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ORIGINAL ARTICLE

The broad assessment of HCV genotypes 1 and 3
antigenic targets reveals limited cross-reactivity
with implications for vaccine design

Annette von Delft," Isla S Humphreys,” Anthony Brown,' Katja Pfafferott,’
Michaela Lucas,>** Paul Klenerman,' Georg M Lauer,” Andrea L Cox,°

Silvana Gaudieri,’ Eleanor Barnes'

ABSTRACT

Objective Developing a vaccine that is cross-reactive
between HCV genotypes requires data on T cell
antigenic targets that extends beyond genotype-1. We
characterised T cell immune responses against HCV
genotype-3, the most common infecting genotype in the
UK and Asia, and assessed within genotype and
between genotype cross-reactivity.

Design T cell targets were identified in 140 subjects
with either acute, chronic or spontaneously resolved
HCV genotype-3 infection using (1) overlapping peptides
and (2) putative human leucocyte antigens (HLA)-class-|
wild type and variant epitopes through the prior
assessment of polymorphic HCV genomic sites
associated with host HLA, in IFNy-ELISpot assays. CD4
+/CD8+ T cell subsets were defined and viral variability
at T cell targets was determined through population
analysis and viral sequencing. T cell cross-reactivity
between genotype-1 and genotype-3 variants was
assessed.

Results In resolved genotype-3 infection, T cells
preferentially targeted non-structural proteins at a high
magnitude, whereas in chronic disease T cells were
absent or skewed to target structural proteins. Additional
responses to wild type but not variant HLA predicted
peptides were defined. Major sequence viral variability
was observed within genotype-3 and between genotypes
1 and 3 HCV at T cell targets in resolved infection and
at dominant epitopes, with limited T cell cross-reactivity
between viral variants. Overall 41 CD4/CD8+ genotype-
3 T cell targets were identified with minimal overlap
with those described for HCV genotype-1.

Conclusions HCV T cell specificity is distinct between
genotypes with limited T cell cross-reactivity in resolved
and chronic disease. Therefore, viral regions targeted in
natural HCV infection may not serve as attractive targets
for a vaccine that aims to protect against multiple HCV

genotypes.

INTRODUCTION

HCV infection is a major health risk, infecting
approximately 170 million people worldwide.! The
majority of infected patients develop persistent
infection, which may lead to liver cirrhosis, hepato-
cellular cancer and death.” Even though major
advances in HCV treatment with directly acting
antivirals (DAAs) have been achieved over recent

Significance of this study

What is already known on this subject?

» HCV genotype-3 is the most prevalent HCV
strain in South Asia and the UK.

» HCV viral genotypes share approximately 80%
sequence homology.

» Limited data on T cell specificity is available for
HCV genotypes other than HCV genotype-1.

» Population studies assessing the association of
HLA-class-I with viral genomic polymorphisms
suggest that T cell specificity differs between
genotypes 1 and 3.

What are the new findings?

» A comprehensive assessment of HCV
genotype-3 T cell specificity identifies 41 CD4+
and CD8+ genotype-3 specific T cell targets
across the viral genome.

» A novel sequence led approach can be used to
identify HLA-class-I epitopes under T cell
selection.

» T cell targets in HCV genotype-3 infection are
distinct from those targeted in HCV genotype-1
in resolved and chronic disease.

» T cell cross-reactivity to genotype-1 and
genotype-3 sequence variants in resolved
infection and at dominant HCV genotype-3
epitopes is limited.

How might it impact on clinical practice in

the future?

» Distinct T cell specificity and limited T cell
cross-reactivity between HCV genotypes are
important considerations for the development
of vaccines aiming to induce T cell responses
cross-reactive against multiple HCV genotypes.

years,> * ° costs are high and treatment may remain

inaccessible for many, particularly in health
resource poor countries. In addition, reinfection
with DAA resistant variants can occur following
successful therapy.® An effective prophylactic HCV
vaccine remains an unmet clinical need.

HCV is a highly genetically diverse pathogen
that is divided into 7 major genotypes and 67
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subtypes’” that are broadly distributed by geographical location.
Even within a single host infected with one subtype HCV exists
as multiple closely related but distinct viral quasi species.® HCV
genotype-1 is the dominant genotype globally,” but HCV
genotype-3 is now the major infecting genotype in the UK'
and in large parts of Asia,' infecting approximately 53 million
people globally’ and commonly associated with injecting drug
use and interventional medical practice.''™"

HCV genotype-1 vaccines based on viral vectored technology
used in heterologous prime/boost regimens are currently in
development and able to induce a high magnitude of T cells that
target multiple HCV antigens.'* > However, the success of T
cell vaccines in regions where multiple HCV genotypes coexist
will depend on the generation of T cells that have the capacity
to target multiple viral strains or viral regions that are conserved
between genotypes. A better understanding of genotype-specific
immune responses will therefore aid the development of vac-
cines active against multiple genotypes.

