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Systematic analysis of variants related to familial
hypercholesterolemia in families with premature
myocardial infarction

Ingrid Brænne1,2,8, Mariana Kleinecke1,2,8, Benedikt Reiz1,2, Elisabeth Graf3, Tim Strom3, Thomas Wieland3,
Marcus Fischer4, Thorsten Kessler5, Christian Hengstenberg5,6, Thomas Meitinger3,6,7, Jeanette Erdmann*,1,2,8

and Heribert Schunkert5,6,8

Familial hypercholesterolemia (FH) is an oligogenic disorder characterized by markedly elevated low-density lipoprotein

cholesterol (LDLC) levels. Variants in four genes have been reported to cause the classical autosomal-dominant form of the

disease. FH is largely under-diagnosed in European countries. As FH increases the risk for coronary artery disease (CAD) and

myocardial infarction (MI), it might be specifically overlooked in the large number of such patients. Here, we systematically

examined the frequency of potential FH-causing variants by exome sequencing in 255 German patients with premature MI and

a positive family history for CAD. We further performed co-segregation analyses in an average of 5.5 family members per MI

patient. In total, we identified 11 potential disease-causing variants that co-segregate within the families, that is, 5% of patients

with premature MI and positive CAD family history had FH. Eight variants were previously reported as disease-causing and three

are novel (LDLR.c.811G4A p.(V271I)), PCSK9.c.610G4A (p.(D204N)) and STAP1.c.139A4G (p.(T47A))). Co-segregation

analyses identified multiple additional family members carrying one of these FH variants and the clinical phenotype of either FH

(n=2) or FH and premature CAD (n=15). However, exome sequencing also revealed that some variants in FH genes, which

have been reported to cause FH, do not co-segregate with FH. The data reveal that a large proportion of FH patients escape the

diagnosis, even when they have premature MI. Hence, systematic molecular-genetic screening for FH in such patients may

reveal a substantial number of cases and thereby allow a timely LDLC-lowering in both FH/MI patients as well as their variant-

carrying family members.
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INTRODUCTION

Familial hypercholesterolemia (FH) is an autosomal-dominant disease
that leads to markedly elevated low-density lipoprotein cholesterol
(LDLC) levels and increased risk for coronary artery disease (CAD)
and myocardial infarction (MI). The prevalence of FH is estimated as
high as one in 200–500,1 with even higher frequencies in populations
with founder effects.2 FH is mainly caused by variants in genes coding
for proteins affecting hepatic LDLC uptake including the LDL receptor
(LDLR), in which most disease-causing variants are found, as well as
apolipoprotein B-100 (APOB) and proprotein convertase subtilisin/
kexin type 9 (PCSK9).1,3–6 More recently, STAP1 has been proposed as
a fourth gene causing FH.7 Cumulatively, variants in these genes
explain around 40% of FH cases.8

The phenotype may vary in variant carriers or even copied by
clustering of common LDL-modifying variants, each affecting LDLC
levels by only a small extent.9 The large number of patients with
apparently monogenic FH but without currently known variants also

suggests that other genes, which have not been identified so far, may
cause FH.
Multiple studies document the preventive effect of intensive medical

LDL-lowering at young age to prevent cardiovascular events.10–12

Therefore, it has been suggested that incidental detection of variants
leading to FH should be communicated to the affected individual and
the family.13 In fact, owing to the high frequency of FH, several
guidelines recommend programs to systematically unravel variants and
to facilitate medical treatment already at young age.14–16 Despite the
knowledge of causal genes and the obvious advantages of early therapy
only 1–15% of FH cases are diagnosed in most European countries.17

Notable exceptions are Norway (43%) and the Netherlands (71%), in
which national screening programs had been initiated.1,18,19 There are
several reasons why FH is vastly under-diagnosed. First, LDLC levels
and other clinical presentations of FH are variable.20 Second, a small
family size may obscure the inherited nature of FH,21–23 and third,
with FH being only one of multiple genetic and exogenous conditions
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affecting CAD risk, it might be overlooked in the large number of
CAD/MI patients.
It is assumed that FH explains about 20% of premature CAD cases

with familial clustering.24,25 However, no systematic analysis is
available to quantitate FH variants by molecular-genetic screening in
individuals with premature CAD. In this work, we evaluate the
frequency of FH due to variants in the LDLR, APOB, PCSK9 and
STAP1 genes in 255 unselected patients with premature MI (clinical
manifestation before the age of 60) and a positive family history.

