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Abstract

Hydroxylated polybromodiphenyl ethers (OH-PBDEs) are emerging aquatic pollutants, but their 

origins in the environment are not fully understood. There is evidence that OH-PBDEs are formed 

from bromophenols, but the underlying transformation processes remain unknown. Here we 

investigate if the photoformation of OH-PBDEs from 2,6-dibromophenol in aqueous solution 

involves 2,6-bromophenoxyl radicals. After UV irradiation of an aqueous 2,6-dibromophenol 

solution, HPLC-LTQ-Orbitrap MS and GC/MS analysis revealed the formation of a OH-PBDE 

and a dihydroxylated polybrominated biphenyl (di-OH-PBB). Both dimeric photoproducts were 

tentatively identified as 4′-OH-BDE73 and 4,4′-di-OH-PBB80. In addition, three debromination 

products (4-OH-BDE34, 4′-OH-BDE27, and 4,4′-di-OH-PBBs) were observed. Electron 

paramagnetic resonance spectroscopy revealed the presence of a 2,6-dibromophenoxyl radical 

with a six-line spectrum (aH (2 meta) = 3.45 G, aH (1 para) = 1.04 G, g = 2.0046) during 

irradiation of a 2,6-dibromophenol solution in water. The 2,6-dibromophenoxyl radical had a 

relatively long half-life (122 ± 5 μs) according to laser flash photolysis experiments. The para-

para C-C and O-para-C couplings of these 2,6-dibromophenoxyl radicals are consistent with the 

observed formation of both dimeric OH-PBDE and di-OH-PBB photoproducts. These findings 

show that bromophenoxyl radical-mediated phototransformation of bromophenols is a source of 

OH-PBDEs and di-OH-PBBs in aqueous environments that requires further attention.
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INTRODUCTION

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are a class of emerging 

environmental pollutants. There is increasing evidence that OH-PBDEs are ubiquitous in 

biotic and abiotic environments.1,2 These pollutants have been observed in abiotic 

compartments such as rain, snow and wastewater influent and effluent.2–5 Recent studies 

report that the sum of OH-PBDEs (ΣOH-PBDEs) are 15–170 pg m−2 d−1 in rain and 3.5–

190 pg m−2 d−1 in snow2. Levels of ΣOH-PBDEs are in the pg L−1 range in wastewater/

sewage treatment plant effluent.5 OH-PBDEs have been detected in various aquatic 

organisms including algae, sponges, mussels, fish and marine mammals.1, 6–8 Levels of OH-

PBDEs in fish from the Detroit River can be as high as 198 pg (g wet weight)−1.9 OH-

PBDEs have also been detected in humans, including women and their fetuses,10,11 thus 

raising human health concerns. OH-PBDEs display toxic effects in organisms, including 

disruption of thyroid function and sensitization/uncoupling or ryanodine receptors.10,12 They 

can undergo further environmental transformation and biotransformation to toxic 

compounds.11,13 For example, OH-PBDEs can photochemically generate highly toxic 

polybrominate dibenzo-p-dioxins (PBDDs) via a ring closure reaction.14 Moreover, OH-

PBDEs directly photolyze into hydroquinone or di-OH-PBDEs, highly reactive 

transformation products that react with DNA and cause chromosomal alternations.13

The sources and origins of OH-PBDEs in the environment are not fully understood. 

Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in a variety of 

consumer and industrial polymer products since the 1970s and are considered to be an 

important precursor of OH-PBDEs in the environment. Three pathways have been proposed 

for the transformation of PBDEs to OH-PBDEs: (1) cytochrome P450 enzyme-mediated 

biotransformation in organism;15 (2) hydroxylation via a reaction with atmospheric hydroxyl 

radical;16 and (3) oxidation during wastewater treatment processes.2 OH-PBDEs are also 

natural products formed by cyanobacteria that have been found to be the producer of OH-

PBDEs, and evidence for their natural production in marine ecosystems is provided by 

radiocarbon data.17,18 These findings indicate that OH-PBDEs have different sources and 

origins in natural environments.

