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Abstract

Most of multi-atlas segmentation methods focus on the registration between the full-size volumes 

of the data set. Although the transformations obtained from these registrations may be accurate for 

the global field of view of the images, they may not be accurate for the local prostate region. This 

is because different magnetic resonance (MR) images have different fields of view and may have 

large anatomical variability around the prostate. To overcome this limitation, we proposed a two-

stage prostate segmentation method based on a fully automatic multi-atlas framework, which 

includes the detection stage i.e. locating the prostate, and the segmentation stage i.e. extracting the 

prostate. The purpose of the first stage is to find a cuboid that contains the whole prostate as small 

cubage as possible. In this paper, the cuboid including the prostate is detected by registering atlas 

edge volumes to the target volume while an edge detection algorithm is applied to every slice in 

the volumes. At the second stage, the proposed method focuses on the registration in the region of 

the prostate vicinity, which can improve the accuracy of the prostate segmentation. We evaluated 

the proposed method on 12 patient MR volumes by performing a leave-one-out study. Dice 

similarity coefficient (DSC) and Hausdorff distance (HD) are used to quantify the difference 

between our method and the manual ground truth. The proposed method yielded a DSC of 83.4%

±4.3%, and a HD of 9.3 mm±2.6 mm. The fully automated segmentation method can provide a 

useful tool in many prostate imaging applications.
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1. INTRODUCTION

MR imaging of the prostate is widely used in clinical practice for prostate cancer diagnosis 

and therapy [1–7]. MRI has high spatial resolution and high soft-tissue contrast for 

visualizing the size, shape, and location of the prostate. Segmentation of the prostate plays 

an important role for clinical applications. However, an automated segmentation of prostate 

MR images is a challenging task due to the fact that the shape of the prostate varies 

significantly and it has inhomogeneous intensities in the prostate area of MR volumes [8].
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Recently, atlas-based segmentation [9–12] has become a frequently used automatic method 

for prostate delineation. Klein et al. [9] proposed an automatic prostate segmentation method 

based on registering manually segmented atlas images. A localized mutual information 

based similarity measure is used in the registration stage. This method focused on the global 

registration between the whole volumes. However, due to local structure variation, a global 

registration strategy for label fusion may not achieve the most accurate delineation of the 

local region around the prostate. Ou et al. [10] proposed a multi-atlas-based automatic 

pipeline to segment the prostate MR images. Initial segmentation of the prostate was 

computed based on the atlas selection. Once the initial segmentation is obtained, their 

method focused on the initially segmented prostate region to get final results by simply re-

running the atlas-to-target registration. There is no difference between the two-phase 

segmentation except for the target image size. It is not an efficient way and there is no much 

improvement by adding the second phase. In this paper, we introduce a two-stage 

framework. In the first stage, an edge volume is used as the target volume in the multi-atlas 

segmentation for fast detecting the location of the prostate. In the second stage, a smaller 

volume around the prostate is used as the target volume for accurate segmentation of the 

prostate.

2. METHODS

In this work, we are primarily interested in segmenting the prostate in a small region around 

the prostate. A two-stage prostate extraction framework is proposed, which includes the 

detection stage and the segmentation stage. For the detection stage, we first detect the 

location of the prostate in the MR volume. Instead of using intensity-based volume 

registration, an edge volume registration method is adopted to quickly determine the volume 

of interest (VOI) around the prostate. To obtain the edge volume, an edge detection 

algorithm is adopted on each slice of MR volumes. For the segmentation stage, only the 

prostate vicinity needs to be registered between the cropped atlas volume and the cropped 

target volume, which has a lower computational cost than registering the whole volumes. 

Fig. 1 shows the flowchart of the proposed method. In the following presentation, the main 

notations are listed in Table 1. In the next section, we will present the proposed detection 

and segmentation framework in details.

2.1 Prostate detection

At the first stage, multi-atlas segmentation framework [13, 14] is applied on the edge 

volume to obtain the VOI of the prostate. Given a target MR volume V, and a set of atlases 

A(I, L). We are looking for a labeled volume that contains a rough segmentation of the 

prostate for obtaining the location of the prostate.

First, we obtain an edge volume of an atlas volume Ii represented as E(Ii), by applying an 

edge detection method [15] on the MR data in a slice-by-slice manner. The output of the 

edge detection algorithm is an intensity map. The intensity value ranges from 0 to 1. ‘0’ 

presents no edge at the current voxel, while ‘1’ represents a definite edge voxel. Similarly, 

the edge volume of the target volume V is obtained and represented as E(V). Edge detection 

removes redundant information in the MR images, which makes volumes easier to be 

registered. Therefore, edge volume registration can be more robust than intensity-based 
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volume registration [3, 16] that can be trapped at local minima. Figure 2 shows the 

demonstration of the edge maps of MR images.

Second, a transformation T (rotation, translation, and scaling) from E(Ii) to E(V) is 

calculated by minimizing the mean of squared error (MSE) between E(V) and registered 

E(Ii). After registration, the registered atlas label LR is calculated by applying the obtained 

transformation to the corresponding atlas label L. Similarly, the other registered atlas labels 

of atlas database can be obtained.

Finally, the majority voting is used to get the initial segmentation of the prostate. To make 

sure that the initial segmentation can cover the whole prostate, we first dilate the prostate 

mask obtained from the label majority voting. Then the bounding box of the dilated mask is 

used to crop the target volume for the second segmentation stage.