Based on significant viral genetic differences between HCV
genotypes,” we hypothesised that T cell targets differ in HCV
genotypes 1 and 3. Comparative studies on HCV genotype-1
and HCV genotype-3-specific T cell immunity to date include
an analysis of genotype-specific sequence polymorphisms linked
to HLA types, suggesting that T cell targets are distinct between
HCV genotypes.'® However T cell immune pressure was not
confirmed by experimental T cell assays. Although patients
infected with HCV genotype-3a have been included in numer-
ous publications addressing HCV specific T cell immunity
experimentally, studies using specific HCV genotype-3 cohorts
and genotype-3 peptide sets are limited to a single study evaluat-
ing T cell responses to the NS3 protein only'” and our previous
study that primarily evaluated the impact of therapy on HCV
genotype-3-specific T cell responses.'®

To date, no specific cross-reactive T cell targets linked to spon-
taneous resolution of infection have been described, and no
comprehensive assessment of T cell cross-reactivity between
HCV genotypes 1 and 3 has been performed. Even if T cell
targets are shared between genotypes, a single amino acid (AA)
substitution may abort or substantially decrease recognition of
the epitope by wild type primed T cells.”2! Although some T
cell cross-reactivity between HCV genotypes has been
described,'” ® several small-scale studies in patients with evi-
dence of multiple infections have shown lack of cross-reactivity
of CD4+ T cell responses between genotypes.”” 23
Furthermore, systematic analysis assessing all possible sequence
variants between genotypes is limited to a singe epitope,
showing that CD8+ T cells primed against the dominant HCV
genotype-1 epitope NS3473 do not recognise HCV genotype-2
and genotype-3 viral variants at that location.”’

T cell cross-reactivity between heterologous viral strains can
also be evaluated in the context of human reinfection observa-
tional studies and chimpanzee rechallenge experiments.
Published studies suggest that chimpanzees”® ** and humans®®
that spontaneously clear acute HCV infection are more likely to
clear subsequent infections. However the role of cross-reactivity
in preventing chronic disease upon reinfection is not clear and
while clearance of heterologous HCV reinfection is reported,”*
persistent infection on rechallenge with heterologous strains is
also common.?® 2”7 Furthermore, these studies have not evaluated
T cell cross-reactivity at epitope level, and other factors may
explain the phenomenon of repeated viral resolution such as a
favourable innate immune response and host genetic make up.>*

ELISpot assays have been established as a reliable method to
define T cell epitopes in chronic viral infections'® ** and T cell

vaccine studies.”® #° Overlapping peptides homologous with the
pathogen genome are commonly used as a screening tool to
identify T cell epitopes. However, it has been reported previ-
ously that the detection of T cell responses in IFNy-ELISpot
assays may be dependent on the position of the presented
optimal epitope within an overlapping peptide’® and T cell
responses may be missed when screening with this approach. To
address this, we assessed T cell responses using two complemen-
tary HCV genotype-3-specific peptide sets; one based on a
novel, sequence-led approach using wild type and variant pep-
tides corresponding to putative HLA class-I restricted epitopes
under T cell selection identified in a large HCV genotype-3
sequence data set;'® the other based on a consensus sequence
derived from 15 chronically genotype-3 infected patients span-
ning the whole HCV genome.'®

We aimed to comprehensively characterise T cell immune
responses against HCV genotype-3 and to compare T cell speci-
ficity between HCV genotype-1 and genotype-3. Finally we
assessed T cell cross-reactivity between common HCV
genotype-1 and genotype-3 sequence variants, focusing particu-
larly on dominant genotype-3 T cell epitopes, in addition to a
cohort of patients with resolved infection where cross-reactive
T cells associated with viral control may have the greatest impli-
cations for vaccine design.

METHODS

Patient cohort

One hundred and forty HCV genotype-3a infected individuals
including 16 acutely infected, 108 chronically infected and 16
with spontaneously resolved infection were recruited (John
Radcliffe Hospital Oxford, MGH Boston, and the BBAASH
cohort, Baltimore®'). Informed consent and local ethical
approval was obtained for all patients. Patient details are sum-
marised in online supplementary table S1. Acute patients were
defined as those within the first 6 months of infection (n=16),
of whom 12 were not treated (n=4 cleared infection spontan-
eously; n=6 proceeded to chronic infection; n=2 lost to
follow-up), and 4 were treated during acute infection (n=3 sus-
tained virological response; n=1 non-responder) (see online
supplementary table S2). HCV genotype could not be deter-
mined in spontaneously resolved individuals by conventional
genotyping; however, to define the infecting genotype, T cell
responses to genotype-1 and genotype-3 peptides were assessed
in this group.

Peptide sets and approaches used to identify HCV-specific
T cell targets
(1) Owverlapping peptides for HCV genotype-1 and genotype-3:
A genotype-1b peptide set containing peptides 15 to 18 AA in
length overlapping by 10 AA derived from HCV J4 sequence
(AF054250); A genotype-3a peptide set based on 18 full-length
genotype-3a sequences as previously described, spanning the
whole viral genome (GQ356200-GQ356215, GQ356217 and
JF509175-JF509177).'8

(2) HLA-predicted peptides for genotype-3 were based on a
novel sequence led peptide design approach aiming to identify
HLA class-I restricted optimal epitopes: Associations between
HLA-class-1 alleles and HCV viral sequence polymorphisms
within NS2-NS5B were identified in a cohort of 136 HCV
genotype-3a infected patients.'® Epitope computer prediction
programmes were used to identify putative T cell epitopes
(9-10AA)  hosting  HLA-associated  polymorphic  sites
(BioInformatics and Molecular Analysis Section (BIMAS) score
>50, Syfpeithi score >20; http:/www-bimas.cit.nih.gov, http:/
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www.syfpeithi.de). Fifty-five epitopes were predicted to contain
HLA-associated polymorphic sites within the peptide (see
online supplementary table S3), whereas in 10 peptides the
polymorphic site was flanking the epitope (see online supple-
mentary table S4). Wild type (defined as the consensus AA at
each position in an HCV genotype-3 sequence alignment)'® and
variant (defined as the second most common AA at each pos-
ition linked to patient HLA) peptides were subsequently evalu-
ated in T cell assays matched to the patients’ HLA type. We have
previously published T cell responses in 10 spontaneously
resolved and 17 chronically HCV genotype-3 infected patients
using overlapping peptides only'®; these have been included in
this manuscript for assessment using HLA-predicted peptides
and comparative analysis of T cell specificity.