Bromophenols (BPs) are widely used in various industrial products such as dyes, pulp, 

paints, polymer intermediates, flame retardants, herbicides and wood preservatives.19,20 In 

2001, the global production of 2,4,6-tribromophenol (2,4,6-TBP) alone reached 9500 tons.21 

BPs have been found in a variety of environmental matrices19,20,22–25 because of their 

release from industrial processes/products and their natural biosynthesis by aquatic 

organisms.20 BP levels in aquatic environment are typically in the ng/L to μg/L 

range.19,26,27 In a previous study, we proposed that the photochemical formation of OH-

PBDEs from BPs is a currently unexplored source of OH-PBDEs in natural water. 
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Specifically, we demonstrated based on mass spectroscopic evidence that 2′-OH-BDE68 

was photogenerated in aqueous solution by photodimerization of 2,4-dibromophenol (2,4-

DBP);28 however, the mechanism of this phototransformation process remains unknown. 

Two recent computational studies show that BPs can generate bromophenoxyl radicals 

under certain conditions via cleavage of the O-H bond or by attack of oxidizing free 

radicals, such as H•, HO•, O(3P) and Cl•.29,30 Direct experimental evidence for the 

formation of bromophenoxyl radicals during UV irradiation of aqueous solutions of BPs is 

still missing.

Here we investigate the hypothesis that irradiation of BPs in water results in the formation of 

bromophenoxyl radicals, which are key intermediates in the photoformation of dimeric 

products, such as OH-PBDEs. We employed electron paramagnetic resonance spectroscopy 

(EPR) and laser flash photolysis (LFP) techniques to study the mechanism for the 

photoformation of OH-PBDE from BPs. We selected 2,6-dibromophenol (2,6-DBP), one of 

the most widely detected BPs in aquatic environments,26,31 as a model compound and 

systematically investigated the formation and structure of bromophenoxyl radicals during 

irradiation and propose a phototransformation pathway for BPs. These findings advance our 

fundamental understanding of sources and origins of OH-PBDEs and other BP 

photoproducts in abiotic environment, and the ecological risk of BP contamination in sunlit 

water bodies.

EXPERIMENTAL

Chemicals

2,6-DBP (>99% purity) was purchased from Acros Organics (New Jersey, USA). 3-

Carboxy-PROXYL (3-CxP; CAS# 2154-68-9), 3′-hydroxy-2,4,4′-tribromodiphenyl ether 

(3′-OH-BDE28), 3-hydroxy-2,2′,4,4′-tetrabromodiphenyl ether (3-OH-BDE47), 4′-

hydroxy-2,2′,4,5′-tetrabromodiphenyl ether (4′-OH-BDE49), 6-hydroxy-2,2′,3,4,4′-

pentabromodiphenyl ether (6-OH-BDE85) and 2-hydroxy-5-chlorobipheny were obtained 

from AccuStandard Inc. (New Haven, CT, USA). 5,5-Dimethylpyrroline-N-oxide (DMPO) 

was purchased from Dojindo (Gaitherburg, MD, USA). Diazomethane dissolved in diethyl 

ether was supplied by Dalian Kaifei Chemical Reagent Co (Dalian, China). All organic 

solvents, such as dichloromethane (DCM), n-hexane, methyl tert-butyl ether (MTBE) and 

methanol, used for the extraction and derivatization procedures were HPLC grade. All 

aqueous solutions were prepared using ultrapure water (18 MΩ) obtained from an OKP 

Ultrapure Water System (Shanghai Lakecore Instrument Co.; Shanghai, China).

Steady-state irradiation

A merry-go-round reactor (Xujiang Technology Co., Nanjing, China) equipped with a 350-

W Xenon lamp was used for steady-state irradiation experiments. The lamp with a 290 nm 

cutoff filter was housed inside an immersion well where tap water (approximately 15 °C) 

was circulated to keep the reaction temperature inside the reactor constant. Solutions of 2,6-

DBP (80 μmol/L) were placed into a quartz tube and analyzed at various intervals after 

irradiation. This concentration was selected based on our earlier study and facilitates the 

characterization of unknown photoproducts.28 The light intensity during the photo-
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polymerization studies with the 290 nm filter was 110 mW cm−2 as determined using an 

IL1400 BL radiometer with an UVGAL.NIT detector (International Light Inc.; Peabody, 

MA, USA).

