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Abstract

The increased pressure on the marine ecosystems highlights the need for poli-

cies and integrated approaches for sustainable management of coastal areas.

Spatial planning based on geographic information of human activities, ecologi-

cal structures and functions, and their associated goods and services is a funda-

mental component in this context. Here, we evaluate the potential of predictive

modeling to provide spatial data on one ecosystem function, mussel growth for

use in such processes. We developed a methodology based on statistical model-

ing, spatial prediction, and mapping for the relative growth of the blue mussel,

Mytilus edulis. We evaluated the performance of different modeling techniques

and classification schemes using empirical measurements of growth from 144

sampling sites and data on biological, chemical, and physical predictors. Follow-

ing comparisons of the different techniques and schemes, we developed random

forest models to predict growth along the Swedish west coast. Implemented

into GIS the best model produced in this study predicts that low, intermediate,

and high growth rates can be expected in 53%, 32%, and 15% of modeled area,

respectively. The results of this study also suggest that the nature and quality of

predictor data hold the key to improving the predictive power of models. On a

more general note, this study exemplifies a feasible approach based on measur-

ing, modeling, and mapping for obtaining scientifically based spatial informa-

tion on ecosystem functions and services affected by a complex set of factors.

Such information is fundamental for maritime spatial planning and ecosystem-

based management and its importance is likely to increase in the future.

Because of its close link to nutrient assimilation and production yield, site-spe-

cific information of soft tissue growth such as the map of predicted growth rate

developed in this study can be used as a tool for optimizing actions aimed at

mitigating eutrophication and aquaculture operations and in maritime spatial

planning processes of coastal areas.

Introduction

Increasing human pressure on the marine environment

highlights the need for management and planning of the

marine resources (Margules and Pressey 2000). This is

reflected in numerous legal and policy documents that

are developed around the world (e.g., the EU “Roadmap

for marine spatial planning,” COM 2008; and the

recently adopted “Framework directive of maritime spa-

tial planning,” European Commission 2014). Combining

ecosystem-based management with marine spatial plan-

ning and ecosystem service framework is a valuable way

to ensure stability of marine systems and their services

(Guerry et al. 2012). This approach relies heavily upon

access to reliable spatial information of structural and

functional biodiversity and the knowledge of human

pressures.

To improve management and planning there is a need

for information on system functions and processes (Troy

and Wilson 2006; Frid et al. 2008). The understanding of

how these processes work and how they respond to

changes are continuously increasing (Sutherland et al.

2013). However, such data are primarily collected using

small-scale sampling methods resulting in maps that are
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constructed using direct methods often being incomplete

or nonexistent. As a consequence of this, and the fact that

few species have been studied in detail in terms of their

dynamic response to environmental changes, decisions

about planning and resource-use are often based on

incomplete information (Toner and Keddy 1997; Joy and

Death 2004).

Methods utilizing the relationship between a biological

response (e.g., growth, abundance) and explanatory envi-

ronmental variables have been increasingly used to fill

gaps in information. Predictive models are powerful tools

in combining field surveys with these kinds of relation-

ships. This has led to an increased use of models to pre-

dict distribution and abundance of species in natural

sciences across terrestrial and aquatic environments (Gui-

san and Zimmermann 2000; Elith and Leathwick 2009).

The same principle of predictive mapping that have

extensively been used in terrestrial environments also

applies in underwater environments (Remillard and

Welch 1993). The gaps in information have led to models

and maps, based on the models, being sought after by sci-

entists, conservation, and management planners as valu-

able tools in the management of terrestrial and aquatic

ecosystems (Toner and Keddy 1997; Schmolke et al.

2010).

Recent developments in geographical information sys-

tem (GIS) and data storage have facilitated the use of

predictive models across space for use in spatial analysis

and for the production of maps. The ability of GIS to

integrate spatial data and visualize results has proved

essential for landscape-scale analyses (Frohn 1998; John-

ston 1998) and become an important tool for managers

investigating environments on a landscape-scale (Remil-

lard and Welch 1993; Ferguson and Korfmacher 1997).

Although historically mainly used in terrestrial ecology

(Johnston 1998), GIS is now used in wide range of appli-

cations including the marine environment (Scott et al.

2002). Combining predictive modeling with the produc-

tion of maps can provide invaluable information for con-

servation, spatial planning, and management of marine

coastal areas.