Detected T cell responses to overlapping peptide pools (HCV
core, E1, E2, p7/NS2, NS3 protease (NS3p), NS3 helicase
(NS3h), NS4, proximal NSS5B (NS5BI), and distal NS5B
(NSSBII)) were mapped to subpools and single peptides. T cell
responses to both peptide sets were compared at pool level, and
at single epitope level in patients with mapped responses. CD4
+/CD8+ restriction was defined using CD8+ depletion assays
and intracellular staining assays as previously described.!® For
further analyses, dominant responses were defined as those tar-
geted in more than four patients within the Oxford cohort.

HLA typing

DNA was extracted using the DNeasy Blood And Tissue Kit
(Qiagen) from peripheral blood mononuclear cells (PBMCs) or
whole blood using the Gentra Puregene kit (Qiagen) as per
manufacturer’s instructions and then HLA typed (Transplant
Immunology Lab, Oxford Radcliffe Hospitals).>*

ELISpot assays

Human PBMCs were separated, frozen immediately and stored
in liquid nitrogen as previously described.'® T cell responses
were assessed using thawed PBMCs in IFNy-ELISpot assays as
previously described.’® In brief, precoated ELISpot plates
(anti-IFNy monoclonal antibody (0.5 pg/well, Mabtech)) were
blocked with R10 (RPMI Sigma, 10% fetal calf serum (FCS),
penicillin and streptomycin added). For 18 h, 200 000 PBMCs/
well were stimulated with HCV genotype-3 peptide sets (3 pg/
mL), cytomegalovirus (CMV) lysate (0.05 pug/mL, Chiron), influ-
enza, Epstein Barr virus and CMV (FEC) CD8+ epitopes in a
single pool (3 pg/mL BEI resources) in duplicates for each condi-
tion. Dimethyl sulfoxide (DMSO) and concanavalin A (10 ug,
Sigma) served as negative and positive controls, respectively; all
ELISpot assays were strongly positive for concanavalin
A. Additionally, 101/140 patients were positive for CMV lysate
and 68/140 patients were positive for FEC antigens (mean spot-
forming units/10°PBMCs 661.77 and 686.45). All patients were
tested using overlapping peptide pools. HLA-predicted peptides
were tested in HLA-typed patients with cells available. SFUs
were counted on an automated ELISpot plate reader. A positive
cut-off of 40 SFUs/10°PBMCs for the HCV genotype-3 pep-
tides and 43 SFUs/10°PBMCs for genotype-1b peptides was
defined previously in healthy volunteers using; (mean SFU/
10°PBMCs in test wells—negative control wells)+3 xSD.'®

Viral sequencing

HCV viral sequencing was performed as previously published.'®
In brief, patient plasma was concentrated by centrifugation (1 h,
23 000 rpm, 4°C) and viral RNA was extracted using a QIAmp
Viral RNA Mini Kit (Qiagen). Reverse-transcription and first
round PCR were performed in a single step (Superscript III

OneStep RT-PCR system, Platinum Taq enzyme (Invitrogen)). In
a second step single proteins were amplified in multiple nested
PCR reactions (High Fidelity Tag DNA polymerase (Roche), for
primers see refs. '* and 3*). Amplified PCR fragments were gel
purified and sequenced bidirectionally with Prism Big Dye
(Applied Biosystems) on an ABI3100 DNA automated
sequencer. Sequences were edited using the Sequencher 4.8
Software (Gene Codes), and aligned using Se-Al (http:/tree.bio.
ed.ac.uk). Sequence entropy was calculated using the Shannon
entropy score (http://evolve.zoo.ox.ac.uk/Evolve/SHiAT.html)
using HCV genotype-3 sequences derived from the Los Alamos
sequence database (http:/hcv.lanl.gov/content/index).35

Analysis of HCV genotype-1 and genotype-3 T cell targets
HCV genotype-1 and genotype-3 epitopes were obtained from
the immune epitope database resource (IEDB, http:/www.iedb.
com). To ensure data quality, epitopes were crosschecked with
primary publications; epitope duplications, sequence variants
and epitopes described in non-human organisms were excluded.
Dominant HCV genotype-1 targets were defined as those
described in more than five publications, and were compared
with all genotype-3 epitopes defined in this study.
Experimentally identified HCV genotype-3 targets were com-
pared with all HCV genotype-1 epitopes described on the IEDB.
Targets previously described were defined as ‘overlapping’ with
those detected experimentally if epitopes exhibited >80% AA
sequence homology or ‘not overlapping’ if <80% AAs sequence
homology, or if epitopes overlapped by less than 7 AA (left col-
oured bar, online supplementary tables S7 and S8).