MATERIALS AND METHODS

Patients
The ascertainment strategy of MI families is described elsewhere.26,27 In brief,
index patients had suffered from MI before the age of 60 years. If at least one
additional living sibling was affected with MI or severe CAD (defined by
percutaneous coronary intervention or coronary artery bypass grafting) before
the age of 70 years, the entire family (index patient, available parents and
siblings) was contacted and invited to participate in the study. For the present
study, we chose one affected individual each from 255 such families for whole-
exome sequencing. Clinical characteristics are detailed in Table 1.
All subjects analyzed in this study gave written informed consent. The local

ethical committee (University of Regensburg, Germany) approved the study.

Exome sequencing
Exome sequencing was performed as 54-bp (base pair) paired end runs on
a GenomeAnalyzer IIx system (Illumina, San Diego, CA, USA) after in-solution
enrichment of exonic sequences (SureSelect Human All Exon 38Mb kit,
Agilent, Santa Clara, CA, USA), yielding on average 6.2 giga bases (Gb) of
sequence per individual. Read alignment was performed with BWA (v. 0.5.8)
using the default parameters. We used the human genome assembly hg19
(GRCh37) as reference. A small percentage of duplicate reads (4–5%) were
removed. Single nucleotide variants and small insertions and deletions (indels)
were detected using SAMtools (v 0.1.7). For the variant filter part of SAMtools,
we used the default parameters with the exception of setting a maximum read
depth to 9999. Furthermore, we required putative single nucleotide variants to
fulfil the following criteria: (i) median base quality of the variant bases of at
least 15; (ii) a minimum of 15% of reads showing the variant base; and (iii) the
variant base is indicated by at least 5% of reads coming from different strands.

Variant validation
We used annovar28 to annotate the single nucleotide variant. Annotation was
based on several databases provided by annovar such as UCSC known gene,29

dbSNP (http://www.ncbi.nlm.nih.gov/SNP/), Exome Sequencing Project
(http://evs.gs.washington.edu/EVS/) and 1000 Genomes.30 In addition, we also

annotated several functional prediction scores such as SIFT,31 CADD,32

PolyPhen233 and Mutation Taster.34 Variant validation was performed using
PCR and Sanger sequencing. For co-segregation analysis, validated variants
were screened in affected and unaffected family members.
Primers that were used for validation are listed in Supplementary Table 1.

PCR was carried out in 20 μl volume containing 50 ng genomic DNA, 1 μl of
each primer and either 8 μl of Mastermix (5PRIME, Hamburg, Germany) or
0.1 μl Taq-Polymerase and 4 μl Taq-buffer mix (Bioline Pharmaceutical AG,
Baar, Switzerland). Samples were processed in a Sensoquest labcycler with a
standard touchdown PCR program (annealing temperature from 59 to 65 °C).
The variants identified in this work were submitted to the publicly funded

database LOVD (http://databases.lovd.nl/shared/variants/) with the LOVD
individual IDs 00033731, 00033768, 00033771–00033807.

RESULTS AND DISCUSSION

We studied 255 unselected MI/CAD patients from families with strong
familial clustering of MI/CAD. The average age at disease manifestation
was 42.5 years. The families of the index patients had an average size of
5.5 individuals with an average number of 2.3 affected family members.
Whole-exome sequencing yielded on average 6.2 Gb of sequence per

individual. The average read depth was 78 with between 84.5 and 85.6%
of the target regions covered at least 20× . In total, we identified 259
single nucleotide variants in the LDLR, APOB, PCSK9 and STAP1 genes.
We considered individuals with LDLC levels of 4160mg/dl after