Although aquaculture is not a new concept, the

increased human activities in coastal environments in

combination with growing importance of aquaculture

in food production (Bostock et al. 2010) have resulted

in increased demands for planning and sustainability of

aquaculture activities. Since filter feeders are near the

base of the food web and only rely on naturally available

food (Crawford et al. 2003), cultivation of filter-feeding

organisms is probably one of the more environmental

friendly marine production system available (Shumway

et al. 2003). This has led to proposals that mussel farm-

ing could be used as a tool in mitigation of eutrophic

coastal areas and at the same time offer sustainable sea-

food production (Lindahl et al. 2005). Such tools may

be of particular importance as components in programs

of measures for achieving “good environmental status”

as requested by the EU Water Framework Directive

(WFD).

Growth of bivalves and thus their potential as mitiga-

tors of eutrophication effects depends on a complex

matrix of biological, physical, and geomorphological

properties (Dame 1996). In an applied context, efficient

management of mussel farming requires geographically

explicit knowledge about differences in growth among

areas. Comprehensive studies of bivalve growth, like stud-

ies on almost everything in the oceans, are practically

impossible. A wide range of models, from empirical

(Gangnery et al. 2003; Hawkins et al. 2004) to mechanis-

tic (Saraiva et al. 2011; Thomas et al. 2011) has been used

to model growth of bivalves. Predictive models and maps

showing the spatial distribution of mussel growth serve

many purposes, including developing aquaculture produc-

tion, supporting spatial planning, management and

designing experiment to test mussel farming as a mitiga-

tion tool, and has successfully been applied to evaluate

potential new mariculture sites (e.g., Brigolin et al. 2006;

Filgueira et al. 2010) and manage impacts (e.g., Granger�e

et al. 2010).

The overall aims of this study were to evaluate and test

the predictability of spatial growth patterns of the com-

mon bivalve Mytilus edulis Linnaeus 1758, on the Swed-

ish west coast. This information is of fundamental

importance for the ongoing development and planning

of aquaculture activities, both for human consumption

and as a measure to mitigate eutrophication. A previous

study by Bergstr€om et al. (2013) indicates that spatial

patterns of soft tissue growth are temporally consistent at

certain spatial scales, while those of shell growth were

not. This implies that there are static factors, which lead

to spatial patterns soft tissue growth that are potentially

predictable, provided that these factors or proxies thereof

can be identified. Thus, we hypothesized that spatial pat-

terns of relative soft tissue growth will be to some extent

predictable and possible to map in a meaningful way

using geographical and environmental predictor variables.

Spatial patterns of shell growth, however, will not be pre-

dictable in the same way. These aims are achieved by (1)

measurement of growth of approximately 2000 trans-

planted mussels at >100 representative locations along

the Swedish west coast during four periods within

3 years, (2) evaluation of model performance using a

range of different modeling methods, classification

schemes, and predictor variables, and (3) spatial predic-

tion and mapping of growth using selected methods and

models.
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Materials and Methods

Study area and growth experiments

The modeling in this study is based on growth data of

Mytilus edulis collected during three successive years,

2010–2012, in the waters from Str€omstad (58°560N,
11°100E) to the Kungsbacka fjord (57°220N, 12°030E).
Growth of M. edulis was measured, using transplanted

mussels, over 2 months during four separate experimen-

tal periods (2010: September–November; 2011: May–July
and August–October, and 2012: June–August). Following
the sampling strategy design developed by Bergstr€om

et al. (2013), 25 mussels were kept in semisoft plastic

cage (25 9 10 9 10 cm, mesh size 10 mm) tied to con-

crete blocks and buoyed to float submerged at 2 m below

surface at each site. From each cage, 15 mussels were

randomly selected for growth measurements. Data on dry

soft tissue (DST) and shell length (SL) were collected

and the growth of individual mussels estimated as the

difference in DST and SL between the individual mea-

surements of transplanted mussels and the average of a

starting pool consisting of 100 mussels. Using this

approach the expected precision of the measurements

among mussels and sites were on average using standard

error estimation about 10% of the expected growth

(Bergstr€om et al. 2013). In total, growth was measured

for 144 sites within the water depth of 6–20 m (Fig. 1).

The sampling sites were randomly selected within areas

corresponding to water bodies defined by Swedish

authorities in compliance with the WFD and the sam-

pling covered almost every water body within the investi-

gated area. To eliminate differences in growth due to age

or size, all transplanted mussels originated from the same

location and were of the same start size range (40–
50 mm) and age.