2.2 Prostate segmentation

Once obtain the cropped volume VC, the similar multi-atlas framework is used for the 

second segmentation stage. The difference between two stages is that an affine 

transformation (rotation, translation, scaling, and shear) and a mutual information [17] 

similarity metric are adopted at the second stage. First, we use affine transformation TC(VC, 

IC) for registering the cropped atlases volume IC to the cropped target volume VC, while 

mutual information is used as the similarity metric. As affine transformation and mutual 

information metric are only performed on cropped volume, it can alleviate the computational 

problem significantly. Note that the atlas volumes are also cropped based on their 

corresponding label volumes, which is presented as AC(IC, LC).

Second, for a given target, some certain atlases in the database may be more appropriate as 

the candidates than others. Combining only these atlases is likely to produce a better 

segmentation than ones that produced from the full atlas database. This consideration 

provides a motivation for the selection of atlases that are appropriate for a given target 

volume. In our work, the mutual information between the target volume and registered atlas 

volume is used to guide the selection of atlases. In the final atlas fusion process, we use an 

adaptive threshold method to pick up the appropriate registered labels for label majority 

voting.

The registered atlas label LCR whose mutual information between the corresponding 

registered cropped volume ICR and the cropped target volume VC is greater than the median 

value of mutual information of other 11 cropped atlas volumes (there are 12 volumes for the 

leave-one-out experiment) will be selected as a candidate. Therefore, the i-th registered label 

will be selected if it satisfies the following condition:

(1)

Finally, we use the selected labels to obtain the final segmentation L̂ by applying majority 

voting.
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2.3 Evaluation

The leave-one-out cross validation method was adopted in our experiments for all MR 

volumes within the dataset. In each experiment, one MR volume was excluded from the 

dataset and was considered as the target volume, while other 11 volumes were used as the 

atlases. Our segmentation method was evaluated by two quantitative metrics, which are dice 

similarity coefficient (DSC) and Hausdorff distance (HD) [18, 19]. The DSC was calculated 

using:

(2)

where |A| is the number of voxels in the manual segmentation and |B| is the number of 

voxels in the segmentation of algorithm. To compute the HD, a distance from a voxel x to a 

surface Y is first defined as:

(3)

Then the HD between two surfaces X and Y is calculated by:

(4)

3. EXPERIMENTS AND RESULTS

The proposed automatic segmentation method has been implemented using MATLAB on a 

computer with 3.4 GHz CPU and 128 GB memory. The volume size varies from 

320×320×23 to 320×320×61. The execution time of segmenting each MR volume is about 4 

minutes.

3.1 Qualitative evaluation results

Quantitative evaluation was obtained by comparing the automatically generated 

segmentations with the manual segmentations provided by an experienced radiologist. The 

qualitative results from 12 prostate volumes are shown in Fig. 3. Blue curves are the manual 

segmented ground truth by the radiologist, while the red curves are segmentation obtained 

from the proposed method. The proposed method yields satisfactory segmentation results for 

all the 12 volumes.

3.2 Quantitative evaluation results

In Table 2, we list the DSC and HD calculated from the leave-one-out cross validation of the 

proposed method on 12 MR image volumes. Our fully automatic segmentation approach 

yielded a DSC of 83.4%± 4.3%. For the 12 volumes, the HD is 9.3mm±2.6mm, which 

indicates the proposed method can detect prostate tissue with a relatively low error.

3.3 Discussion

The main task of the first stage is to find the location and the approximate size of the 

prostate. Therefore, a conservative segmentation is obtained to make sure that the initial 

Tian et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation is inside the prostate region. In this work, the first stage yields an average DSC 

of 67% on the full-size volume, which is good enough for detecting the prostate but is not 

good for the final segmentation. Based on the results of the fully automatic stage, the DSC 

of the second stage on the cropped volume has been increased to 83%, which demonstrates 

the necessity of the second stage.

4. CONCLUSION AND FUTURE WORK

We proposed an automatic two-stage method to segment the prostate from MR volumes. To 

the best of our knowledge, this is the first study to use edge volumes to register MR volumes 

for multi-atlas-based prostate segmentation. Based on the low computational cost and robust 

edge volume registration, a volume of interest (VOI) contains the prostate can be obtained. 

Once the prostate VOI is obtained, the top best registered atlases are chosen for the label 

fusion by measuring mutual information in the vicinity of the prostate. The experimental 

results show that the proposed method can be used to aid in the delineation of the prostate 

from MR volumes, which could be useful in a number of clinical applications.
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Figure 1. 
The flowchart of the proposed method. The first stage (top) is for the detection of prostate 

location, while the second stage (bottom) is for the segmentation of the prostate boundaries.
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Figure 2. 
The demonstration of the edge maps of MR images. (a) The target image. (b) The atlas 

image. (c) The edge map of the target image. (d) The edge map of the atlas image. (e) Two 

edge maps are superposed before registration. (f) Two edge maps are superposed after 

registration. Gray areas correspond to areas that have similar intensities, while magenta and 

green areas show places where one image is brighter than the other.
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Figure 3. 
The qualitative results of 12 prostate volumes. The red curves are the prostate contours 

obtained by the proposed method, while the blue curves are the contours obtained by 

manually labeling.
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Table 1

Notations used in the paper.

V Target volume VC Cropped target volume

A(I, L) Atlas, I is atlas volume, L is atlas label AC(IC, LC) Cropped atlas

E Edge volume of V TC(VC, IC) Transformation from IC to VC

T(V, I) Transformation from I to V LCR Registered cropped label

L̂ Final label
The mutual information between the ith registered cropped volume 

 and VC

LR Registered atlas label
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