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Recent studies suggest common neural substrates involved in verbal
and visual working memory (WM), interpreted as reflecting shared
attention-based, short-term retention mechanisms. We used a
machine-learning approach to determine more directly the extent to
which common neural patterns characterize retention in verbal WM
and visual WM. Verbal WM was assessed via a standard delayed
probe recognition task for letter sequences of variable length. Visual
WMwas assessed via a visual array WM task involving the mainten-
ance of variable amounts of visual information in the focus of atten-
tion. We trained a classifier to distinguish neural activation patterns
associated with high- and low-visual WM load and tested the ability
of this classifier to predict verbal WM load (high–low) from their as-
sociated neural activation patterns, and vice versa. We observed sig-
nificant between-task prediction of load effects during WM
maintenance, in posterior parietal and superior frontal regions of the
dorsal attention network; in contrast, between-task prediction in
sensory processing cortices was restricted to the encoding stage.
Furthermore, between-task prediction of load effects was strongest
in those participants presenting the highest capacity for the visual
WM task. This study provides novel evidence for common, attention-
based neural patterns supporting verbal and visual WM.

Keywords: attention, fMRI, intraparietal sulcus, multivariate voxel pattern
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Introduction

A number of studies have highlighted a common involvement
of frontoparietal networks during retention of verbal and
visual information in working memory (WM) tasks. These
common networks have been observed both for overall activa-
tion levels during verbal and visual WM tasks (e.g., Nystrom
et al. 2000; Rämä et al. 2001; Hautzel et al. 2002; Brahmbhatt
et al. 2008; Lycke et al. 2008; Majerus et al. 2010) as well as for
WM load effects. WM load effects, comparing high-load with
low-load retention conditions, have been considered to reflect
a key index of WM storage capacity (Ravizza et al. 2004; Todd
and Marois 2004). Studies exploring load effects in WM have
shown the involvement of the posterior parietal cortex and in-
traparietal sulcus (IPS) in WM load for both verbal and visual
WM tasks, whereas the amount of activation within sensory
cortices does not appear to be sensitive to WM load (Ravizza
et al. 2004; Todd and Marois 2004; Todd et al. 2005). This has
led to the proposal that common, attention-based principles
support retention of information in verbal and visual WM. In
many current theoretical accounts of WM, attentional mechan-
isms such as attentional focalization and selection are considered

to be central for efficient WM performance, by allowing tempor-
ary representations of WM content to remain active and in the
focus of attention (e.g., Cowan 1995; Fuster 1999; Lavie 2005;
Gazzaley and Nobre 2012). Cowan (1995) argued that limitations
in the scope of attention define WM capacity, the scope of atten-
tion being defined by the amount of information that can be con-
sciously attended at one time. The present study examines the
common nature of presumably attention-based cortical networks
involved in verbal and visual WM tasks, by using multivariate
analysis techniques and by determining to what extent neural
patterns associated with WM load not only show overlap but can
actually predict WM load across WMmodalities.

There is increasing albeit indirect evidence for shared be-
havioral and neural mechanisms involved in verbal WM, visual
WM, and attention. Behaviorally, verbal and visual WM tasks
with stimuli designed to share as few features as possible
(spatial visual arrays and word-voice pairings) still show trade-
offs between modalities, with the requirement to retain stimu-
lus sets in both modalities reducing performance in both of
them compared with unimodal memory maintenance (Saults
and Cowan 2007), and the same is true of nonverbal acoustic
and visual tasks (Morey et al. 2011). When 2 stimulus sets are
to be retained, there is an initial processing phase in which en-
coding of materials into WM is vulnerable to feature similarity
between the sets, followed by an WM maintenance phase in
which there is little or no effect of the inter-set similarity, but
during WM maintenance, there is still a tradeoff between the
sets compared with control conditions in which 1 set can be
ignored (Cowan and Morey 2007). At least the WM mainten-
ance phase therefore appears to fit the profile of an attention-
demanding process. For verbal materials, this process can be
enhanced with a non-attention-demanding process, covert re-
hearsal (Camos et al. 2011), but that rehearsal process does not
appear to come into play in the retention of spatial arrays of
visual objects (Morey and Cowan 2004), which thus must
depend on attention during WMmaintenance.

At the neural level, the dorsal attention network, involved in
task-related attention and encompassing the IPS and the super-
ior frontal cortex, is increasingly activated as a function of
verbal and visual WM load and levels off when WM capacities
are reached (Todd and Marois 2004; Xu and Chun 2006); at the
same time, the ventral attention network, involved in stimulus-
driven attention and encompassing the temporo-parietal junc-
tion and the orbito-frontal cortex (Corbetta and Shulman 2002;
Asplund et al. 2010), is deactivated as a function of verbal and
visual WM load (Todd et al. 2005; Majerus et al. 2012). This
shows that attentional networks compete in the context of
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verbal and visual WM (Johnston et al. 2012; Green and Soto
2014). Further indirect evidence stems from studies investigat-
ing modality-independent networks of WM. These studies
showed that frontoparietal networks centered around the left
IPS are activated across different WM task modalities and
respond to WM load in verbal, visual, and auditory conditions
(Brahmbhatt et al. 2008; Majerus et al. 2010; Chein et al. 2011;
Cowan et al. 2011). Neural patterns in the parietal cortex have
also been shown to allow a distinction between different WM
task instructions (Rigall and Postle 2012). The same observa-
tion has also been made outside the WM domain, where
changes in task instruction during simple reasoning tests corre-
lated with activation patterns in the IPS and dorsolateral pre-
frontal cortex (Dumontheil et al. 2011). These data suggest that
the parietal cortex plays a general role in task control across
different WM modalities and cognitive domains, a role that can
be defined, at the lowest level of control, as attentional focaliza-
tion on task-relevant information (Cowan 1995; Gazzaley and
Nobre 2012; Duncan 2013; Fedorenko et al. 2013). Finally, the
IPS area has also been highlighted as a hub of attention in
perceptual tasks that do not involve WM (e.g., Anderson et al.
2010).

This study aims at providing more direct evidence for the as-
sumption of shared neural mechanisms involved in verbal and
visual WM and the role of these mechanisms in task-related at-
tentional focalization during WM. We used multivariate voxel
pattern analyses (MVPA) based on machine learning models in
order to assess the degree of neural pattern concordance
between load effects in verbal and visual WM tasks; these
methods are more sensitive than standard univariate methods
as they allow us not only to determine the functional overlap of
neural activation patterns in different task conditions but also
to assess the informative value of this overlap for between-task
prediction of condition effects. We focused on between-
modality predictions of WM load effects, since WM load effects
have been considered as a core index of short-term retention
capacity (Ravizza et al. 2004; Todd and Marois 2004). Also,
contrary to sensory cortices, they recruit the dorsal attention
network, as revealed by univariate analysis techniques. MVPA
will allow us to confirm or disconfirm these findings, by deter-
mining the extent to which these neural patterns associated
with WM load effects in both verbal and visual modalities actu-
ally contain sufficiently similar information for cross-modal
prediction of load effects. If this is not the case, then any
overlap of activation levels for verbal and visual WM load may
merely be a coincidence, with no systematic correspondence
of the neural activation levels and pattern distributions, and
underlying cognitive processes, between verbal and visual WM
load. For example, outside the WM domain, the IPS has been
shown to share increased activation levels in number and letter
comparison tasks, but this overlap was not associated with a
systematic similarity of activation patterns between the 2 tasks
as revealed by subsequent MVPA (Fias et al. 2007; Zorzi et al.
2011). We will also be able to assess whether regions not
showing common load effects in univariate analyses can never-
theless predict load effects using MVPA, including regions in
sensory processing cortices. We may expect these cross-modal
predictions of load effects in sensory cortices particularly for
the WM encoding stage, when high- and low-load conditions
in both modalities differ in the number of stimuli that are phys-
ically present and need to be processed. We should note here
that given the likely neural activation level differences between