Spatial and temporal variability in growth

Establishing significant spatial patterns of growth is a pre-

requisite for predictive or mechanistic modeling. Further-

more, it is highly likely that there are systematic

differences in growth among experimental periods. There-

fore, having sampled different sites within each period,

initial analyses of spatial and temporal patterns of growth

were analyzed using a nested ANOVA (Underwood

1997). Following the results of these analyses, which indi-

cated substantial differences in average growth among

experimental periods, data were standardized among peri-

ods using a z-transformation (i.e., Zij ¼ ðxij � �xiÞ=si),
where xij is the jth measurement in the ith period. This

transformation successfully removed variability among

periods, while maintaining differences among sites.

Predictive modeling of growth

Classification of growth

As explained above, prediction of growth in absolute

terms was made difficult by substantial differences in

growth among periods. Nevertheless, prediction of spatial

patterns of relative growth was potentially possible.

Therefore, the growth data were classified with a varying

degree of detail and according to three different rules.

The number of classes varied from two to four, and each

of these were classified according to three different

schemes: equal size intervals (EIS), equal sample sizes per

class (ESS), and identification of sites with extremely high

and low growth (EXT) (Fig. 2).

Selection of predictors

In order to model, predict, and ultimately map spatial

patterns of growth classes, full covering data on predictor

variables are needed. We attempted different variables as

predictors. While geographical and oceanographical

parameters could be derived from national databases

(Naturv�ardsverket 2006; SMHI 2014) and digital nautical

charts in GIS, coupling hydrological, chemical, and bio-

logical variables to experimental sites was more difficult.

Considering the large number of stations and the

expected large variability in small temporal scales direct

measurement at periods of sampling was not deemed

plausible. Instead we used two sets of analyses a priori to

evaluate the usefulness of modeled data from the area. In

the first step, we used data from 12 years and 13 water

bodies to analyze the relationship between measured data

and modeled environmental data from “The Coastal Zone

Model” (Sahlberg 2009) which is part of the model sys-

tem used by Swedish Meteorological and Hydrological

Institute (SMHI). Second, we evaluated the temporal con-

sistency of spatial patterns for these variables using mea-

sured data from 21 monitoring sites during 12 years. The

rationale of these latter analyses was to identify variables

showing consistent patterns among years suitable for pre-

dicting consistent spatial patterns of growth. Detailed

accounts of these analyses are given in the supporting

information. These procedures and removal of a number

of strongly correlated predictors resulted in a list of 11

variables which were used for modeling (Table 1).

Modeling techniques

To model the growth of M. edulis, we used four tech-

niques which are commonly used in species and habitat

distribution modeling to model relationships between

growth and environmental factors: random forest (RF;
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Breiman 2001a; Liaw and Wiener 2012), generalized addi-

tive models (GAM; Hastie and Tibshirani 1986), multi-

variate adaptive regression splines (MARS; Friedman

1991), and conditional inference forest (CI; Hothorn

et al. 2006).

The modeling was done in two steps. First, predictabil-

ity of growth classes for DST and SL was compared

among techniques. This was to test the hypothesis that

spatial patterns of DST are more predictable than those

of SL and to select the most efficient method for further

modeling. This was done by randomly splitting the origi-

nal dataset of 144 data points into a training dataset con-

taining 70% of the data from each class for fitting the

models. The test dataset (remaining 30% of samples) was

used to give an independent estimate (hereafter referred

to as external evaluation) of the predictive power of mod-

els (Verbyla and Litvaitis 1989), whereas the training

dataset was used for internal validation of the models.

This procedure was repeated 1000 times to achieve a

stable and confident estimate of the model performance.

Second, based on the conclusions about differences

among methods and response variables from the previous

tests among methods (see “Predictive modeling of

growth” section), models were fitted using the whole

dataset to evaluate differences among classification

schemes and variable importance. This was justified by

the small differences between internal and external perfor-

mance criteria and by the fact that a larger number of

data are likely to produce better models (nevertheless the

initial external validation was necessary to assess and

statistically test their performance).

The performance of models using different classifica-

tion schemes and methods in the steps above was mea-

sured as the area under curve (AUC) and other accuracy

(A) (B)

Figure 1. Geographic location of sampling area (A) with specification (B) of the randomly selected sites where growth was estimated using

transplanted mussels.
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criteria (i.e., accuracy, accuracy vs. no information ratio

(ACC/NIR), sensitivity, and specificity; Fielding and Bell

1997). The AUC measures how well a parameter can dis-

tinguish between two diagnostic groups while sensitivity

is used to evaluate the proportion of a class that is cor-

rectly classified and specificity measures the number of

correctly classified absences out of all absences. Accuracy

is the number of correctly classified presences and

absences and comparing the observed accuracy to a ran-

dom assignment of classes generates ACC/NIR. Variable

importance was also used to evaluate the important pro-

cesses and how the different modeling (i.e., different clas-

sification schemes) influenced the importance of

explanatory variables.