adjusting for statin intake for further analysis.35 To identify potential
disease-causing variants, we filtered these variants based on three
assumptions. First, we expect a strong functional impact and therefore,
we removed synonymous and intronic variants outside splice-site
regions. Second, we expect the variant to be rare in the general
population, as FH affects 1 in 200 individuals at the most. Hence, we
filtered based on a frequency of 1% in public databases. Third, we
filtered variants in segmental duplications due to the high false-
positive rate in these regions.
Additionally, a decision tree (Supplementary Figure 1) was devel-

oped to further filter the remaining 54 variants. This decision tree
includes several considerations, such as the predicted deleterious/
damaging effect of a variant on the protein function or whether the
variant is known as potentially disease-causing in HGMD.36 Figure 1
shows the pedigrees of families where a potential disease-causing
variant was identified.

Variant spectrum in LDLR, APOB, PCSK9 and STAP1 genes
In total, we identified 13 rare variants with potentially functional effect
in the LDLR, 9 variants in APOB, 8 variants in PCSK9 and 1 variant in
STAP1. Twenty-three variants are missense variants, three are dele-
tions, two are nonsense variants, two are splice-site variants and one is
an insertion. Of these 31 variants, 24 were confirmed using Sanger
sequencing (see Table 2). Fourteen have been previously reported to
cause FH and listed in HGMD (access date March 2014).

LDLR gene variants
Co-segregating new variant: c.811G4A (p.(V271I)). We identified
only one variant in the LDLR gene that has not been previously
reported (c.811G4A (p.(V271I))). Both CAD/MI-affected members
of family 7421 available for the genetic study carry this variant. Both
individuals show elevated LDLC levels of 286 and 261mg/dl after
adjustment for statin treatment. The variant is also found in an family
member unaffected by CAD but with markedly elevated LDLC levels
(220mg/dl).
Variant c.811G4A (p.(V271I)) lies in the domain that interacts

with APOB37 and is in close proximity with several disease-causing
amino acid changes listed in HGMD, for instance p.N272T, p.C270S,

Table 1 Clinical characteristics of the MI patients analyzed in this

work

Clinical characteristics MI patients (n=255a)

Age at inclusion 53.6

Sex
Male, n (%) 78.3

Female, n (%) 21.7

BMI 27.5

Age at first MI 42.5

LDLCb (mg/dl) 175.8

Statin therapy, n (%) 62.9

LDLC4190 42.5

Diabetes, n (%) 9.9

Smoking, n (%) 82.6

aThe mean values are calculated based on the data available.
bAdjusted for statin intake according to the CURVES study.35
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p.C270R, p.C276R, p.G269D or p.C270Y.38–43 On the basis of the
position of the identified variant with respect to previously reported
variants, it is very likely that c.811G4A (p.(V271I)) is responsible for
the increase of LDLC in the variant carriers.

Co-segregating known variants: c.1285G4A (p.(V429M)), c.1444G4A
(p.(D482N)), c.G1775 (p.(G592E)), c.2231G4A (p.(R744Q)),
c.757C4T (p.(R253W)), c.131G4A (p.(W44*)), c.798T4A
(p.(D266E)) and c.828C4A (p.(C276*)). The missense variants

Figure 1 Pedigrees of families where a potential disease-causing variant was identified. Squares are males and circles are females. Individuals affected with
MI/CAD are shown as dark symbols.. The first row of numbers below the symbols are the individual IDs, the second line show the genotype for the identified
variant and the third row the corrected LDLC level. (LDLC levels marked with * are not corrected for statin treatment.) Detailed information is shown in
Table 2. The potential disease-causing variant per family are: Family ID 4349: LDLR. c.131G4A (p.(W44*)); Family ID7520: LDLR. c.1285G4A
(p.(V429M)); Family ID8450: LDLR. c.G1775 (p.(G592E)); Family ID 9242: LDLR. c.1444G4A (p.(D482N)); Family ID 7500: PCSK9. c.610G4A
(p.(D204N)); Family ID 8797: STAP1. c.139A4G (p.(T47A)); Family ID 6548 LDLR. c.2231G4A (p.(R744Q)); Family ID 7421: LDLR. c.811G4A
(p.(V271I)); Family IDs 8400, 8615, 9192: APOB. c.10580G4A (p.(R3527Q)) /(APOB. c.7696G4A (p.(E2566K))); Family ID6502: LDLR.c.1359-1G4A;
Family ID 6565: LDLR. c.757C4T (p.(R253W)).
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c.1285G4A (p.(V429M)) (first found in the African population44),
c.1444G4A (p.(D482N)), c.G1775 (p.(G592E)), c.2231G4A
(p.(R744Q)), c.757C4T (p.(R253W)) and c.131G4A (p.(W44*))
show co-segregation with elevated LDLC levels (mean 344mg/dl after
adjustment for statin treatment) and MI in the families under study.
Hence, on the basis of our own results and evidence in previously
reported studies,38,44–46 these variants probably cause the disease in
these patients/families.
The splice site variant c.1359-1G4A has also been reported to