high- and low-load conditions, cross-modal predictions will be
based on the informative value of both pattern activation level
differences and pattern activation distribution differences; im-
portantly, unlike univariate methods, neural patterns are com-
pared in a data-driven way. Finally, in order to rule out that any
cross-modal predictions merely reflect shared differences in
task difficulty between high- and low-WM conditions, brain–
behavior association analyses were conducted: If discrimin-
ation and between-task prediction of load effects is merely a re-
flection of differences in task difficulty for different WM loads,
then those participants with the lowest WM capacity should
show the highest discrimination and between-task prediction
of load effects since these participants will be most sensitive to
difficulty levels; on the other hand, if increased cross-modal pre-
dictions of load effects reflect stronger recruitment of shared
cognitive processes supporting verbal and visual WM perform-
ance, then between-task prediction of load effects should be
strongest in participants with highWM capacity.

Verbal WM load was assessed using a delayed probe recogni-
tion task for letter sequences contrasting short-term mainten-
ance of low (2 letters), medium (4 letters), and high (6 letters)
WM load conditions. This type of task dates back to Sternberg
(1966) and is 1 of the most commonly tasks used for assessing
verbal WM in both the behavioral and neuroimaging literature
(e.g., Henson et al. 2000; Nystrom et al. 2000; Nee and Jonides
2008, 2011; Majerus et al. 2012). An important body of evidence
has shown that even with visual presentation, letter sequences
are processed using verbal codes, as indicated by the strong and
robust psycholinguistic effects observed in WM performance for
letter sequences, such as the phonological similarity effect,
letter sequence recall being poorer for phonologically similar
but visually dissimilar letter, as opposed to phonologically and
visually dissimilar letters; when manipulating visual similarity
and maintaining phonological similarity of letters constant,
there can be effects of visual similarity, but mainly if memory of
visual features is explicitly stressed such as when letters are pre-
sented in mixed lower/upper case and case needs to be main-
tained (Conrad 1964; Conrad and Hull 1964; Baddeley 1986;
Logie et al. 2000). The visual WM task was a commonly used
visual array WM task in which arrays of colored squares are pre-
sented very briefly preventing any verbal rehearsal, grouping or
other strategic processes. This task depends largely on attention-
al focalization for further conscious processing and mainten-
ance of stimuli, presents the same set-size relation as purely
perceptual selective attention tasks, and shows robust perform-
ance tradeoffs with perceptual selective attention tasks (e.g.,
Luck and Vogel 1997; Todd and Marois 2004; Cowan et al. 2005,
2006; Xu and Chun 2006; Stevanovski and Jolicoeur 2007;
Cowan 2001; Anderson et al. 2013; Morey and Bieler 2013). Ver-
balization is very unlikely given the very brief presentation time
(250 ms) whereas color naming of a single square typically
takes about 500 ms (Stroop 1935). Morey and Cowan (2004)
also showed that a verbal rehearsal suppression task had no
impact on performance for this type of visual array WM task,
showing that verbal naming strategies are not used in that task.
In the original version of this task, participants are instructed to
focus their attention on arrays of 2, 4, or 6 colored squares
presented for a very brief time, followed by a probe array either
identical to the initial array or differing by a color change of a
single square. This task leads to the k-estimate of scope of at-
tention capacity, derived from the proportion of correct posi-
tive and negative probe decisions, and typically reaches an
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asymptote between k = 3 and k = 5. On average, an adult partici-
pant can consciously hold active in his focus of attention no
more than about 4 items, though with some individual variation
(Cowan 2001). In the present study, this procedure was further
adapted to remove any decision component and to reflect atten-
tional focalization and maintenance as directly as possible, by
training a classifier on trials containing arrays of variable set size
but which were not followed by any subsequent probe recogni-
tion array or response on those trials.

Materials and Methods

Participants
Valid data were obtained for 21 right-handed native French-speaking
young adults (9 male; mean age: 22.19 years; age range: 18–33) re-
cruited from the university community, with no history of psychologic-
al or neurological disorders. The data of 2 participants had to be
discarded due to scanner artifacts; 2 additional participants interrupted
the study before complete data acquisition. The study was approved by
the Ethics Committee of the Faculty of Medicine of the University of
Liège and was performed in accordance with the ethical standards de-
scribed in the Declaration of Helsinki (1964). All participants gave
their written informed consent prior to their inclusion in the study.

Task Description
A practice session outside the MR environment, prior to the start of the
experiment, familiarized the participants with the specific task require-
ments and included the administration of at least 9 practice trials for
visual array WM task and 12 practice trials for the verbal WM task, both
described later. Following practice, the visual array WM task was pre-
sented in a single run and always preceded the verbal WM task (also
presented in a single run); this was done in order to avoid any carry-
over effect of maintenance strategies between tasks; these strategies
being more likely to be implemented in the verbal WM task where
stimuli were presented more slowly and where the maintenance inter-
val was much larger. The visual array WM task was constructed to
capture non-strategic, attention-based maintenance mechanisms via
brief presentation and maintenance durations; this objective is likely to
be maximized if no other strategically more demanding task precedes
administration of the visual array WM task.

Visual Array WM Task
This task, illustrated in Figure 1, was designed to probe neural corre-
lates associated with the ability to focus attention on simultaneously
presented visual stimuli under 3 attentional load conditions. Arrays
containing 2, 4, or 6 colored squares were presented for a very brief
duration (250 ms) in order to avoid any strategic control processes or
verbalization. A minority of arrays were followed by probe arrays. The
participants were instructed to maintain attention on the array items,
and they were informed that for a minority trials, recognition of the
arrays would also be tested. The trials used for classifier training,
however, did not include these recognition trials in order to train the
classifier only on array encoding/maintenance events; the reason for
the additional administration of recognition trials was to ensure that
participants maintained their focus of attention on the arrays over the
entire task duration. The timing was identical up to the point at which
a probe array was inserted on recognition trials. In both kinds of trials,
the arrays to be studied were presented on a gray background, which
remained on the screen for a further 1000 ms after presentation of the
array. For each array, the colors of the squares were sampled without
replacement from a set of 7 different colors. Inter-trial interval duration
was of variable duration and followed a standard normal distribution
with a mean of 7000 ms and a standard deviation of 500 ms. During
the inter-trial interval, a fixation cross was displayed on the screen. An
upcoming trial was announced via the presentation of the sign “!”
during 1000 ms. There were 40 trials for each load condition. There
was a small number of additional recognition trials (15 per condition)
in which the information maintained in the focus of attention was

followed by a recognition display in which the target array was dis-
played with 1 circled square during a maximum of 3000 ms; the partici-
pants had to detect a change in color for the circled square (color
changed in at least 53% of recognition trials, always to a color that had
not been present in the array) by pressing the button under their
middle finger for “yes” (i.e., there was a change) and the button under
their index finger for “no.” The probe display was cleared after the par-
ticipant’s response. The timing was identical for the encoding-only and
recognition trials, up to the point at which a probe array was inserted
on the recognition trials. As already noted, the trials of this recognition
condition were not included for classifier training. The different condi-
tions were administered in pseudo-random order.