All analyses were done using purpose-built scripts using

the R software (R Core Team 2014), complemented by

2

3

4

EIS ESS EXTNo of classes

50% 50%

50% 50%

33%33% 33% 33%33% 33%

25%

25%

25%

25%

25%
25%

25%

–1δ +1δ

–1δ +1δ

–1δ +1δ

EIS: division of classes 
based on growth 
intervall

ESS: division of classes 
bases on sample size

EXT: division of classes 
to idenify the upper and 
lower 15.8 % of the 
growth interval

25%

Figure 2. Classification schemes used for the four modeling techniques used.

Table 1. Explanatory variables used in models after evaluating temporal consistency of spatial pattern, correlation between measured and mod-

eled data, and variance inflation factor analysis (see supporting information for further details).

Category Variable Unit Mean SD Min Max

Geographical Latitude2 °N 58.18 0.47 57.32 59.00

Distance to baseline2 m 7785 7326 0 2.8*109

Oceanographical Area volume1 km3 0.13 0.26 0.001 1.8

Turnover time1 days 17.5 35.1 0.24 184

Exposure3 m2/s 45238 78713 407 536380

Hydrological Temperature1 °C 13.6 2.87 8.80 17.9

Salinity1 PSU 26.8 1.71 23.1 30.7

Biological Chlorophyll a1 mg/m3 3.05 0.59 1.99 5.25

Chemical Ammonium1 mg/m3 0.83 0.97 0.11 7.63

Total nitrogen1 mg/m3 224 25.1 192 313

Total phosphorus1 mg/m3 17.2 3.21 13.5 37.0

Data sources: 1SMHI, 2Map, and 3SAKU.
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the following packages: “lme4” (Bates et al. 2014) for

lmer and “randomForest” (Liaw and Wiener 2012),

“mgcv” (Wood 2013), “earth” (Milborrow 2014), and

“party” (Hothorn et al. 2013) for random forest, GAM,

MARS, and CI analysis, respectively, and 1000 trees were

built to calculate the average tree to obtain stable results.

Predictions of mussel growth in unmeasured areas were

generated in R using the package “stats” and ArcGIS 10.1

(ESRI 2012) was thereafter used to create maps using the

predictions.

Results

Spatial and temporal variability in growth

Quantitative analyses showed that there was significant

variability in growth among both sites and periods for

shell length and dry soft tissue (Table 2, absolute growth).

Inspection of means show that the largest growth rates

were observed in the third period for both DST and SL,

with maximum growth rates at 0.03 g and 0.14 mm per

day (Fig. 3). The smallest growth rates for DST were

observed in the second period while growth in SL was

lowest in the first and fourth period. Analyses of variance

components showed that there were large differences in

the relative importance in sources of variability between

DST and SL. For DST, the variability among periods and

sites were both substantially larger than among individual

mussels, while for SL the variability among individual

mussels was 5–10 times larger than among periods and

sites (Table 2). Thus, despite the observation of signifi-

cant variability among periods and sites for both mea-

sures of growth, it is clear that spatial and temporal

patterns of DST are substantially stronger than those of

SL. Nevertheless, in order to assess models and predict

spatial patterns of growth, both DST and SL were stan-

dardized using the procedures described in “Spatial and

temporal variability in growth” section. As expected, this

standardization successfully removed variability among

periods, while maintaining the spatial structure (Table 2,

relative growth).

Predictive modeling of growth

Assessment of predictability of growth and
selection of modeling technique

The initial set of models, used to compare the predictabil-

ity of growth of DST and SL using a range of techniques

and classification schemes, showed clear and consistent

differences among variables and methods (Table 3). First,

for both AUC and ACC/NIR the performance of models

of DST (based on external validation) was generally better

than those of SL. The best models of DST produced AUC

values of 0.73 and an accuracy of up to 65% (i.e., ACC/

NIR = 1.65) better than at random (Table 3). The corre-

sponding performance was 0.66% and 29% for the best

models of SL.

Comparisons of the different modeling methods, mea-

sured as performance in internal validation, revealed that

conditional inference trees (CI) and MARS produced the

best fit to data (Fig. 4). These methods apparently pro-

duced AUC values >0.8 (Fig. 4) and accuracies more than

twice as precise at random (Fig. 4). However, focusing on

the performance in external validation a different pattern

arose. Instead random forest (RF) models performed bet-

ter than all other methods for DST growth irrespectively

of performance measurement or classification used. No

such pattern existed for growth in SL (Fig. 4, Table 3).

