easy task and there should be controlled direct comparisons between clinical and pre-

clinical conditions [see 92]. Besides potential differences in biology and trial design issues, 

we need to rethink whether we have sufficient understanding of the mechanisms and to 

pursue coordinated preclinical and clinical studies in a disease-specific fashion.
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Highlights

-Brain glial activation is observed in patients suffering from chronic low back pain.

-Microglia maintain a dynamic relationship with neurons.

-Astrocytic connexin hemichannels play a role in injury-induced pain 

hypersensitivity.

-Neuron-glial signaling in the spinal cord can be triggered by descending input.

-Enhanced glial activity also offers neuroprotection as suggested by human studies.
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Fig. 1. 
The tetrapartite model of the neuron-glial interactions. A. Electron microscope image 

showing oppositions between the presynaptic axon terminals (blue), postsynaptic dendritic 

spines (pink), microglia (beige) and perisynaptic astrocytes (green). Note a microglia 

contiguous to a neuronal perikaryon (p) with its associated extracellular space (asterisks) 

and contacted synapse-associated elements. in, cellular inclusion. Scale = 250 nm. (Adapted 

from [21] Tremblay et al. PLoS Biology, 2010, 8(11):e1000527, Fig. 2A.) B. Partial 3-D 

reconstruction of the microglial proximal process (P) cut in transverse. Note that microglial 

processes directly contact multiple presynaptic axon terminals (blue), postsynaptic dendritic 

spines (red), and perisynaptic astrocytic processes (green). Similar cellular relationship 

exists for axon terminals, dendrites and astrocytes. Black arrows indicate extracellular space 

pockets of various size and shape (white). s1, s2, two dendritic spines; t1, one axon terminal. 

Scale = 250 nm. (Adapted from [21] Tremblay et al. PLoS Biology, 2010, 8(11):e1000527, 

Fig. 2B.) C. The tetrapartite model of the neuron-glial interactions in spinal nociceptive 

processing. Note mutual contacts between all four components of the model. Example lists 

of neurotransmitters/modulators, cytokines/chemokines, growth factors, proteases, and their 

receptors/substrates involved in nociceptive processing are shown in respective 

compartments. Two astrocytes are shown connected by astrocytic gap junctions. 

Abbreviations: 5-HT, serotonin; BDNF, brain-derived neurotrophic factor; CatS, cysteine 

protease cathepsin S ; CCL2, chemokine (C-C motif) ligand 2; CCL7, Chemokine (C-C 

motif) ligand 7; CCR2, C-C chemokine receptor type 2; CGRP, calcitonin gene-related 

peptide; CX3CL1, chemokine (C-X3-C motif) ligand 1; CX3CR1, CX3C chemokine 
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receptor 1; CXCL1, chemokine (C-X-C motif) ligand 1; Cx, connexon; CXCR2, CXC 

chemokine receptor 2; HC, connexin hemichannel; IL, interleukin; GJ, gap junctions; GLT, 

glutamate transporter; GluR, glutamate receptors; NK1, neurokinin 1; R, receptor; SP, 

substance P; TNF, tumor necrosis factor; TrkB, Tropomyosin receptor kinase B; TSPO, 

translocator protein; TLR4, Toll-like receptor 4;
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Fig. 2. 
Four-way neuron-glial interactions in spinal nociceptive processing. A. Decreased 

GABAergic inhibition in the spinal dorsal horn induced by lipopolysaccharide (LPS) 

activation of microglia through TLR4, IL-1β release from microglia, suppressed astrocytic 

glutamate transporter activity after IL-1β-induced GLT endocytosis, and reduced glutamate-

glutamine cycle-dependent GABA synthesis in presynaptic neurons [Adapted from 

77,78**]. Reduced GABAergic inhibition unleashes postsynaptic excitatory neurons and 

contributes to pain hypersensitivity. B. Descending 5-HT-induced neuron-glial interactions 

and related signaling cascade that underlies pain hypersensitivity. Descending serotonin (5-

HT) activates 5-HT3 receptors on spinal neurons, followed by a signaling cascade that 

involves release of neuronal CX3CL1, microglial IL-18, and astrocytic IL-1β and activation 

of their respective receptors CX3CR1 (microglia), IL18R (astrocytes) and IL-1R (neurons) 

[Adapted from 71]. IL-1R facilitates NMDA receptor activity that leads to neuronal 

hyperexcitability and behavioral hyperalgesia. Abbreviations: GABA, gamma-Aminobutyric 

acid; LPS, lipopolysaccharide; NMDAR, N-methyl-D-aspartate receptor; see Fig. 1 caption 

for other abbreviations.
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