Verbal WM Task
This task assessed load effects in WM by presenting sequences of 2, 4,
or 6 consonant letters sampled without replacement from a pool of 16
different consonants. The letter sequences were presented for 2500 ms
on the center of the screen and were organized horizontally. The se-
quences were then replaced by the sign “*”, indicating that the letter se-
quences had to be maintained in WM for 5000 ms. After the
maintenance interval, a probe letter was shown in 1 of the 2, 4, or 6
possible serial positions indicated by horizontal bars on the center of
the screen (see Fig. 1). The participants had to decide within 3000 ms
whether the probe letter matched the letter in the indicated serial pos-
ition in the memory list by pressing the button under their middle
finger for “yes” and the button under their index finger for “no.” In
50% of trials, the probe letter did not match the target letter (i.e., a
letter not presented in the memory list) or its position (i.e., the letter
was part of the memory list but not in the indicated serial position).
The probe display was cleared after the participant’s response. There
were 42 trials for each WM load condition. Finally, a control condition
(20 trials) was included, controlling for letter identification, motor re-
sponse, and decision processes; this condition consisted of the presen-
tation of a sequence containing 2, 4, or 6 times the same vowel A,
followed by a 5000-ms delay period indicated by the sign “*” and fin-
ishing with a response display showing the same letter in upper or
lower case; the participants had to decide whether the case was the
same as in the target list by pressing the button under the middle
finger for “yes” and by pressing the button under the index for “no.”
For all conditions, before the start of a new trial, the sign “!” appeared
on the center of the screen during 1000 ms informing the participant
about the imminent start of a new trial. The inter-trial interval was of
variable duration (random Gaussian distribution centered on a mean
duration of 3500 ± 250 ms). The different conditions were adminis-
tered in pseudo-random order.

MRI Acquisition
The experiments were carried out on a 3T head-only scanner (Magne-
tom Allegra) operated with a standard transmit–receive quadrature
head coil. Functional MRI data were acquired using a T2*-weighted gra-
dient echo echo-planar imaging (GE-EPI) sequence with the following
parameters: TR = 2040 ms, TE = 30 ms, FoV = 192 × 192 mm2, 64 × 64
matrix, 34 axial slices with 3 mm thickness and 25% inter-slice gap to
cover most of the brain. The 3 initial volumes were discarded to avoid
T1 saturation effects. Field maps were generated from a double echo
gradient-recalled sequence (TR = 517 ms, TE = 4.92 and 7.38 ms, FoV =
230 × 230 mm2, 64 × 64 matrix, 34 transverse slices with 3 mm thick-
ness and 25% gap, flip angle = 90°, bandwidth = 260 Hz/pixel) and
used to correct echo-planar images for geometric distortion due to
field inhomogeneities. A high-resolution T1-weighted MP-RAGE image
was acquired for anatomical reference (TR = 1960 ms, TE = 4.4 ms, TI =
1100 ms, FOV 230 × 173 mm², matrix size 256 × 192 × 176, voxel size
0.9 × 0.9 × 0.9 mm³). For the visual array WM task, between 699 (the
scanner stopped prematurely for 1 participant in the visual array WM
task, after administration of 74% of trials, leading to a lower number of
functional volumes for this participant) and 960 functional volumes
were obtained, and for the verbal WM task, between 951 and 1009
functional volumes were obtained. Head movement was minimized by
restraining the subject’s head using a vacuum cushion. Stimuli were
displayed on a screen positioned at the rear of the scanner, which the
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subject could comfortably see through a mirror mounted on the stand-
ard head coil.

fMRI Analyses

Image Preprocessing
Data were preprocessed and analyzed using SPM8 software (Wellcome
Department of Imaging Neuroscience, http://www.fil.ion.ucl.ac.uk/
spm) implemented in MATLAB (Mathworks, Inc.) for univariate ana-
lyses. EPI time series were corrected for motion and distortion with

“Realign and Unwarp” (Andersson et al. 2001) using the generated
field map together with the FieldMap toolbox (Hutton et al. 2002) pro-
vided in SPM8. A mean realigned functional image was then calculated
by averaging all the realigned and unwarped functional scans, and the
structural T1-image was coregistered to this mean functional image
(rigid body transformation optimized to maximize the normalized
mutual information between the 2 images). The mapping from
subject to MNI space was estimated from the structural image with the
“unified segmentation” approach. The warping parameters were then
separately applied to the functional and structural images to produce
normalized images of resolution 2 × 2 × 2 mm3 and 1 × 1 × 1 mm3,

Figure 1. Schematic drawing of the visual array and verbal WM tasks. Note that for the visual array WM task, only the “encoding-only” trials were used for classifier training.
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respectively. The scans were screened for motion artifacts, and time
series with motion peaks exceeding 3 mm (translation) or 3° (rotation)
were discarded. Finally, the warped functional images were spatially
smoothed with a Gaussian kernel of 4-mm full-width at half maximum
(Schrouff et al. 2012).

Univariate Analyses
Univariate analyses first assessed brain activation levels associated
with visual and verbal WM load. For each subject, brain responses
were estimated at each voxel, using a general linear model with
event-related and epoch-related regressors. For the visual array WM
task, 3 regressors modeled the encoding-only trials (1 per load) as
zero-duration events; 3 additional regressors also modeled the recogni-
tion trials in order to control for variance related to comparison and re-
sponse processes additionally associated with these trials. For the
verbal WM task, the design matrix included 3 regressors, which
modeled sustained activity over the entire verbal WM trial as a function
of verbal WM load; the epoch-related regressors ranged from the onset
of the encoding period until the end of the recognition period; the
sensory and motor control condition was modeled implicitly. For each
task, boxcar functions representative for each regressor were con-
volved with the canonical hemodynamic response. The design ma-
trixes also included the realignment parameters to account for any
residual movement-related effect. A high pass filter was implemented
using a cutoff period of 128 s in order to remove the low-frequency
drifts from the time series. Serial autocorrelations were estimated with
a restricted maximum likelihood algorithm with an autoregressive
model of order 1 (+ white noise). For each design matrix, linear con-
trasts were defined for the 3 target load conditions. The resulting set of
voxel values constituted a map of t statistics [SPM{T}]. For each task,
these contrast images, after additional smoothing by 6-mm FHWM,
were then entered in a second-level, random effect ANOVA analysis to
assess load responsive brain areas. The additional smoothing was im-
plemented in order to reduce noise due to inter-subject differences in
anatomical variability and in order to reach a more conventional filter
level for group-based univariate analyses ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið42 þ 62Þp ¼ 7:21 mm)
(Mikl et al. 2008).

Multivariate Analyses
Multivariate analyses were conducted using PRoNTo, a pattern recog-
nition toolbox for neuroimaging (http://www.mlnl.cs.ucl.ac.uk/
pronto; Schrouff et al. 2013). They were used to determine the similar-
ity of voxel patterns associated with load effects in the visual array and
verbal WM tasks. We trained a classifier to distinguish whole-brain
voxel activation patterns associated with high versus low load in the
preprocessed and 4-mm-smoothed functional images of the visual
array WM encoding-only events, using a binary support vector
machine (Burges 1998), and by contrasting the lowest load condition
(2) to 1 of the other load (4 or 6) conditions; we used 2 2-class classi-
fiers rather than a single 3-class classifier since capacity limitations are
known to vary among subjects, some subjects reaching their limits at
load 4, others at load 6 for this type of task (Cowan 2001); a clear separ-
ation in 3 distinct classes was therefore not expected. This classifier,
based on a single, short event, was then used to predict the load condi-
tion of the preprocessed and 4-mm-smoothed functional images of the
verbal WM task. The WM test events were based on successive 1-s time
window shifts of the onsets of verbal WM events modeled as 0-duration
events, allowing us to retain an equal number of scans (i.e., 1 scan) for
the classifier training and test situations and further allowing us to
perform between-task classification as a function of successive events
of the verbal WM task (Riggall and Postle 2012); a 1-s time window for
the verbal WM task was used in order to be able to compare events of
similar short duration in the verbal and visual WM conditions (note
that the duration of visual WM events was <1 s, and these events had
also been modeled as 0-duration events). The same procedure was
applied to the reverse prediction (verbal WM to visual WM), with this
time the training classifiers time-shifted as a function of successive
verbal WM events, and tested on the same, single visual array WM
event. Significance of classification accuracy was assessed at the group
level by comparing the distribution of classification accuracy to a