The modeling techniques performed equally poorly for

growth in SL with AUC values rarely exceeding 0.65 and

only one model had a P-value smaller than 0.2. In fact

the only significant (P < 0.05) models using external vali-

dation were the RF models for DST growth (ESS classifi-

cation for classes 3 and 4).

As expected, the AUC for different methods were con-

sistently higher using internal validation than external.

Table 2. Analysis of variance of mean growth in soft tissue and shell length using absolute and relative (z standardized) measurements of

growth.

Source

Absolute growth Relative growth

df MS (10�5) F P VC (10�5) MS F P

Soft tissue = DST

Period 3 1497 69.2 <0.001 2.7 0 0 1

Site (period) 140 21.6 23.2 <0.001 1.4 8.77 19.2 <0.001

Residual 2005 0.93 0.93 0.46

Length = SL

Period 3 6607 11.6 <0.001 11.2 0 0 1

Site (period) 140 570 4.3 <0.001 29.1 3.38 4.05 <0.001

Residual 2005 113 133 0.83

VC, variance component.
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One important observation was the fact that for RF mod-

els the external AUC was of similar size (or higher) as for

internal validation (Fig. 4). The RF models also showed

the highest external AUC value (DST ~ 0.7; SL ~ 0.6),

but still much variation in growth could not be explained

using the available explanatory variables. The accuracy of

models decreased with increasing complexity of the

models. However, comparing the observed accuracy to a

random assignment of classes (i.e., accuracy vs. no infor-

mation ratio, ACC/NIR) it was clear that this mainly is

an effect of different sizes of the classes (i.e., different

number of sites among the classes). Compared to the

decrease in accuracy, ACC/NIR tended to increase with

increased complexity of the DST model (Fig. 4, Table 3)

while remaining about the same for all models predicting

SL (Table 3). Models of growth in SL performed were

usually <15% better than at random. The best model per-

formance was two RF models (3 classes ESS; 4 classes

ESS), which were 27–29% better than random while for

almost half (42%) of the cases the models did not add

any predictive performance at all (ACC/NIR ≤1.00,
Table 3). For DST growth prediction the models per-

formed much better with between 50% and 100% (ESS

models) and 30–50% (EIS) better than at random while

for EXT only the four-class model performed better

(+38%) than random. This suggests that models based on

classifications using equal sample sizes are most useful for

the purpose of modeling mussel growth.

Using an overall assessment of the different methods

and growth measurements, we concluded that further

evaluation of growth models should be performed on

DST using RF models and that the whole dataset could

be used in creating the models due to the similarity in

performance measurements between internal and external

validation in this initial step.

Evaluation of classification schemes and variable
importance for models of DST

The subsequent analyses of RF models, using the whole

dataset, showed that the EIS and ESS models follow the

same general pattern while the EXT model differs slightly

for some of the performance measurements (Fig. 5). Mul-

ticlass AUC (M-AUC) is relatively stable, decreasing

slightly with increasing number of classes while the ability

to separate the classes with the highest and lowest growth

increases slightly. Increased model complexity slightly

increased the specificity for EIS and EXT models, while

ESS model showed a stable specificity over different num-

ber of classes. The sensitivity decreased from roughly

0.75–0.4 when increasing the number of classes from two

to four for all classification schemes (Fig. 5). The accu-

racy of models were highest (0.7–0.95) for EXT, but again
adjusting for no information ratio (i.e., ACC/NIR)

reduced the usefulness of these models as only the four-

class model was better (+9%) than random with EIS

slightly better (5–20%), while ESS model was 50–80%
better than random for all classes.

Weighing the different performance measures against

each other clearly showed that for evaluation of variable

importance an ESS or EIS model was most suitable and

that three classes provided good compromise between the

two-class models that generally showed higher AUC and

sensitivity and four-class models that had higher

Figure 3. Comparison of absolute growth of (A) DST and (B) SL for four sampling periods (1–4) with sampling locations arranged in north–south

direction from left to right within each period.
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specificity and ACC/NIR. Consequently, we evaluated the

importance of explanatory variables on growth of DST

for the random forest three-class ESS model (1000 trees,

1000 runs, AUC = 0.71). Analysis of variable importance

(mean decrease accuracy) showed that four variables, total

phosphorous, salinity, latitude, and turnover, were the

most important for the accuracy of the predictive models.