Product analysis

Samples were acidified with HCl to pH ~2, and then extracted three times with 10 mL 

DCM. The combined organic phases were condensed to 1 mL under a gentle stream of 

nitrogen and divided into two aliquots. One aliquot (0.5 mL) was blown to dryness, re-

dissolved in 100 μL acetonitrile for analysis by HPLC-LTQ Orbitrap XL (Thermo Scientific 

Co., MC, USA). The solvent of the other aliquot (0.5 mL) was exchanged to n-hexane (0.5 

mL) and derivatized by addition of diazomethane. After storing for approximately 12 h at 4 

°C, the derivatized samples were evaporated to dryness under a gentle stream of nitrogen 

and reconstituted in 100 μL of hexane for analysis on an Agilent 6890GC/5975MS (Agilent 

Co., CA, USA). 2,6-DBP was quantified using an external standard calibration curve by 

HPLC-LTQ Orbitrap XL. Because authentic standards of the photoproducts were not 

available, their apparent concentrations were determined based on external standard 

calibration curves of 3-OH-BDE47. This approach is reasonably accurate for the 

quantification of unknown OH-PBDEs because we and other have shown that the response 

factors for OH-PBDEs are very similar.10,32 For example, response factors of 3′-OH-

BDE28, 3-OH-BDE47, 4′-OH-BDE49, and 6-OH-BDE85 vary by less than 8%. The 

detailed analytical conditions of GC-MS and HPLC-MS are shown in the Supporting 

Information. The apparent product yields were calculated using33

(1)

where [product]apparent is the concentration of a particular photoproduct and [2,6-DBP]0 is 

the initial reaction concentration of 2,6-DBP.

Electron Paramagnetic Resonance (EPR) Measurements

A Bruker EMX EPR spectrometer (Karlsruhe, Germany) equipped with a 4103TM cavity 

was used for the EPR studies. The samples were degased with argon to remove the majority 

of the oxygen and then transferred to a flat quartz cell. The flat cell was placed into the TM 

cavity of the EPR spectrometer, and the sample was irradiated with a 150 W Photomax 

xenon arc lamp (Oriel; Stratford, CT, USA) at a distance of approximately 50 cm. The 

power of the lamp was set at 30 W. A 280 nm (WG 280) cutoff filter (cut off the shorter 

wavelengths; specification 50% transmittance) from Schott (Duryea, PA, USA) was inserted 

into the lamp to simulate sunlight irradiation. Typical EPR instrument parameters were: 

microwave frequency, 9.8 GHz (X-band); microwave power, from 0.1 to 20 mW; 

modulation amplitude, ≤ 3.0 G; time constant, 164 ms; scan rate, 25 G/20.9 s to 120 G/42 s; 

receiver gain, 5.02 ×104. To study the formation of carbon-center radicals the spin trap 

DMPO was added to obtain a final concentration of 50 mM (from a 1 M aqueous stock). 

Measurement of absolute concentrations of radicals or spin adducts was accomplished by 

double integration of the spectra and comparison to a reference with a known concentration 

of 3-carboxy-PROXYL using the same instrument settings and experimental setup.34 
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Simulation of EPR data was performed by using WinSim software (NIEHS) and Bruker 

WinEPR (Karlsruhe, Germany). The Spin Trap Database (NIEHS) was referred to in order 

to interpret and simulate the EPR spectra.35,36

Laser Flash Photolysis (LFP) Experiments

A LP920 LFP spectrometer (Edinburgh Instruments Ltd., England) equipped with a 

frequency tripled Q-switched Nd: YAG laser (Brilliant) that provided a 266 nm pulse was 

used for the LFP experiments. The samples were purged with nitrogen gas for 15 min, and 

then transferred into a 1 cm quartz cuvette, and sealed from the atmosphere. The samples 

were irradiated by a laser (pulse width of 4 ns, average laser pulse power of 10 mJ), and a 

xenon lamp (450 W) was used as the probe light to monitor the transient formation and 

subsequent decay. The temporal profiles were recorded using a monochromator (TMS300) 

equipped with a photomultiplier (Hamamatsu R928) and a digital oscilloscope (Tektronix, 

TDS3012C). Transient absorption spectra were measured by an intensified charged-coupled 

device (ICCD) with a gate time of 1.5 μs and a 0.2 μs time delay (Andor, DH 720).