cause FH.47 In addition, we have previously also identified this variant
as probably disease-causing in one of our extended MI/FH families.48

Co-segregation analysis showed that all five family members carry the
variant. Four family members are affected with MI/CAD and all have
elevated LDLC levels even after statin therapy (mean LDLC of 366mg/dl).
Hence, our data confirm previous findings.
The missense variant (c.798T4A (p.(D266E))) and the nonsense

variant (c.828C4A (p.(C276*))) were also found in individuals with
markedly elevated LDLC levels and MI. Both variants have been
reported as disease-causing in HGMD.38,49 Here, we only identified
both variants in the index patients of family 7080 and 8985 and not in
the two other affected family members. Both index patients have
markedly elevated LDLC levels of 310 and 204mg/dl, respectively.
Interestingly, the two non-carriers within these families also have
elevated LDLC levels of 187 and 205mg/dl.
Whereas c.828C4A (p.(C276*)) is not found in our internal non

CAD/FH patients, c.798T4A (p.(D266E)) is found twice. However, as
FH is a common disease, we also expect to find a small number of FH
cases in population-based controls.

Non-co-segregating known variant: rs45508991. One LDL receptor
variant, c.2177C4T (p.(T726I),rs45508991), is found in 6 of the 255
patients. This variant is reported to cause FH and is labelled as likely
disease-causing in HGMD but the variant may be only pathogenic in
combination with another variant in the LDLR gene.50,51 In our data,
we checked for co-segregation with LDLC and observed a positive
co-segregation only in one family (family 7421) that also carries an
additional co-segregating LDLR variant (c.811G4A (p.(V271I))). The
other five families show poor or no evidence that the variant causes
FH. In fact, in carriers of this variant, LDLC levels range from 147 to
268mg/dl, and in non-carriers from 86 to 257mg/dl.
Despite incomplete co-segregation with elevated LDLC levels,

c.2177C4T (p.(T726I)) is only found in one MI/CAD-unaffected
family member (Supplementary Figure 2). In our data set, we do not
find variant carriers with neither MI/CAD nor FH. To further check
whether c.2177C4T (p.(T726I)) is associated with an increased risk of
CAD or FH, we compared the number of variant carriers in our
sample within the general population. As c.2177C4T (p.(T726I)) is
mainly found in individuals of European ancestry,50 we compared the
frequency only in European samples. With a frequency of 0.007 in
1000 Genomes (1kG) data set (European samples, phase 3 version 5)
versus 0.023 (6/255) in our sample set, there is evidence that the
variant indeed increases the risk of CAD/FH. However, we also found
c.2177C4T (p.(T726I)) in 25 of 1462 (0.017) internal European non-
CAD patients (P-value= 0.477). Hence, as the variant is equally
common in affected versus unaffected individuals, we expect the
accumulation of c.2177C4T (p.(T726I)) rather to be a founder effect
than related to an increased risk of CAD/FH.

Non-co-segregating known variant: c.313+2T4C. LDLR variant c.313
+2T4C does neither co-segregate with elevated LDLC levels nor with
MI/CAD. This splice-site variant is only found in the index patient and

not in the two relatives with elevated LDLC levels (mean LDLC
217mg/dl) of which one is also MI/CAD-affected. Variant c.313
+2T4C is reported to cause FH52 and is labelled as disease-causing in
HGMD. However, on the basis of the results of co-segregation analysis
in family 4318, we do not expect the variant to be disease-causing, at
least not to be the primary cause of MI/CAD in this family.