chance-level distribution (t-test, P < 0.05 after false-discovery rate cor-
rection) and at the individual level using a permutation test
(Npermutation: 1000; P < 0.05). A standard mask removing voxels outside
the brain was applied to all images, and all models included timing
parameters for HRF delay (5 s) and HRF overlap (5 s) ensuring that
stimuli from different categories falling within the same 5 s were ex-
cluded (Schrouff et al. 2013). A region-of-interest approach was used at
a second stage, by repeating the preceding procedures and by limiting
the voxel space to a priori-defined volumes-of-interest (see below).

A Priori Locations of Interest
As a rule, for univariate analyses, statistical inferences were performed
at the voxel level at P < 0.05 corrected for multiple comparisons across
the entire brain volume using Random Field Theory. We in addition
focused on a small set of a priori-defined regions-of-interest that have
shown interactions between attentional processing and WM in previ-
ous studies. These regions included the dorsal attention network with
the bilateral posterior IPS [−25, −64, 43; 27, −62, 38], the bilateral su-
perior frontal gyrus [−20, −1, 50; 26, −2, 47] as well as the ventral at-
tention network with the bilateral temporo-parietal junction [−46, −57,
20; 47, −57, 24] and orbito-frontal cortex [−37, 26, −8; 34, 27, −10]
(Todd and Marois 2004; Todd et al. 2005; Asplund et al. 2010; Majerus
et al. 2012). We also included the left anterior IPS, which has been as-
sociated with amodal attentional control processes [−43, −46, 40]
(Cowan et al. 2011; Majerus et al. 2012). A small volume correction was
applied on a 10-mm radius sphere around these coordinates-of-interest.

For multivariate analyses, 10-mm radius volumes-of-interest were
created around these same areas of interest and these volumes-
of-interest were then used as masks for the training and test phases, al-
lowing us to determine classification accuracy for these areas of interest.
In order to assess the selectivity of the classifications in these areas, we
also targeted visual and language processing areas where no between-
task predictions were expected, except for shared sensory processing of
visual form information during encoding, since the verbal and visual
stimuli were both presented in a visual format. These additional
volumes-of-interest included the bilateral middle occipital gyrus [−32,
−79, 9; 29, −82, 8] (Pessoa et al. 2002) involved in color and basic visual
form processing, which may be common to encoding of the square and
letter stimuli in the visual and verbal WM conditions. These volumes-
of-interest also included the left fusiform [−43, −55, −18] and superior
temporal gyri [−58, −36, 10] for orthographic and phonological process-
ing, respectively (McCandliss et al. 2003; Majerus et al. 2010), and which
should not be shared between for stimulus encoding in the verbal and
visual WM conditions.

Results

Behavioral Analyses
A first within-subjects ANOVA assessed behavioral load effects
for the recognition trials in the visual array WM task. These
effects were determined using the k parameter of scope of at-
tention capacity measured by this task (Cowan et al. 2005). k is
computed by comparing hits (i.e., correct change detections)
and correct rejections (i.e., correct no-change responses) for
each load condition, via the formula k =N*(pHits + pRejections
− 1), N being the amount of stimuli per array. An ANOVA on
the k parameter showed a main effect of load, F2,40 = 42.03, P <
0.001, η2 = 0.68 (load 2: 1.86 ± 0.18; load 4: 3.17 ± 0.76; load 6:
4.38 ± 1.63) (the respective proportions of performance correct
were as follows: 0.96 ± 0.05, 0.89 ± 0.09, 0.85 ± 0.13). Bonfer-
roni-corrected comparisons showed a significant difference for
k between load 2 and load 4 and between load 4 and load 6. Im-
portantly, mean k for the highest load condition was 4.38, indi-
cating that the group-averaged mean scope of attention was
about 4 items in the visual array WM task, in line with previous
studies. Similar results were obtained when assessing reac-
tion times: We observed a main effect of load, F2,40 = 12.42,
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P < 0.001, η2 = 0.38, with slower responses for higher load
(load 2: 1143 ± 61 ms; load 4: 1234 ± 63 ms; load 6: 1376 ± 96
ms), and response type, F1,20 = 11.90, P < 0.01, η2 = 0.37, with
slower responses for rejections as compared with hits (hits:
1187 ± 65; rejections: 1315 ± 64 ms). For the verbal WM task,
task accuracy also varied as a function of load, F2,40 = 12.20,
P < 0.001, η2 = 0.38, with reduced accuracy for the highest load
condition only (load 2: 0.98 ± 0.03; load 4: 0.98 ± 0.02; load 6:
0.94 ± 0.05); for reaction times, a highly significant main effect
of load, F2,40 = 311.08, P < 0.001, η2 = 0.94, was observed with
response times increasing as a function of load (load 2:
1062 ± 51 ms; load 4: 1203 ± 55 ms; load 6: 1388 ± 54 ms);
finally, there was also a small effect of response type,
F1,20 = 7.66, P < 0.05, η2 = 0.28, with slower responses for nega-
tive probes (positive probes: 1190 ± 55; negative probes:
1246 ± 63 ms). These results confirm the load sensitivity of both
the visual array and the verbal WM tasks.

Univariate fMRI Analyses
An ANOVA on functional images over the 3 load conditions of
the visual array WM task (encoding-only trials) showed a main
effect in the dorsal attention network, including the bilateral
posterior IPS and the right superior frontal gyrus (see Table 1).
These effects were due to significantly higher activation for the
6-load condition relative to the 2-load condition in the bilateral
posterior IPS and the bilateral superior frontal gyrus, as well as
in the right inferior parietal lobule (see Fig. 2A and Table 1).
The 4-load versus 2-load contrast did not lead to significant
effects, except for increased activation in a small right posterior
IPS area in the 4-load condition.

An ANOVA on functional images of the verbal WM task also
showed a main effect of verbal WM load in the dorsal attention
network including the bilateral posterior IPS and the bilateral
superior frontal cortex, with more extended involvement, in
terms of voxel numbers, in the left posterior IPS as compared
with the right posterior IPS (see Table 1). In addition, there
were also load effects in the ventral attention network, includ-
ing the temporo-parietal junction and the orbito-frontal cortex.
Additional effects were observed in the anterior part of the left
IPS, in the anterior cingulate, the left precentral gyrus, the left
lingual gyrus, and the right cerebellum (CrI). Except for the
regions in the ventral attention network, all effects were due to
higher activation in the 6-load condition relative to the 2-load
condition (see Fig. 2A and Table 1). For the ventral attention
network, the bilateral temporo-parietal junction and orbito-
frontal cortex showed higher activation in the 2-load condition
relative to the 6-load condition, in line with previous studies
showing deactivation of this network for higher verbal WM
load (see Fig. 2A and Table 1); this was also the case for
regions in the posterior cingulate, the bilateral inferior tem-
poral gyrus, and the left superior temporal gyrus reflecting
further deactivation in the default mode network of which
these regions are part of (Buckner et al. 2008). The 2-load
versus 4-load contrast did not yield any significant activation.