Statistical analysis

Non-parametrical tests were used throughout, paired for
within-individual comparisons (Wilcoxon) and unpaired for group
comparisons (Mann-Whitney). A p value of <0.05 was considered
statistically significant. Prism (V4.0 for Mac) was used.

RESULTS

T cell specificity differs in patients with spontaneously
resolved and chronic HCV genotype-3 infection

T cell responses to HCV genotype-3 were first assessed in 20
patients with spontaneously resolved infection since these
responses are most likely to be causally related to viral reso-
lution. We included four patients with acute infection, assessed
at the earliest available time point after presentation, who subse-
quently resolved infection. Using HCV genotype-3 peptides,
T cell responses were identified in 19/20 (95%) patients target-
ing a broad range of viral regions (figure 1A), as reported for
spontaneously resolved HCV genotype-1 infection.® 3¢ In
patients with acute HCV genotype-3 infection who did not
resolve infection, T cell responses were identified in 6/12
patients (509%), predominantly targeting non-structural proteins
(figure 1B). In chronic HCV genotype-3 infection T cell
responses were detected in 56/108 patients that mainly targeted
the HCV core (39/56) and NS3 proteins (26/56). Similar to pre-
vious data in HCV genotype-1, no T cell responses were
detected in 48% of HCV genotype-3 chronically infected indivi-
duals (figure 1C)."® 37 As previously described in HCV
genotype-1, the total magnitude of T cell responses in spontan-
eously resolved infection was significantly stronger and targeted
more viral peptide pools compared with chronic infection
(p<0.0001, online supplementary figure S1A).*> In defining
T cell specificity, we observed that patients with resolved infec-
tion preferentially targeted HCV non-structural regions and at
higher magnitude compared with patients with chronic
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Figure 1 T cell responses against an HCV genotype-3 overlapping peptide set in HCV genotype-3 infected patients. HCV genotype-3 specific T cell
responses were measured by [FNy-ELISpot assays (SFU/10® PBMCs) using an HCV genotype-3-specific peptide set spanning the entire HCV genome.
T cell responses over cut-off were detected in (A) 16/16 individuals with spontaneously resolved infection and 3/4 patients with acute infection that
subsequently spontaneously resolved infection (acutely infected—SR); (B) 6/12 patients with acute HCV genotype-3 infection that did not clear
infection; and (C) 56/108 individuals chronically infected with HCV genotype-3. (D) Comparison of total magnitude of T cell response in
IFNy-ELISpot assays to HCV structural and non-structural viral regions is depicted. SFU, spot forming units; NS3p NS3 protease; NS3h NS3 helicase;
NS5BI proximal NS5B region; NS5BII distal NS5B region; ns, not significant; PBMC, peripheral blood mononuclear cell; SR, spontaneously resolved
patients; C, chronic; uk, unknown; SVR, sustained virological response; NR, non-responder. P values are given between patient groups.

infection, whereas the magnitude of responses to HCV struc-
tural proteins did not differ between patient groups (see
figure 1D and online supplementary figure S1B).

Additional HCV genotype-3 T cell targets are identified

using putative HLA class-I peptides associated with viral
genomic polymorphisms

Using overlapping peptides, T cell responses were mapped to
individual peptides in 55 patients (see online supplementary
tables S5 and S6); 35 HCV genotype-3-specific T cell targets
were identified, 10 located in HCV structural and 25 in non-
structural regions.

Recognising the fact that T cell responses may be missed using
overlapping peptides,®® wild type and variant peptides corre-
sponding to putative HLA class-I restricted epitopes were
assessed in 88 genotype-3 patients with matching HLA types in
IFNy-ELISpot assays. Using this approach, additional T cell
targets were identified in 20 patients. Overall, nine T cell epi-
topes were identified in four different viral regions (NS2, NS3,
NS4B, NS5B) in 6/16 (37.5%) patients with acute, 12/64
(18.75%) with chronic and 2/8 (25%) patients with spontan-
eously resolved infection (figure 2A). Epitopes ATDALMTGY

(NS3]442, A*01 restricted) and IPFYGKAIPI (NS3]379, B*51
restricted) have been previously identified in HCV genotype-1
(at positions NS31436"> 17 20 35 37 39 40 414 NS3 3517 41 42),
The seven remaining epitopes were novel HCV genotype-3-
specific epitopes: (1) [LJLYPSLIFDI (NS2gg4; restricted by A*02
and A*24); (2) LVRSVMGGKY (NS2g31; A*03 restricted) (3)
FQMIILSIGR (NS2041; B*27 restricted); (4) LVTRDADVI
(NS31130; A*03 restricted) (5) RVLLDILAGY (NS4bygss; A*26
restricted); (6) VLDDHYKTAL (NS5b490; A*02 restricted); and
(7) RVKARMLIT (NS5b;s0g; B*08 restricted). Although T cell
responses to wild type peptides were readily detected, T cell
responses to the variant peptide were only detected in a single
epitope (NS3144;) in two patients with chronic infection; these
were at a lower magnitude than that made to wild type peptide
(figure 2A). Viral sequence analysis in these two patients
showed that the circulating HCV viral sequence was identical to
the variant peptide sequence (see online supplementary
table S6). T cell responses using HLA-predicted peptides were
identified in the minority of patients with a matched HLA type,
ranging from 2.3-40% (figure 2B), with the exception of
NS4bgs3 that was identified in 5/8 (62.5%) HLA A*26 positive
patients.
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Figure 2 T cell responses detected using HLA-predicted peptides in HCV genotype-3 infected patients. (A) HCV genotype-3 specific T cell
responses measured by IFNy-ELISpot assays (spot-forming units (SFUs)/10° peripheral blood mononuclear cells (PBMCs)) using an HLA predicted
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patients responding/total number of tested HLA-positive patients. (C) Comparison of T cell responses to HLA-predicted peptides and overlapping
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pools. Responses were classified as either: no response to both peptide sets,