Double variant: LDLR. c.131G4A (p.(W44*)) and PCSK9.c.137G4T
(p.(R46L)). For all validated LDLR-variant carriers, we checked for a
second variant in PCSK9, APOB and STAP1 gene. We found one
compound heterozygote patient with a variant in the LDLR gene
(c.131G4A (p.(W44*))) and PCSK9 gene (c.137G4T (p.(R46L)))
(family 4349, patient 501). The PCSK9 variant, c.137G4T (p.(R46L)),
is reported to be associated with a significant reduction of LDLC.53

Co-segregation analysis revealed that one of the three c.131G4A
(p.(W44*)) carriers also carry c.137G4T (p.(R46L)) (patient 501), in
addition to one family member without the LDLR variant
(patient 504).
Reduced PCSK9 activity leads to increased density of LDLR54,55 at

the cell membrane. As we have heterozygous variant carriers expres-
sing one healthy LDLR allele, we would not expect to see a strong
effect, but expect to see reduced levels of LDLC for the double variant
carriers. However, the LDLC level is markedly elevated for all three
c.131G4A (p.(W44*)) variant carriers (mean LDLC 322mg/dl).
We do not identify a higher level of LDLC in the affected relative
with the protective PCSK9 variant (LDLC level of 432mg/dl). On the
contrary, this patient has the highest LDLC level in the family. This
could, however, imply that the protective effect of the PCSK9 variant is
negligible compared with the LDLC level increase caused by the LDLR
variant. The unaffected relative carrying only the reported protective
variant has similar LDLC levels as the second unaffected relative
lacking both variants. In summary, we do not see a reduction in LDLC
levels in c.137G4T (p.(R46L)) carriers and would not expect the
variant to markedly reduce LDLC levels.

APOB gene variants
Of the nine APOB variants, three were found in HGMD: c.7696G4A
(p.(E2566K)) and c.5066G4A (p.(R1689H)) are reported to be
associated with high triglyceride and c.10580G4A (p.(R3527Q)) with
high LDLC levels. Of the nine variants, only one co-segregates with FH
and MI/LDLC levels, and is previously reported. In the following, we
will only discuss the three HGMD variants.

c.10580G4A (p.(R3527Q)) and c.7696G4A (p.(E2566K)). Interest-
ingly, c.10580G4A (p.(R3527Q)) is always found in combination
with the c.7696G4A (p.(E2566K)) variant. Vice versa, c.7696G4A
(p.(E2566K)) is also found without the c.10580G4A (p.(R3527Q))
variant. As c.10580G4A (p.(R3527Q)) appears to be on the same
allele as c.7696G4A (p.(E2566K)), c.10580G4A (p.(R3527Q)) seems
to be the more recent variant.
The c.10580G4A (p.(R3527Q)) variant was found in three families

(8615, 9192, 8400). Variant c.10580G4A (p.(R3527Q)) has been
reported to cause defective binding of ApoB to the LDLR.56 All five
c.10580GoA (p.(R3527Q)) carriers show elevated LDLC levels (mean
LDLC 300mg/dl). However, two siblings with elevated LDLC (mean
206mg/dl), do not carry the variant. These non-carriers could,
however, have another cause of disease. Hence, there is evidence that
c.10580G4A (p.(R3527Q)) may cause elevated LDLC levels. There-
fore, our results support previous findings.
Variant c.7696G4A (p.(E2566K)) was identified in seven families.

This variant does neither co-segregate with elevated LDLC levels nor
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with MI. In the seven families, we find three affected individuals
(mean 214mg/dl) without the variant as well as four unaffected
variant carriers (mean 133mg/dl).

Non-co-segregating known variant: c.5066G4A (p.(R1689H)). The
c.5066G4A (p.(R1689H)) variant was found in three of the 255
exome-sequenced MI-patients. Two non-carriers have LDLC levels
above 190mg/dl while four variant carriers do not show elevated
cholesterol levels (mean 156mg/dl). Hence, we do not expect this
variant to be the cause of disease in these families nor increase the risk
of FH/MI in general.