Overall, overlap for the 2-load versus 6-load contrasts in the
visual array and WM tasks was most strongly related to the
dorsal attention network, and especially for the left posterior
IPS. In order to test this overlap statistically, we conducted a
conservative null conjunction analysis on the 6 versus 2 load
effects in the visual array and verbal WM tasks, confirming stat-
istically significant overlap in the left posterior IPS, and to a

Table 1
Peak-level activation foci showing overall load-dependent activity in the visual array and verbal WM tasks

Anatomical region ANOVA Load 6 > load 2 Load 2 > load 6

BA
area

No.
voxels

Left/
right

x y z SPM
{Z}-value

No.
voxels

x y z SPM
{Z}-value

No.
voxels

x y z SPM
{Z}-value

Visual array
Dorsal attention network
Superior frontal gyrus 6 L 2 −26 −6 54 3.21*
Superior frontal gyrus 6 5 R 24 4 50 3.23* 107 24 4 50 3.68*
Intraparietal sulcus (anterior) 40 5 −36 −42 42 3.18*
Intraparietal sulcus (posterior) 7 40 L −22 −64 42 3.70* 153 −22 −64 42 4.10*
Intraparietal sulcus (posterior) 7 57 R 24 −62 52 3.96** 13 22 −60 46 3.43*

Verbal WM
ACC/SMA 6/32 350 B −6 6 60 5.02 369 −6 6 60 5.27
Posterior cingulate 30 B 1418 4 −50 18 4.80
Precentral gyrus 6 825 L −52 0 46 5.20 1450 −52 0 46 5.63
Cerebellum VI 745 R 36 −62 −32 5.21 2271 36 −62 −32 5.46
Lingual gyrus 17 309 L −14 −86 2 5.07 −14 −86 2 5.47
Insula 13 R 1428 40 −12 −4 4.82
Middle temporal gyrus 21 L 1302 −52 −18 −18 4.87

Dorsal attention network
Superior frontal gyrus 6 27 L −24 2 54 3.65* 132 −24 2 54 3.63*
Superior frontal gyrus 6 25 R 28 2 54 3.70* 1 30 2 56 3.11*
Intraparietal sulcus (anterior) 40 156 L −38 −40 38 4.07* 73 −36 −40 40 3.83*
Intraparietal sulcus (posterior) 7 184 L −26 −62 48 3.95* 236 −26 −62 48 4.21*
Intraparietal sulcus (posterior) 7 2 R 26 −62 48 3.45* 6 26 −62 48 3.51*

Ventral attention network
Orbito-frontal cortex 11/47 2245 L −10 54 18 5.07 3993 −10 54 18 5.47

47 −34 32 −14 3.75* 49 −36 32 −14 4.22*
47 28 30 −14 3.73* 71 28 30 −14 4.28*

Temporo-parietal junction 39 604 L −50 −64 28 5.15 978 −50 −64 28 5.46
Temporo-parietal junction 39 R 76 52 −58 26 3.52*

Note: If not otherwise stated, regions are significant at P< 0.05, with voxel-level FWE corrections for whole-brain volume.
*P< 0.05, small volume corrections, for regions-of-interest; **P< 0.001, uncorrected.
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lesser extent, in the right posterior IPS as well as the left anter-
ior IPS (see Table 2 and Fig. 2B).

Multivariate fMRI Analyses

Whole-Brain Multivariate Analyses
A first set of multivariate analyses assessed between-task pre-
diction of load effects at the whole-brain level. A first classifier
was trained to distinguish the 6-load versus the 2-load condi-
tions for functional images for encoding-only trials of the
visual array WM task, and a second classifier was trained to dis-
tinguish the 4-load versus the 2-load condition. These classi-
fiers were then tested on successive events defining the verbal
WM trials, by determining the ability of these classifiers (e.g.,
6-vs.-2 visual array load) to decode load conditions in the
verbal WM task (e.g., 6-vs.-2 verbal WM load). Figure 3 (red
curve) presents mean classification accuracy for the 2 classi-
fiers at the whole-brain level and associated group-level signifi-
cance of classifications against chance-level classification

(t-test, P < 0.05, with false-discovery rate correction for mul-
tiple testing). Between-task mean classification accuracy for
the 6-versus-2 load classifier was significantly above chance
level for all events of the WM trial and fell to chance-level per-
formance at the end of the retrieval stage. Note that the high
initial values of the classification curve in Figure 3 and follow-
ing are due to the 5-s HRF delay implemented in the MVPA,
meaning that the actual time of the events used for the classifi-
cations is 5 s later relative to the time points indicated on the
x-axis. For the 4-versus-2 load classifier (Fig. 3, dark green
curve), between-task classification was significantly higher
than chance-level classification during the early encoding
phase and during the late maintenance/early retrieval phase. A
second set of analyses assessed reverse between-task predic-
tion, by training 6-versus-2 load classifiers on the verbal WM
task, with a separate classifier for each event of the WM task,
and by using these classifiers to predict the load conditions on
the single event of the visual array WM task. As shown in
Figure 3 (orange curve), except for the retrieval phase, all
events of the verbal WM trial contained sufficient information
to predict WM load in the single-event visual array WM task; it
is important to note here that this included classifiers trained
on distinguishing verbal WM load during the maintenance
phase, when no stimuli were physically present, and hence
between-task classification was based on neural events asso-
ciated with internal WM load. When performing the same type
analysis for predicting 4-versus-2 load conditions in the visual
array WM task based on a 4-versus-2 load classifier trained on
verbal WM events, we observed overall less robust between-
task predictions (Fig. 3, light green curve) but importantly,
between-task classification was above chance-level perform-
ance for classifiers trained on early as well as late maintenance
events.

Figure 2. (A). Brain areas showing load-sensitive activations when comparing the 6-load-versus-the 2-load conditions for the visual array (leftward panel) and verbal WM tasks
(rightward panel) with a display threshold of 3≤ T≤ 6 and –6≤ T≤ –3 on 3D template of cortical surface (Van Essen et al. 2001). (B). Common load-sensitive areas in the visual
array and verbal WM tasks for the 2-load versus 6-load conditions (null conjunction analysis), with a display threshold of 3≤ T≤ 4 and –4≤ T≤ –3 on a 3D template of cortical
surface (Van Essen et al. 2001).

Table 2
Peak-level activation foci showing common load sensitivity for 6-load-versus-2-load conditions in
the visual array and verbal WM tasks (null conjunction)

Anatomical region No.
voxels

Left/
right

x y z BA
area

SPM
{Z}-value

Intraparietal sulcus
(anterior)

7 L −38 −38 40 40 3.30*

Intraparietal sulcus
(posterior)

155 L −22 −64 44 7 3.75*

Intraparietal sulcus
(posterior)