response to either overlapping pools (OPs) or HLA predicted peptides

(HLApp), response to matching OPs and HLApp. * not done; A, acute; C, chronic; SR, spontaneous resolved; HLApp, HLA predicted peptides; OPs,

overlapping peptide pools; WT, wild type; V, variant; ID, patient identity num

Overall, using two distinct peptide-screening approaches we
identified 41 distinct genotype-3 T cell targets. However,
assessed at the level of peptide pools, only the minority of
responses (5.7%) were detected by both approaches (see
figure 2C and online supplementary figure S2) and mapped to
peptide epitopes at three T cell targets (NS3379, NS3 144, and
NS5bs490, online supplementary table S5). Detection by both
methods was highest in acutely infected patients (18.6%),
whereas no overlap was observed in spontaneously resolved
patients.

ber.

T cell subset analysis and viral diversity at HCV genotype-3

T cell targets

The requirement for T cell cross-reactivity at a known target to
protect against heterologous infection is dependent on the
degree of viral variability at that target in the circulating viral
populations. In HCV genotype-1 infection, sequence poly-
morphisms are more commonly observed at CD8+ compared
with CD4+ epitopes.*> For HCV genotype-3 T cell targets
defined in this study, CD4+/CD8+ subset analysis was per-
formed at 25 targets, with 18 CD8+ and 7 CD4+ targets
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clearly defined. Viral sequence diversity at these targets was
assessed by determining Shannon entropy scores,** using an
alignment of HCV genotype-3 sequences obtained from the Los
Alamos sequence repository and additional inhouse sequences.
Although sequence variability was higher at CD8+ than CD4+
targets (mean Shannon entropy score 0.056 vs 0.031), this did
not reach statistical significance (p=0.34, see online supplemen-
tary figure S4A-H). Analysis of sequence diversity at targeted
epitopes within the Oxford cohort showed more polymorphic
sites relative to consensus in CD8+ compared with CD4+ epi-
topes (p=0.0152, see online supplementary figure S4I).
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Limited T cell cross-reactivity at HCV genotype-3 T cell
targets detected in spontaneously resolved infection to viral
variants found between genotypes
First, we assessed T cell cross-reactivity in patients with resolved
infection using genotype-specific overlapping peptides across the
whole genome. We observed that T cell responses that were
almost universally present to the genotype-3 peptide pools
(figure 1A) were largely absent using HCV genotype-1 peptides
(see online supplementary figure S4 and figure 3A, p<0.0001).
We then determined whether HCV genotype-3-specific T cells
were able to recognise common genotype-1 sequence variants at
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Figure 3 Limited cross-reactivity between HCV genotype-3 and genotype-1 in spontaneouslgl resolved infection. HCV genotype-3 and genotype-1

specific T cell responses were measured by IFNy-ELISpot assays (spot-forming units (SFUs)/10

peripheral blood mononuclear cells (PBMC)) using (A)

an HCV genotype-3 and genotype-1 specific overlapping peptide set spanning the entire HCV genome; or (B) HCV genotype-3 and genotype-1
individual peptide variants at T cell targets detected in spontaneously resolved infection. Sequence variants identical between HCV genotype-1a and
1b are marked by a bar, those not assessed by IFNy-ELISpot assays are marked with a star. (C) Significantly reduced T cell cross-reactivity at T cell
targets identified in spontaneously resolved infection was detected against common HCV genotype-1a and genotype-1b sequence variants at

individual peptide level.
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Table 1 T cell responses detected in spontaneously resolved patients

HCV genotype-3-specific T cell response detected in spontaneous resolved patients

Number of patients
responding to epitope

Viral region AA position Sequence HLA CD4/CD8 Pept. set S C A Total
Core 27-51 GGQIVGGVYVLPRRGPRL ND ND OopP 1 2 = 3
VYVLPRRGPRLGVRATRK
143-158 IPLVGAPVGGVARALAH ND CD4 OPs 1 - - 1
E2 610-625 LTPRCMVDYPYRLWHY ND ND OPs 2 1 = 3
702-719 NIVDVQYLYGVGSGMVGW ND CD8 OPs 2 - 1TXN 3
NS2 931-940 LVRSVMGGKY A03 CD8 HLA 1 - - 1
NS3 1040-1062 AQQTRGLLGTIVTSLTGR ND ND OPs 1 - - 1
LGTIVTSLTGRDKNVV
1139-1147 LVTRDADVI AO03 CD8 HLA 1 - - 1
1198-1213 KALQFIPVETLSTQAR ND ND OPs 1 - - 1
1246-1261 KVPAAYVAQGYNVLVL ND ND OPs 1 - - 1
1264-1281 SVAATLGFGSFMSRAYGI ND ND OPs 1 - 1UK 2
1282-1305 DPNIRTGNRTVTTGAKL ND ND OPs 2 - - 2
GNRTVTTGAKLTYSTYGK
1379-1387 IPFYGKAIPI B51 CD8 HLA - - 1SR 2
1TxS
1423-1440 AYYRGLDVSVIPTAGDVV ND CD4 OPs 1 1 = 2
1520-1537 RPSGMFDSVVLCECYDA ND CD8 OPs 2 12 - 14
DSVVLCECYDAGCSWYDL
NS4b 1805-1822 TSPLTTNQTMFFNILGGW ND ND OPs 2 = = 2
1853-1862 RVLLDILAGY A26 CD8 HLA - 3 1TxS 5
1SR
NS5a 2126-2141 AEFFTEVDGVRLHRYA ND CD8 OPs 2 = 2TxS 4
NS5b 2508-2516 RVKARMLTI B08 CD8 HLA 1 - 1TxS 2
2548-2565 NQIRSVWEDLLEDTTTPI ND CD4 OPs 1 - - 1
2603-2618 KRALYDVIQKLSIETM ND CD4 OPs 1 = = 1
2844-2861 IMYAPTIWVRMVMMTHFF ND ND OPs - - 1SR 1
2893-2908 IIERLHGLSAFTLHSY ND CD4 OPs 1 - - 1