PCSK9 gene variant
We identified two variants in the PCSK9 gene. Both variants have not
been reported earlier. On the basis of co-segregation analysis with
LDLC levels, the c.610G4A (p.(D204N)) variant might cause FH. The
affected variant carrier has LDLC levels of 314mg/dl and the MI-
affected brother has low LDLC levels (104mg/dl). Hence, the cause
of MI may differ in this individual. The variant c.449_450del
(p.(150_150del) does not co-segregate with FH in the family.

STAP1 gene variant
Variant c.139A4G (p.(T47A)) is the only variant we found in the
STAP1 gene and has not been reported previously. Both family
members available for genetic studies are MI-affected and carry the
amino acid substitution. In addition, both show elevated LDLC levels
(mean 248mg/dl). Hence, we might have identified the causal variant
in this family but functional studies are necessary to further evaluate
its functional implication.

Potential polygenic cause of FH
Of the analyzed CAD patients, 48% have LDLC levels above 190mg/dl
after correction for statin intake35 (LDLC levels were available for 212
CAD patients). We find rare potential disease-causing variants in
12.7% of these patients CAD patients with high LDLC levels. It has
recently been shown that the clinical phenotype of FH can also be
caused by the accumulation of common variants with small effects.9

Indeed, it has been reported that a score of six SNPs enables to
discriminate FH patients from healthy controls.57 We calculated the
score as described by Futema et al for the patients with high LDLC
levels but without a rare disease-causing variant and compared the
score with the controls of the German MI Family Study II58

(n= 1298). Not all SNPs were covered by exome sequencing, so we
calculated the score based on GeneChip Human Mapping 500 K Array
Set (Affymetrix) available for 234 of the 255 CAD patients. The mean
score in controls (0.63) are significantly lower than the mean score
(0.69) in patients with high LDLC levels (P-value= 0.025). Our values
are in range with the scores reported by Futema et al (0.63 in the
control cohort and 0.71 in the mutation negative FH patients). Hence,
the mutation-negative patients with elevated LDLC levels might have a
polygenic cause of disease.

CONCLUSION

Here, we screened 255 patients with premature MI/CAD for variants
in genes known to cause FH. If we only account for variants in the
LDLR gene, 3.1% of the patients carry potential FH-causing variants.
If we also account for variants in APOB, PCSK9 and STAP1, we have
a cumulative frequency of FH-causing variants of 5.1%. Indeed,
the frequency of potential disease-causing variants in our sample
is probably underestimated. Large rearrangements are reported to
account for 11% of the LDLR variants.59 Unfortunately, the coverage

profile of our data was not uniform enough to allow a screening for
such variants and hence we might have missed some of these.
In summary, the high frequency of potential FH-causing variants in

these unselected MI/CAD patients supports the hypothesis that FH is
overseen in a substantial number of patients with MI/CAD and
demonstrates that genetic screening also of MI/CAD patients can
improve diagnosis of FH.
Additionally, we also screened family members of the index patients

for the identified variants. This revealed that 17 family members also
carry the potential FH-causing variant. Hence, our findings underline
the need for a systematic molecular-genetic screening to enable an
early diagnosis of FH and to allow timely preventive treatment.
A further interesting finding is that the functional effect of several

variants reported as disease-causing, for instance in HGMD, is
questionable. We observed that five reported causal variants show
none or minor functional impact in our analyzed families. Conse-
quently, given the far-reaching implications of the diagnosis of FH,
each variant has to be carefully evaluated. In fact, a co-segregation
analysis is advisable to determine whether a variant truly is disease-
causing.
In summary, our work demonstrates that exome sequencing can be

used for FH-variant screening. In addition, the quality of the exome
sequencing has improved over the last years, allowing identification
not only of small nucleotide variants but also large rearrangements.60

Also, as the sequencing costs have decreased dramatically, exome
sequencing might become the method of choice for molecular genetic
screening of, for instance, FH.
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