1 R 26 −62 48 7 3.12*

*P< 0.05, small volume corrections for regions-of-interest.
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Region-of-Interest Multivariate Analyses
Next, we determined between-task classification accuracy re-
stricted to different regions-of-interest, and this more particular-
ly for the bilateral posterior IPS, which is part of the dorsal
attention network, and which, in the univariate conjunction ana-
lyses of the previous section, has been shown to support load
effects in both the visual array and verbal WM tasks. When re-
stricting classification to posterior IPS regions-of-interest, a very
similar profile to the whole-brain classifications was observed,
with significant, above chance-level classification accuracy
during encoding and during maintenance for the 6-versus-2
load classifier, and this again for prediction of verbal WM load
by visual WM load, and vice versa (see Fig. 4, red and orange
curves, respectively); this was the case for both the left and right
posterior IPS regions, except for the visual WM-to-verbal WM
training-prediction direction in the right posterior IPS where
classification was significant only during the encoding phase.
The same robust between-task prediction of WM load was also
observed in the more anterior IPS region-of-interest, for both
encoding and maintenance events of the verbal WM task and
for both training-prediction directions. When considering the
4-versus-2 load classifiers, between-task classification was
overall less robust; significant between-task predictions were
observed for events of the early verbal WM encoding stage (for
both training-prediction directions) in the left posterior IPS, and
for early encoding and late maintenance in the right posterior
IPS, and this particularly for the verbal WM-to-visual WM
training-prediction direction. For the superior frontal gyrus
regions-of-interest of the dorsal attention network, reliable
between-task predictions were observed for the 6-versus-2 load
classifiers for both training-prediction directions, and this for
events of the verbal WM encoding stage and maintenance stage;
this finding is important to highlight since these regions had not

been identified as supporting cross-modality load effects in the
univariate analyses. Finally, as shown in Figure 5, no reliable
between-task predictions were observed in regions-of-interest
supporting phonological, orthographic, and visual processing;
the only somewhat robust between-task predictions were re-
stricted to the encoding events in the left middle occipital gyrus
associated with visual stimulus processing, in line with our pre-
dictions of shared visual load effects during encoding in the
verbal WM and the visual array WM tasks, when the stimuli are
physically present.

In order to determine the statistical significance of the specific
sensitivity of regions-of-interest in the dorsal attention network
for between-task classification during verbal WM maintenance
events relative to the left middle occipital gyrus region, we ran a
repeated-measures ANOVA on mean classification accuracies
with the factors region (left middle occipital gyrus, left posterior
IPS) and verbal WM events; the left posterior IPS was selected
here as this region-of-interest was associated with the most
robust classification behavior over the entire verbal WM task. For
the visual WM-to-verbal WM training-prediction direction, we
observed a main effect of region, F1,20 = 8.71, h2

p ¼ 0:30, P <
0.01, a main effect of event, F11,220 = 13.24, h2

p ¼ 0:40, P < 0.001,
and a significant interaction, F11,220 = 4.23, h2

p ¼ 0:17, P < 0.001;
planned comparisons showed an overall higher classification
accuracy for load conditions in the left posterior IPS, and this
advantage was particularly strong for the early encoding
stage (first 2 events) and the late maintenance phase (events
6 and 7) (P < 0.05, after Bonferroni corrections for multiple
comparisons). When running the same analysis for the verbal
WM-to-visual WM training-prediction direction, very similar
results were observed, with a main effect of region, F1,20 =
18.75, h2

p ¼ 0:48, P < 0.001, a main effect of event, F11,220 =
12.47, h2

p ¼ 0:38, P < 0.001, and a significant interaction,
F11,220 = 4.84, h2

p ¼ 0:19, P < 0.001; the superiority of classifi-
cation accuracy in the left posterior IPS was particularly
marked for the encoding and late maintenance stage (events
1, 2, 3, and 6) (P < 0.05, Bonferroni-corrected).

Brain–Behavior Associations
Next, we explored associations between between-task classifi-
cation accuracy and behavioral measures, by assessing the rela-
tionship between individual classification consistency and
behavioral performance in the verbal WM and visual array WM
task (behavioral performance in the visual array WM tasks
being based on encoding + retrieval trials). We determined for
each participant classification accuracy consistency over the
encoding, maintenance, and retrieval stage for whole-brain
classifications (visual WM-to-verbal WM training-prediction
direction); individual classification consistency was deter-
mined by calculating the number of significant individual clas-
sifications (the significance of individual classification
accuracies was determined by permutation tests, P < 0.05) over
the different time points of the verbal WM trial. Individual clas-
sification consistency scores were then correlated with verbal
WM and visual WM performance scores. A first correlation ana-
lysis assessed the association between individual classification
consistency and verbal WM behavioral measures: no significant
correlation was observed between the classification consist-
ency score and the 6-versus-2 load verbal WM accuracy differ-
ence score, r =−0.02, P = 0.93, or the 6-versus-2 load verbal
WM RT difference score, r = 0.16, P = 0.48. In other words,

Figure 3. Whole-brain classification results for prediction of voxel patterns associated
with verbal WM load by voxel patterns associated with attentional load in the visual
array WM task, and vice versa, as a function of verbal WM phase. Curves indicate
mean between-task classification accuracy and SEM for the 6-versus-2 load classifier
(red curve for prediction of verbal WM load by visual WM load; orange curve for
prediction of visual WM load by verbal WM load) and for the 4-versus-2 load classifier
(dark green curve for prediction of verbal WM load by visual WM load; light green
curve for prediction of visual WM load by verbal WM load). Horizontal lines indicate
classifications significantly higher than chance-level classification at the group level
(t-tests with false-discovery rate correction for multiple testing, P<0.05). Note that
the classifications were conducted by considering a 5-s delay of the hemodynamic
response function, and hence the classification events displayed here are shifted by
+5 s relative to trial time (see the section Materials and methods for further details).
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verbal WM performance was the same, whether participants
showed highly consistent between-task classification or not.
However, when performing the same analyses on the visual
WM performance score as estimated by the maximum k score,
a significant correlation with the individual classification score
was observed, r = 0.49, P < 0.05. Similar results were obtained
when determining individual classification consistency scores

for the verbal WM-to-visual WM prediction direction: The cor-
relation with the maximum k score was significant, r = 0.44,
P < 0.05, but this was not the case for the 6-versus-2 load
verbal WM accuracy difference score, r =−0.01, P = 0.99 nor
for the 6-versus-2 load verbal WM reaction time difference
score, r = 0.13, P = 0.58. In other words, those participants pre-
senting the most consistent between-task classifications were

Figure 4. Classification results in the dorsal attention network for prediction of voxel patterns associated with verbal WM load by voxel patterns associated with attentional load in
the visual array WM task, and vice versa, as a function of verbal WM phase. Curves indicate mean between-task classification accuracy and SEM for the 6-versus-2 load classifier
(red curve for prediction of verbal WM load by visual WM load; orange curve for prediction of visual WM load by verbal WM load) and for the 4-versus-2 load classifier (dark green
curve for prediction of verbal WM load by visual WM load; light green curve for prediction of visual WM load by verbal WM load). Horizontal lines indicate classifications significantly
higher than chance-level classification at the group level (t-tests with false-discovery rate correction for multiple testing, P< 0.05). Note that the classifications were conducted by
considering a 5-s delay of the hemodynamic response function, and hence, the classification events displayed here are shifted by +5 s relative to trial time (see the section
Materials and methods for further details).
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those with the highest visual WM capacity. This asymmetric
finding is of theoretical importance given that visual WM cap-
acity is considered to reflect scope of attention capacity more dir-
ectly than verbal WM capacity, as we will discuss later. Finally,
note that we observed a positive, although non-significant, direct
correlation between verbal and visual WM performance of
medium size, r = 0.35, P = 0.12 (correlations computed for accur-
acy scores for the 6-load conditions in each task where perform-
ance showed the greatest variability).