T cell targets detected in spontaneously resolved patients and patients acutely infected who subsequently resolved infection spontaneously. For each targeted epitope, the amino acid
(AA) position, peptide sequence, restricting HLA type, CD4/CD8 restriction and detecting peptide sets are specified. The total number of patients responding to the peptide and their
status of infection (S, spontaneously resolved; C, chronic; A, acute; TxS, treated achieving SVR (sustained virological response); TxN, not responding to treatment; SR, spontaneously

resolved) is detailed.
Underlining represents amino acids that are common between overlapping peptides.
ND, not determined; OPs, overlapping peptides.

the peptide level (table 1) in spontaneously resolved patients.
We used an alignment of HCV sequences obtained from the Los
Alamos sequence repository and additional inhouse sequences
to identify common genotype-1 sequence variants (defined as
>15% of sequences) at HCV genotype-3-specific T cell targets

Table 2 Dominant HCV genotype-3-specific T cell responses

(see online supplementary figure S5). Sequence identity between
genotype-3 and genotype-1 was observed at only 1/19 T cell
targets detected in spontaneously resolved infection (NS31379,
see online supplementary figure S5). At other T cell targets with
distinct sequences between genotypes, limited cross-reactivity

Dominant HCV genotype-3-specific T cell response

Number of Patients
responding to epitope

Viral region AA position Sequence HLA CD4/CD8 Pept. set S C A Total
Core 66-83 PKARRSEGRSWAQPGYPW ND CD4 OP = 5 = 5
143-158 PVGGVARALAHGVRAL ND CD4 OPs - 1" 1TxN 12
NS2 886-896 LLYPSLIFDI A02 CD8 HLA - 2 1AC
LYPSLIFDI A24 D8 = 3 1AC 4
NS3 1443-1451 ATDALMTGY A01 CD8 HLA - 3 1TxS 4
1520-1537 RPSGMFDSVVLCECYDA ND CD8 OPs 2 12 - 14
DSVVLCECYDAGCSWYDL
NS4b 1853-1862 RVLLDILAGY A26 CD8 HLA - 3 1TxS 5
1SR
NS5a 2126-2141 AEFFTEVDGVRLHRYA ND CD8 OPs 2 - 2TxS 4

Dominant T cell responses, defined as targeted in more than four patients within the Oxford HCV genotype-3 cohort, are depicted. For each targeted epitope, the amino acid (AA)
position, peptide sequence, restricting HLA type, CD4/CD8 restriction and detecting peptide sets are specified. The total number of patients responding to the peptide and their status of
infection (S, spontaneously resolved; C, chronic; A, acute; AC, acute proceeding to chronic; TxS, treated achieving SVR (sustained virological response); TxN, not responding to treatment;

SR, spontaneously resolved) is detailed.
Underlining represents amino acids that are common between overlapping peptides.
ND, not determined; OPs, overlapping peptides.
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Figure 4 Dominant CD4+ T cell targets are variable between HCV genotypes, with limited T cell cross-reactivity against identified sequence
variants. (A) HCV genotype-1 and genotype-3 sequences variants at dominant CD4+ T cell targets coregs and coreq43 are depicted. Sequences were
obtained from the Los Alamos database, with additional HCV genotype-3 sequences generated inhouse. (B) T cell cross-reactivity as assessed by
IFNy-ELISpot assay (spot-forming units (SFUs)/10 peripheral blood mononuclear cells (PBMCs)) against identified sequence variants at dominant

CD4+ T cell targets coregg and coreq43. GT, genotype; v, variant.

between genotype-1 and genotype-3 variants was observed at
15 T cell targets, tested in 16 patients with PBMC available;
with reduced responses at 8 targets and no cross-reactivity at 7
targets (figure 3B, C).