Furthermore, visual inspection of partial dependencies

showed that areas of high growth were associated with

high turnover rates, high salinity, and high total phospho-

rous levels, while areas of low growth were associated

with low salinity and low turnover. However, in terms of

creating homogenous groups in the end nodes of the pre-

dictive models (i.e., finding and classifying sites with sim-

ilar growth into the same predicted growth class) other

variables such as exposure and distance to baseline were

more important. These results suggest that different envi-

ronmental parameters affect the growth of mussels in dif-

ferent ways. For example, salinity affects growth rates

directly, while others (e.g., exposure) affect the growth

indirectly by modifying other growth-related parameters.

Mapping of relative growth of DST

Prediction and mapping of growth using the three-class

ESS model revealed a pattern with generally higher

growth closer to shoreline and inside bays (Fig. 6). How-

ever, growth was reduced close to estuaries with outflows

of large rivers. The areas with highest growth rates were

found inside the fjord system around the large islands

Orust and Tj€orn in the center of the investigated area

(Fig. 6). In total, slightly more than half of the area

(52.9%) was predicted as belonging to the class with low-

est growth rate (class 1), 31.9% as medium growth rate

areas (class 2), and 15.2% of the area belonging to class

with highest rate of mussel growth (i.e., class 3).

Discussion

This study demonstrates a comprehensive strategy map-

ping of an ecological process, soft tissue growth of the

blue mussel M. edulis, which is fundamental both to the

economic benefits of mussel farming and to its efficiency

as a method to mitigate eutrophication. Using an

approach based on empirical measurements of growth on

transplanted mussels and statistical modeling, we analyzed

spatial patterns and tested the possibilities for predictive

modeling and mapping of growth of the blue mussel M.

edulis. We observed strong and significant spatial and

temporal variability in growth of dry soft tissue and shell

length, but as expected from earlier studies (i.e.,

Bergstr€om et al. 2013) spatial patterns of growth of mus-

sel tissue were more predictable than that of shell length.

By removing temporal variability using standardization,

we were able to classify and predict areas with relatively

low, medium, and high growth rates of mussel tissue with

an average accuracy, which was roughly twice as large as

that of a random assignment of growth classes.

Although transplant experiments of biota and artificial

substrates have been used to investigate a range of ecolog-

ical patterns and processes (e.g., Ellis et al. 2002; Hon-

koop et al. 2003; Crain et al. 2004), and empirical models

are becoming increasingly popular for spatial modeling

and mapping of species, habitats (Reiss et al. 2011, 2014;

Bu�cas et al. 2013), and even proxies of ecosystem services

Table 3. Model performance for soft tissue and length using external

validation and the measurements of AUC, accuracy versus no infor-

mation ratio (ACC/NIR), and the mean P-value for 1000 runs of each

model and classification combination. EIS, equal interval size; ESS,

equal sample size; EXT, extremes. Significant models in bold.

Technique

No of

classes Scheme

AUC ACC/NIR

DST SL DST SL

RF 2 EIS 0.66 0.60 1.06 1.01

ESS 0.73 0.56 1.46 1.10

EXT 0.59 0.51 1.00 0.99

3 EIS 0.66 0.66 1.19 0.97

ESS 0.71 0.64 1.65 1.27

EXT 0.65 0.52 1.01 0.99

4 EIS 0.69 0.61 1.00 0.95

ESS 0.68 0.62 1.67 1.29

EXT 0.73 0.55 1.04 0.99

MARS 2 EIS 0.60 0.57 0.96 0.94

ESS 0.62 0.58 1.23 1.15

EXT 0.54 0.52 0.98 0.99

3 EIS 0.63 0.62 1.09 0.92

ESS 0.64 0.61 1.43 1.19

EXT 0.60 0.55 0.97 0.97

4 EIS 0.65 0.58 0.85 0.89

ESS 0.63 0.61 1.22 1.22

EXT 0.69 0.60 0.90 0.92

CI 2 EIS 0.50 0.50 1.00 1.00

ESS 0.63 0.57 1.26 1.13

EXT 0.50 0.50 1.00 1.00

3 EIS 0.57 0.54 1.07 1.02

ESS 0.66 0.60 1.39 1.21

EXT 0.50 0.50 1.00 1.00

4 EIS 0.52 0.50 0.98 0.99

ESS 0.63 0.61 1.33 1.24

EXT 0.50 0.50 0.98 1.00

GAM 2 EIS 0.49 0.49 0.95 0.98

ESS 0.58 0.62 1.15 1.23

EXT 0.50 0.50 0.98 1.00

3 EIS 0.53 0.61 1.01 1.02

ESS 0.51 0.60 1.08 1.05

EXT 0.50 0.50 0.95 1.02

4 EIS 0.52 0.51 0.79 0.36

ESS 0.58 0.62 1.10 1.17

EXT 0.49 0.52 0.92 0.30
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(e.g., Mart�ınez-Harms and Balvanera 2012; Brown and