One could argue that these asymmetric findings may be due
to task order and associated fatigue effects, given that the
visual array WM task was always presented before the verbal
WM task. This is, however, unlikely. First, performance levels
remained quite high for the verbal WM task even for high-load
trials (accuracy: 94%); also, mean response times were very
similar for the visual and verbal WM tasks, with no evidence
for slowing in the verbal WM task (1218 and 1251 ms, for the
verbal and visual WM tasks, respectively); the same is true for
the variability of reaction times in both tasks (see the section
Results for behavioral results). Furthermore, the accuracy and

reaction time data for the verbal WM task are virtually identical
to those obtained in other studies where a very similar version
of this task was administered right in the beginning of the
fMRI session (see Majerus et al. 2012). Second, behavioral per-
formance is correlated here with between-task classification
scores, which integrate neural patterns associated with both
modalities. Hence, if neural patterns associated with the verbal
WM task would have been unreliable due to fatigue effects,
then overall between-task predictions of load effects should
have become unreliable too, and associations with both verbal
and visual WM performance should have been affected.

Finally, in order to further show that the robust classification
accuracy for the 6-versus-2 load conditions observed in this
study reflects the increase of information held in WM, and not
merely the increased difficulty or cognitive effort associated
with maintaining 6-versus-2 items in WM, we performed a
second type of correlation analyses where we examined the
direction of the association between overall classification ac-
curacy and visual and verbal WM capacity. If heightened classi-
fication accuracy merely reflects the increased difficulty and

Figure 5. Classification results in sensory, orthographic, and phonological processing regions-of-interest for prediction of voxel patterns associated with verbal WM load by voxel
patterns associated with attentional load in the visual array WM task, and vice versa, as a function of verbal WM phase. Curves indicate mean between-task classification accuracy
and SEM for the 6-versus-2 load classifier (red curve for prediction of verbal WM load by visual WM load; orange curve for prediction of visual WM load by verbal WM load) and for
the 4-versus-2 load classifier (dark green curve for prediction of verbal WM load by visual WM load; light green curve for prediction of visual WM load by verbal WM load).
Horizontal lines indicate classifications significantly higher than chance-level classification at the group level (t-tests with false-discovery rate correction for multiple testing,
P<0.05). Note that the classifications were conducted by considering a 5-s delay of the hemodynamic response function, and hence, the classification events displayed here are
shifted by +5 s relative to trial time (see the section Materials and methods for further details).
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cognitive effort between the 2 conditions, then participants
with “low” k-capacity should show heightened classification
accuracy, and this especially in conditions where capacity
limits are reached (i.e., the 6-load condition as compared with
the 2-load condition). This was tested by averaging individual
classification accuracies for the 8 first events of the verbal WM
trials (in order not to bias the results by the presence of non-
informative end-of-trial events) and by correlating these mean
classification accuracies with the maximum k score of the
visual WM task and the accuracy score for the verbal WM task
(restricted to 6-load trials where performance was most vari-
able). For the visual WM-to-verbal WM prediction direction
and for the 6-versus-2 classifiers, we observed a significant
positive correlation between mean classification accuracy and
maximum k capacity, r = 0.45, P < 0.05, meaning that the
higher classification accuracy, the better visual WM capacity;
this rules out an interpretation in terms of increased task diffi-
culty as underlying increased between-task classifications. A
non-significant positive correlation was also observed with the
verbal WM performance score, r = 0.26, P = 0.25. Similar
results were observed when conducting the same analyses for
the verbal-to-visual prediction direction: both the visual and
verbal WM scores showed significant and large positive corre-
lations with mean classification accuracy for 6-versus-2 load
classifiers (r = 0.71, P < 0.001, and r = 0.50, P < 0.05, for visual
and verbal WM scores, respectively). When running the same
analysis on individual classification accuracies for the left pos-
terior IPS region-of-interest, which had yielded the most
robust classification pattern in the dorsal attention network,
similar results were also observed: For the visual WM-to-verbal
WM prediction, the correlation values were r = 0.27, P = 0.24,
and r = 0.08, P = 0.72, for visual and verbal WM scores, respect-
ively; for the verbal WM-to-visual WM prediction, the correl-
ation values were as follows: r = 0.46, P < 0.05, and r = 0.21,
P = 0.37. In sum, these analyses show that for individuals with
lower WM performance, classification accuracy was also
reduced, and this was particularly the case for the visual WM
scores, which reflect most directly attention-based WM main-
tenance processes as we will discuss. Note, however, that we
need to remain cautious when interpreting the brain–behavior
correlations reported here given the relatively small sample
size (N = 21) for analyses looking at associations between inter-
individual differences in neural and behavioral patterns.

Discussion

We show here that neural activation patterns differentiating
high- and low-verbal WM load can be predicted by neural pat-
terns dissociating high and low load in a visual array WM task,
and vice versa. A region-of-interest approach showed that this
was the case more particularly for the bilateral posterior IPS,
which had also been identified in univariate conjunction ana-
lyses as supporting cross-modal load effects, and for the bilat-
eral superior frontal cortex, which had not been identified in
univariate conjunction analyses. These regions define the
dorsal attention network. Furthermore, these cross-modal pre-
dictions of WM load effects in these regions were observed
during maintenance when stimuli were not physically present,
as well as during encoding and retrieval. Multivariate analyses
also identified cross-modal predictions of load effects in sensory
cortices, but these were limited to the encoding and very early
maintenance stage. Finally, cross-modal classification accuracy for

6-versus-2 load conditions was highest and most reliable in
those participants presenting the highest visual WM capacity.

The present results provide novel evidence for an increas-
ingly influential account considering that neural substrates in-
volved in retention of verbal and visual WM reflect a common
involvement of attentional processes supported by the dorsal
attention network. (Todd and Marois 2004; Todd et al. 2005;
Majerus et al. 2012). We show that verbal WM load-sensitive
neural patterns during the maintenance phase can actually be
predicted by neural patterns sensitive to WM load in a visual
WM task, and vice versa, and this precisely for regions of the
dorsal attention network while cross-modal predictions in
sensory cortices were limited to the encoding and the very
early maintenance stage. This is also in line with a recent study
by Emrich et al. (2013), showing that, if there are any load
effects in sensory cortices during maintenance, they are actual-
ly reversed, with informative value decreasing with increasing
memory load. Furthermore, the visual WM task used here max-
imized attention-based retention processes since any strategic
control and verbal recoding processes were prevented due to
the brief presentation rates. This task measured the partici-
pants’ ability to hold a variable amount of visual information in
their WM. This ability has been defined as reflecting the scope
of attention and is typically limited to about 4 ± 2 items (Cowan
2001). The present study shows that neural substrates asso-
ciated with visual scope of attention predict neural patterns as-
sociated with verbal WM load, and vice versa. This is further
supported by brain–behavior associations where we showed
that higher scope of attention capacity was associated with
higher cross-modal classification accuracy for the highest load
condition relative to the low-load condition: hence participants
with higher scope of attention, that is, a focus of attention cap-
acity above 4, were able to hold more information in the focus
of attention for the highest load condition, leading to higher
classification accuracy relative to participants with a lower
scope of attention, that is, a focus of attention capacity of 4 or
less. This also shows that the overall higher classification accur-
acies for the 6-versus-2 classifier relative to the 4-versus-2 clas-
sifier are not the result of the higher difficulty and cognitive
effort associated with the highest load condition relative to the
other 2 conditions, in which case, we should have expected a
negative relationship between classification accuracy and be-
havioral performance. It is also unlikely that other factors such
as differences in recruitment of interference, monitoring, or
motivational processes between high- and low-load conditions
account for the results we observed since these processes are
supported by distinct neural networks as those highlighted in
this study (anterior cingulate cortex for monitoring; Roelofs
et al. 2006; dorsolateral prefrontal and inferior prefrontal cortex
for resistance to interference; Schnur et al. 2009; Thompson-
Schill et al. 2002; posterior cingulate, angular gyrus, and insular
cortex for external and internal motivation, Farrer and Frith
2002; Lee et al. 2012). Also, while some of these regions were ac-
tivated for high- versus low-load contrasts in the verbal WM
tasks, none of these regions was activated for these contrasts in
the visual WM task.