Limited cross-reactivity within and between genotypes at
dominant HCV genotype-3 T cell targets

We also assessed T cell cross-reactivity against common
genotype-1 and genotype-3 sequence variants at seven dominant
T cell targets identified across the entire HCV genotype-3
cohort; two were CD4+ targeting HCV core, and five were
CD8+ targeting HCV non-structural proteins (table 2). At the
two dominant genotype-3 CD4+ T cell targets (coregs
and coreq43) no common genotype-3 variants were identified
(figure 4A). In contrast, dominant CD4+ core T cell targets
varied between HCV genotypes 1 and 3 by one to three AAs
(figure 3A), with limited T cell cross-reactivity detected in
IFNy-ELISpot assays (figure 4B). For the majority of CD8+ epi-
topes (4/5), common HCV genotype-3 sequence variants were
identified, with only epitope NS3;5,9 showing a high level of
conservation within genotype-3 (figure 5B, left panel). In add-
ition, dominant CD8+ epitopes were highly divergent between
HCV genotype-1 and genotype-3, with the exception of epitope
NS3442, which has been previously reported to be highly con-
served between genotypes (figure 5B, left).?® Limited T cell
cross-reactivity against identified HCV sequence variants was
observed at all dominant CD8+ T cell targets, with reduced or

abrogated recognition of common genotype-3 and genotype-1
sequence variants (figure 5, right panel).

T cell specificity is distinct between HCV genotypes 1 and 3
infection across the HCV genome

Finally, the overlap in T cell specificity between HCV genotypes
1 and 3 was evaluated across the viral genome. For HCV
genotype-1, previously described T cell targets were obtained
from the immune epitope database (http:/www.iedb.org/) and
these were aligned with HCV genotype-3 T cell targets detected
in the Oxford cohort for comparison (see figure 6A and online
supplementary tables S7 and S8). The majority (11/18) of HCV
genotype-3-specific CD8+ T cell targets did not overlap with
epitopes previously described in genotype-1. However, six out
of seven HCV genotype-3-specific CD4+ epitopes overlapped
with those previously described in HCV genotype-1 infection.
Next, dominant published HCV genotype-1 epitopes were
compared with the Oxford HCV genotype-3 T cell targets
(see figure 6B and supplementary figure S6). Minimal overlap in
T cell specificity was found at 18 CD8+ epitopes dominant in
HCV genotype-1 infection: only one epitope overlapped with
those detected in the Oxford HCV genotype-3 cohort.
Similarly, of 20 HCV regions frequently targeted by CD4+ cells
in HCV genotype-1 infection, overlapping T cell responses in
HCV genotype-3 infection were only detected in 2 cases.
Overall, T cell specificity was markedly different between HCV
genotypes in patients with resolved infection (figure 6C).
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Figure 5 Dominant CD8+ T cell targets are variable within HCV genotype-3 and across HCV genotypes, with limited T cell cross-reactivity against
identified sequence variants. (Left panel) HCV genotype-1 and genotype-3 sequence variants at dominant CD8+ T cell targets (A) NS2gsge, (B)
NS31443 and NS3¢s5;0 (C) NS4bqgs3, and (D) NS5a,1,6 are depicted. Sequences were obtained from the Los Alamos database, with additional HCV
genotype-3 sequences generated inhouse. (Right panel) T cell cross-reactivity of epitope-specific T cells against identified common sequence variants
at dominant CD8+ T cell targets, as assessed by IFNy-ELISpot assays (spot-forming units (SFUs)/10° peripheral blood mononuclear cells (PBMCs)) (A)
NS2gse, (B) NS31443 and NS3s,0 (C) NS4b,gs3, and (D) NS5a;126 is shown. GT, genotype; v, variant.

DISCUSSION

To date, the assessment of T cell immunity in HCV has focused
on HCV genotype-1 infection since this infection is dominant in
wealthy countries, and was historically more difficult to treat.

However, globally more than 53 million people are infected with
genotype-3, and in the era of DAA therapy genotype-3 is more
difficult to treat.* *® This means that the evaluation of T cell
immunity in genotype-3 with a view to developing vaccines
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Figure 6 T cell targets are distinct in HCV genotypes 1 and 3. Comparison of T cell specificity in HCV genotypes 1 and 3: (A) HCV genotype-3
CD4+ and CD8+ T cell targets and those without defined CD4/CD8 restriction described in this study are depicted. Genotype-3 T cell targets
previously described/not described in HCV genotype-1 infection (as deposited on the immune epitope database, IEDB) are colour coded in light blue/
red, respectively. T cell targets detected in at least one patient with spontaneously resolved infection are marked with an arrow. (B) Dominant HCV
genotype-1 epitopes as derived from the IEDB are depicted; those detected/not detected in HCV genotype-3 in this study are colour coded in blue/
pink, respectively. Genotype-1 T cell targets identified in patients with spontaneously resolved infection in the literature are marked with an arrow.
(C) Comparison of HCV immunogenic regions in HCV genotype-3 infection (identified in this study) and HCV genotype-1 infection (from IEDB) that
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capable of targeting multiple genotypes is increasingly relevant.
In this study, we set out to perform a comprehensive assessment
of T cell specificity in a large cohort of HCV genotype-3 infected
patients with acute, resolved and chronic HCV infection. In add-
ition we assessed T cell cross-reactivity with common genotype-3
and genotype-1 viral variants focusing particularly on people
with resolved infection, where T cell induction has been shown
to play a critical role in viral control. Overall, we show that only
the minority of T cell targets is recognised by both genotypes,
and that cross-reactivity between common circulating genotype-1
and genotype-3 viral sequence variants is limited.