Fagerholm 2015); this is to our knowledge the first

study to combine these two approaches in a compre-

hensive way. The results provide information about

specific spatial and temporal patterns of growth as well

as factors important for predicting the growth of mus-

sels in this particular part of the Swedish coast. In a

more general context, the study has the potential to

provide more general insights into the approaches for

spatial modeling and mapping of ecological functions

and processes in the marine environment. As ecological

processes link biodiversity to societal values, develop-

ment of such approaches is of growing relevance as

tools for marine spatial planning and for assessment of

ecosystem services (e.g., Crossman et al. 2013; Hauck

et al. 2013).

From the perspective of mussel farming on the Swedish

west coast, the methodological approach used here pro-

vides robust scientifically based predictions of growth

which can be used directly in planning of aquaculture

operations in this particular coastal area. The formal

methodology of the different steps of the process allowed

objective testing of the performance of models, estimation

of uncertainty, and can be used to gauge alternative

approaches. As an example, estimates of the uncertainty

of current models suggest that the models successfully

separate classes of low, medium, and high growth with an

accuracy that is considered good by scientific standards

(e.g., AUC � 0.75 on average and 0.8 among extremes).

Furthermore, it is interesting to note that 47% of the

available permissions for farming of M. edulis in Sweden

are situated in areas predicted to be most favorable with

respect to growth despite the fact that these areas only

represent 15.2% of the total area. This may be an indica-

tion that the predicted spatial pattern of growth is consis-

tent with experiential knowledge possessed by farmers

and other stakeholders.

Notwithstanding the relative success of modeling, it is

clear that there is also a substantial scope for improving

the accuracy and resolution of models and maps. A wide

array of flexible methods for statistical modeling of non-

linear and interactive relationships are available (e.g.,

Elith et al. 2006; Ara�ujo and New 2007) and the analyses

presented here suggest that the predictive power may

differ among methods. Nevertheless, we suggest that

aspects to do with predictor data, rather than the choice

of modeling technique, are likely to be more fruitful for

Orust

Tjörn

Class 1 (<–0.485)

Class 2 (–0.485 – 0.41)

Class 3 ( >0.41)

Land

Figure 6. Predicted growth class using the three-class ESS model for

relative growth. Classes 1–3 represent lowest (red, <�0.485) to

highest (green, >0.41) predicted relative growth while white areas are

waters deeper than the investigated depth span (�20 m). Predicted

class occurrence: class 1: 52.9%, class 2: 31.9%, and class 3: 15.2%.
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improving the predictive power in modeling efforts like

these. In particular, we suggest that two aspects, (1) a

stronger mechanistic coupling and (2) the matching

between the spatial resolution of predictor and response

are of general importance for the success of future mod-

eling efforts.

First, because the aim of this study is primarily to

provide validated and robust predictions of spatial and

geographic patterns of mussel growth, to be used in a

planning and management context, mechanistic under-

standing of causal links is not essential (e.g., Peters

1991; Breiman 2001b). In fact, correlative approach was

deliberately selected in favor of analytical models

because of the multitude of physical, chemical, and

biological factors that might influence growth directly,

indirectly, or interactively and because coherent data

covering the whole area of these variables are not likely

to be available. Nevertheless, it is clear that also the

predictive power of models will benefit greatly by

including predictors with close mechanistic direct or

indirect links to growth (e.g., Elith and Leathwick

2009; Lindegarth et al. 2014).

Second, the predictive power of spatially explicit mod-

els can also be greatly influenced by the matching of reso-

lution between predictor and response data and the scale

of variability in important ecological processes (e.g.,

Tobalske 2002; Svensson et al. 2013). In this study, data

on mussel growth was collected at individual sites in

small-scale (<1 m) units. These were matched with pre-

dictor data from 25 9 25 m GIS grids (e.g., wave-expo-

sure) and modeled data on hydrological, oceanographical,

and chemical variables estimated at the scale of water

bodies with a resolution of several kilometers (e.g.,

salinity and turnover). The rationale behind this strategy

was that earlier analyses had shown that variability in

growth of soft tissue was orders of magnitude larger

among water bodies than within, and that spatial patterns

were largely consistent among years at the scale of water

bodies but not at the scale of sites (Bergstr€om et al. 2013).