Previous studies have highlighted the role of attentional pro-
cesses in verbal and visual WM essentially via manipulations of
attentional factors within WM tasks, and by showing that atten-
tional and WM processes compete for the same resources.
Lavie and colleagues showed that when performing concur-
rently WM and selective visual attention tasks, the number of
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erroneous detections increases in the visual attention task with
high WM load (load theory of attention) (Lavie et al. 2004;
Lavie 2005; Kelley and Lavie 2011). These results suggest that
high-WM load conditions consume attentional resources
which are shared with visual selective attention. Other studies
have manipulated the orientation of the focus of attention
within WM tasks, by instructing participants to maintain
stimuli varying as a function of several dimensions, by focus-
ing, during the maintenance period, the attentional focus on 1
of these dimension or on 1 specific stimulus, or by disrupting
the attentional focus during WM encoding (Kuo et al. 2012;
Lewis-Peacock et al. 2012; Lewis-Peacock and Postle 2012;
Rigall and Postle 2012; Majerus et al. 2013). The posterior par-
ietal cortex appears to be critically involved in these attentional
(re)-orientation processes on WM content, since the attended
stimulus dimension can be predicted from neural activation
patterns in the posterior parietal cortex (Rigall and Postle
2012). Lewis-Peacock et al. (2012) argued that sustained neural
activation patterns during the WM maintenance period reflect
the attentional focus and the reorientation of this focus rather
than heightened activation of information maintained in WM
since they observed that neural patterns during the mainten-
ance phase are sensitive to shifts of attention rather than to
WM content (see also LaRocque et al. 2013). However, due to
the direct manipulation of attentional processes and orienta-
tion during WM tasks in these studies, it is difficult to deter-
mine whether these attentional parameters are a defining
property of WM functioning or whether they arise from the
need to implement attentional control processes elicited by the
change in WM task set instructions or by the need to coordin-
ate WM and attentional tasks in a dual task situation. The
present study goes an important step further, by focusing on
neural patterns associated with basic verbal and visual WM
processes, without any requirement to redirect attention or to
divide attention as a function of task instructions; we show that
load-sensitive neural patterns in this core short-term retention
situation can be reliably predicted from neural patterns asso-
ciated with attentional load identified by a separate and inde-
pendent visual array WM task, and vice versa. One question
raised by our study design is whether the visual presentation
format for the verbal and visual WM tasks could have contribu-
ted to the reliable between-task classifications of neural pat-
terns we have observed. As already noted in the section
Introduction, although the letters were presented visually, a
large body of evidence has shown that visually presented letter
sequences are immediately recoded in phonological codes and
verbal WM performance for visually presented letters is sensi-
tive to the phonological similarity rather than the visual simi-
larity of the letters unless maintenance of visual features is
explicitly stressed (Baddeley 1986; Logie et al. 2000). Further-
more, an ERP study comparing WM for auditory and visual pre-
sentations of letter sequences observed phonological similarity
effects for both conditions, although the origin of the ERP
marker of phonological similarity differed between the 2 pre-
sentations, with a frontotemporal focus for the auditory condi-
tion, and a temporo-occipital focus for the visual presentation
(Martín-Loeches et al. 1998). A similar finding has been ob-
served by a study comparing auditory and visual presentations
of N-back WM tasks for letter stimuli: both modalities led to
common activation of the bilateral frontoparietal cortex, with
modality differences restricted to inferior temporal, inferior oc-
cipital, and middle occipital regions more strongly activated in

the visual modality (Rodriguez-Jimenez et al. 2005). This
finding can be related to the significant between-modality clas-
sifications observed for the middle occipital region-of-interest
we observed during encoding, and which we attributed to the
processing of shared visual sensory features of the stimuli in
the 2 tasks. Importantly, the modality effects reported by
Martín-Loeches et al. and Rodriguez-Jimenez et al. for audito-
rily and visually presented letter sequences did not involve the
frontoparietal networks where we observed the most reliable
between-task classifications, and this at all WM stages. At the
same time, it remains to be shown whether the results ob-
served in the present study generalize to auditorily presented
verbal WM tasks; we predict that this should be the case.

The present results further imply that the attentional focus
has a variable capacity (Cowan 2001; Morrison et al. 2014).
Some studies showed that at the moment of retrieval, only the
most recent item was associated with enhanced activity or
functional connectivity in the posterior parietal cortex, sug-
gesting that only the most recent item is held in the focus of at-
tention (Talmi et al. 2005; Ötzekin et al. 2009, 2010; Nee and
Jonides 2011). A more recent study, however, showed that
these findings may have been induced by the specific task re-
quirements, with very long encoding lists (up to 12 items) or
task cues presented only at the moment of retrieval, which
may have made it difficult to efficiently hold and focus atten-
tion on the entire memory list (Morrison et al. 2014). Lewis
Peacock et al. (2012) also showed that attention can be focused
on at least 2 items at once according to their multivariate classi-
fication results. Further convergent evidence comes from a be-
havioral experiment showing that attention in a perceptual
search task can be guided by multiple WM items at the same
time (Beck et al. 2012). The present study, showing that high
(6-item) and low (2-item) attentional load conditions can be re-
liably distinguished in posterior parietal cortex and that the
strength of this distinction varies as a function of scope of at-
tention capacity of the participants, indicates that the capacity
of the attentional focus exceeds 1 item and is flexible, that is, it
varies between individuals.

The present findings raise the more general question of the
functional relevance of shared neural substrates between
verbal and visual WM. Although we showed that higher and
more reliable between-task classification accuracy was asso-
ciated with higher scope of attention capacity, variability in
classification accuracy was less reliably associated with vari-
ability in behavioral verbal WM performance. It may be that
visual scope of attention, although involved in the mainten-
ance of information in verbal WM, is not necessarily associated
with verbal WM retrieval success. This possibility is supported
by the findings of Lewis-Peacock et al. (2012) who showed that
WM success did not differ for items actively held in the focus
of attention or not, suggesting that recognition based on dis-
tributed neural activation patterns in sensory cortex, that is, in
activated long-term memory, can be sufficient (see also Riggall
and Postle 2012; Emrich et al. 2013; Rahm et al. 2014). A
second possibility is that although attentional focalization and
refreshing is the only way to maintain nonverbal visual items,
verbal items can be maintained via 2 different processes.
Verbal information can be maintained either by attentional re-
freshing of neural representations as for visual information
(Raye et al. 2007), or it can be maintained through covert
verbal rehearsal, a much less attention-demanding strategy.
Camos et al. (2011) showed that for verbal stimuli, participants
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can be made to use 1 strategy or another. Given 2 possible
strategies for verbal WM maintenance, it may have been that
participants showing the strongest cross-modal classification
accuracies used the attentional strategy more because their
higher scope of attention capacity allowed them to do so,
whereas those with the weaker cross-modal classifications
relied to a larger extent on the verbal rehearsal strategy for the
verbal materials.

To conclude, this study provides new evidence for shared,
attention-based neural substrates during retention of verbal and
visual information in WM, by demonstrating that univariate
neural responses associated with verbal and visual WM load not
only overlap in the posterior parietal cortex but also that the
multivariate neural patterns in a larger part of the dorsal attention
network are sufficiently similar to allow for cross-modal predic-
tions of WM load, and this particularly in participants showing
the strongest scope of attention capacity. Future studies need to
investigate the functional consequences of these findings for the
understanding of behavioral WM capacity limitations.
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