Similar to published data for HCV genotype-1, we show that
T cell responses are readily detectable in resolved infection using
genotype-3 specific peptides, target multiple HCV antigenic
regions and are of a higher magnitude compared with people
with chronic disease, where responses are undetectable in
approximately 50% of people® *"*” We also observed that
overall, patients with resolved genotype-3 infection preferen-
tially targeted HCV non-structural proteins. Together, this data
suggests that T cells, particularly to the non-structural regions
play an important role in viral clearance irrespective of the viral
genotype and that early maintenance of this response is import-
ant in viral control.

The detailed assessment of T cell specificity revealed notable
differences with limited cross-reactivity between HCV geno-
types 1 and 3; to assess T cell specificity we used overlapping
peptides in pools derived from a genotype-3 sequence spanning
the entire HCV genome. In addition we used a sequence-based
screening approach to identify putative HLA-class-I epitopes
through the prior assessment of polymorphic HCV genomic

sites associated with host HLA in a large cohort of patients with
HCV genotype-3 infection.'® The advantage of the latter
approach is that the optimal epitope length, HLA restriction,
and functionally relevant ‘escape’ peptide variants linked to
HLA associated T cell escape are predefined. However, this
approach is dependent on bioinformatic analysis with a reduced
capacity to identify epitopes restricted by rare HLA alleles
where information of HLA/peptide binding may be lacking, and
by necessity will only identify epitopes where viral variation as a
result of T cell pressure occurs. In contrast, overlapping peptides
allow for the detection of T cell epitopes across the entire
genome in regions where viral escape does not or cannot occur,
but that nevertheless may play an important role in viral
control. These two approaches were complementary and
together identified 41 distinct CD4+ and CD8+ T cell targets
in HCV genotype-3.

The requirement for T cell cross-reactivity at a known target
to protect against heterologous infection either in natural infec-
tion, or following vaccination is dependent on the degree of
viral variability at that target in the circulating viral population.
At a population level, the majority of T cell targets were not
conserved within genotype-3, or between genotype-1 and
genotype-3. An analysis of the viral diversity at targeted epi-
topes within our cohort showed more variability within CD8+
compared with CD4+ targets, consistent with published longi-
tudinal data showing that viral escape to CD4+ epitopes is rela-
tively unusual.*®

We assessed T cell cross-reactivity in patients with resolved
infection first using genotype-specific overlapping peptides and
showed that cross-reactivity was minimal. However, we also
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found that T cell cross-reactivity was absent or reduced when
assessed at a peptide level using common circulating genotype-1
peptide variants. Similarly, there was minimal evidence of T cell
cross-reactivity when we assessed dominant genotype-3
responses among the whole cohort. This is in line with previ-
ously published cross-reactivity data at dominant HCV
genotype-1 epitopes.”’ We cannot exclude the possibility that
some of the patients in our cohort were infected with multiple
HCV genotypes. New next generation sequencing technologies
currently in development may improve the resolution in detect-
ing mixed genotype infection. Nevertheless this is not expected
to impact on our measurement of T cell cross-reactivity ex vivo.

Finally, we show that T cell specificity across the HCV
genome differs between HCV genotypes 1 and 3, including
people with resolved genotype-1 and genotype-3 infection con-
sistent with previous results reporting substantial differences in
the patterns of viral adaptation to HLA-restricted immune pres-
sure'® and differences in T cell responses to the NS3 region
between HCV genotypes 1 and 3.'7 In contrast, a recent study
analysing responses in HCV genotype-1 and genotype-4 infec-
tion suggested that similar HCV regions are targeted in these
genotypes, however, responses were not mapped to epitope
level.”’

HCV sequence diversity is thought to be one of the major
obstacles in the development of an effective vaccine. Currently
HCV T cell vaccines have completed phase-I assessment and are
now in phase-IIb efficacy testing.'® *' In these studies we have
shown that HCV vaccines based on simian adenoviral vectors
encoding an HCV genotype-1b strain shown some cross-
reactivity (approximately 30%) to non-genotype-1 HCV, Parallel
efforts in the development of B cell vaccines that aim to induce
cross-protective neutralising antibodies against the HCV enve-
lope in distinct viral genotypes are also underway.’? To date,
HCV sequence diversity has been rarely taken into account in
the design of HCV immunogens for prophylactic vaccines; a
single study specifically aiming to induce cross-reactive T cell
responses has assessed the ability of HCV genotype-1 ancestral
and consensus sequences to prime T cell immune responses,’>
and we have recently published an in vivo priming model that
seeks to identify T cell variants that are maximally cross-reactive
for inclusion into a HCV immunogen.’*

Future HCV immunogens that aim to target multiple geno-
types may need to focus on new approaches to target multiple
HCV genotypes to generate vaccines that are applicable in set-
tings where mixed genotypes circulate in the population. This
may be possible using viral vectored strategies that can encode
large immunogens.’®> Some approaches that are currently in
development for vaccines against immunodeficiency virus may be
readily also applied to HCV. This may include vaccines encoding
viral regions that are conserved between genotypes,” excluding
variable epitopes dominant in natural infection, with the hope of
inducing T cells to subdominant epitopes. Alternative approaches
include the use of multivalent mosaic immunogens that encode
antigens derived from multiple genotypes.*’

In conclusion, we show that HCV T cell specificity is distinct
between two highly prevalent global genotypes with limited
T cell cross-reactivity between common viral variants at domin-
ant epitopes. Since this also holds true for people with resolved
infection, our data suggests that regions frequently targeted in
natural HCV infection may not serve as attractive targets for a
vaccine that aims to protect against multiple HCV genotypes.
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