This approach was further justified by initial analyses

showing significant and occasionally strong correlations

between monitoring and modeled data and analyses indi-

cating temporal consistency of spatial patterns for many

of the environmental variables (see supporting informa-

tion on “A priori selection of predictor variables”).

Despite the fact that the existence of significant models

with some degree of predictive power suggests that this

line of reasoning was successful, it is possible that the

predictive power of models would have benefited from

access to comprehensive data on relevant predictor vari-

ables with a spatial resolution matching that of growth

estimates. One such possibility for future modeling could

be the use of satellite images for providing a better spatial

resolution of temperature, chlorophyll, etc. However, this

kind of information was not available and may also be

subject to limitations near the coasts as the optical com-

plexity of coastal waters is large compared to the open

ocean (Moses et al. 2009). Having said this, the use of

satellite data is promising and has been used successfully

for modeling bivalve growth in individual-based models

(Thomas et al. 2011; Filgueira et al. 2013).

Scientifically based, spatially explicit information, and

user-friendly maps of important ecological functions are

fundamental for any attempts to implement marine spa-

tial planning and therefore to the development of

ecosystem-based management (e.g., Douvere 2008;

Guerry et al. 2012; Crossman et al. 2013; but see Hauck

et al. 2013 for cautions about over-reliance on maps).

We measured and modeled soft tissue growth of mus-

sels, which directly affects production potential in an

aquaculture context and the potential for nutrient

removal in the context of mitigating effects of eutrophi-

cation. Thus, mussel growth is strongly linked to the

potential for the system to perform important provi-

sioning and regulating ecosystem services (Dame 1996;

Gallardi 2014; Filgueira et al. 2015) and maps indicating

areas of high and low growth potential are therefore of

obvious importance for a range of stakeholders engaged

in a regional planning process. Note that these estimates

could not have been achieved solely by studying pat-

terns of biodiversity, but requires the explicit measure-

ment of processes. As an example of its use, the

resulting map of growth produced can be compared to

maps of areas identified by Swedish status assessments

of ecological status according to the WFD. These com-

parisons show that areas most in need of mitigation

efforts are those where growth is generally high. This

indicates that conditions for mussel farming and thus

nutrient removal are favorable in these areas (Lindahl

et al. 2005; Gren et al. 2009). Furthermore, the map

provides planning authorities and farmers with knowl-

edge important for site selection, which is a general

issue for planning of aquaculture operations in marine

environments (Brigolin et al. 2006; Silva et al. 2011; Fil-

gueira et al. 2014). Results like these can not only be

used as practical tools for optimizing rates of produc-

tion in aquaculture and efficiency of mitigation efforts,

but also in a very concrete way expose and resolve con-

flicts with other user interests, such as tourism, recre-

ation, shipping, and fishing (Douvere and Ehler 2009;

Stelzenm€uller et al. 2013).

To summarize, the need for spatially explicit map-

ping of the distribution of marine habitats, species, and

ecosystem goods and services is abundantly echoed in

contemporary policy developments on regional and

national levels of management (e.g., European Commis-
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sion 2008, 2014). Developing models and integrative

frameworks, for synthesizing spatially and temporally

fragmented data, are necessary components for the

operationalization of these policies (e.g., Guerry et al.

2012; Lindegarth et al. 2014). In this context, the pre-

sent study illustrates a general methodology for estimat-

ing, modeling, and mapping ecological processes

influenced by a complex set of biological, chemical, and

physical processes.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1 A priori selection of predictor variables.

Figure S1 Distribution of the 13 stations for which both

measured and modelled data was available.

Figure S2 Coefficient of determination (R2) for yearly

means of observed and modelled data of nine water vari-

ables. Error bars show standard deviation among years.

Figure S3 Coefficient of determination (R2) of correla-

tions between monthly means of observed and modelled

data for nine water parameters.

Figure S4 Spearman’s rank correlations (q) between

yearly and monthly means of observed data from different

years. Error bars represent standard deviation among

years.

Figure S5 Examples of correlations for A) salinity and B)

chlorophyll a between different years.

Figure S6 Examples of variation in correlations for 6 dif-

ferent months between years, here 2007 and 2008, for A)

temperature, B) salinity, C) chlorophyll a and D) total

nitrogen.

Table S1 Spearman’s rank correlation coefficients (below

diagonal) and correlation plots (above diagonal) among

environmental variables used in the final models. Signifi-

cant correlations in bold.
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