Quality Assurance and Quality Control

All experiments were repeated three times and data are presented as the mean ± one standard 

deviation. Blank samples representing experimental, extraction and analytical procedures 

were analyzed in parallel to ensure that no background contamination was present. No 2,6-

DBP photoproducts were detected in procedural blank samples. Spike and recovery studies 

were performed to assess the extraction efficiency of the photoproducts. Briefly, aqueous 

solutions of 2,6-DBP (100 mL, n = 3) were spiked with 5 ng of 2-hydroxy-5-chlorobiphenyl, 

which is structurally similar to OH-PBDEs, and subjected to the extraction procedure. 

Recoveries for 2-hydroxy-5-chlorobiphenyl ranged from 72 to 99%, with a relative standard 

deviation < 7%. Instrumental precision was determined by triplicate analysis of each sample. 

The limits of detection (LODs) of the OH-PBDE and di-OH-PBB photoproducts were 

determined based on water blanks (100 mL) and defined as the concentration that results in a 

signal-to-noise ratio of 3. The LODs were 2–9 pg/mL for OH-PBDEs and 4–12 pg/mL for 

di-OH-PBBs.

RESULTS AND DISCUSSION

Identification of photochemical products

Samples of 2,6-DBP in water were analyzed by HPLC-LTQ-Orbitrap MS and GC-MS after 

a 1 h irradiation period to identify photoproducts. The HPLC-LTQ-Orbitrap chromatogram 

showed two peaks (P1, P2) with molecular ion clusters at m/z 496.69, 498.69, 500.69, 502.69 

and 504.69 (abundance ratio: 1:4:6:4:1) at retention times of 14.12 min and 17.43 min, 

respectively (Figure 1b, c). Because the two bromine isotopes have an atomic mass of 78.9 

and 80.9, and a natural abundance of 50.5% and 49.5%, respectively, these two peaks 

correspond to tetrabrominated photoproducts with a molecular formula C12Br4H6O2. This 

observation suggests that dimeric products of 2,6-DBP are generated during UV irradiation. 

In addition, three peaks (P3, P4, P5) with m/z 418.79, 420.79, 422.79, and 424.79 (abundance 

ratio: 1:3:3:1) (Figure 1d, e, f) at retention times of 11.50 min, 14.26 min and 16.95 min 

Zhao et al. Page 5

Environ Sci Technol. Author manuscript; available in PMC 2016 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were observed. Based on the isotope pattern, these photoproducts are tribrominated products 

with a molecular formula C12Br3H7O2.

Earlier studies have shown that irradiation of phenol results in the formation of both 

hydroxydiphenyl ether and dihydroxybiphenyl.37 To identify the number of OH groups in 

the dimeric 2,6-DBP photoproducts based on the mass difference of mono- vs. 

dimethoxylated compounds, a second aliquot of each sample was derivatized with 

diazomethane and the resulting methoxylated derivatives were analyzed by GC-MS. 

Consistent with the HPLC-LTQ-Orbitrap analysis, the GC-MS mass spectra also showed 

two tetrabrominated compounds, but with different m/z ion clusters (Figure 2). The 

tetrabrominated photoproduct at 10.85 min had a cluster of ions centered at m/z 516 

(abundance ratio: 1:4:6:4:1), which corresponds to a monomethoxylated photoproduct (P1). 

The second photoproduct at 15.69 min displayed an ion cluster centered at m/z 530 

(abundance ratio: 1:4:6:4:1), which corresponds to a dihydroxylated compound. Similar to 

the photoproducts of phenol, this product likely is a dihydroxylated polybrominated 

biphenyl (di-OH-PBB) (P2). To the best of our knowledge, this is the first report of the 

photoformation of di-OH-PBBs from bromophenols in aqueous solution. In addition, 

fragment ion clusters characteristic of MeO-PBDEs, including (M-HBr)−, (M-H2Br2)− and 

(HBr2)−,38 were observed in the mass spectrum of the monohydroxylated compound (Figure 

2b). Therefore, this photoproduct was tentatively identified as a OH-PBDE, which is 

consistent with our earlier finding that UV irradiation of 2,4-DBP results in the formation of 

OH-PBDEs.28 The mass spectrum of the dihydroxylated photoproduct did not show these 

ion clusters characteristic of (di-)methoxylated PBDEs (Figure 2c),39 which indicates that 

both dimeric products have different cleavage pathways under the same MS condition.

In addition to the two tetrabrominated dimeric products, GC-MS analysis also revealed to 

formation of three tribrominated compounds (Figure S1). The two tribrominated 

photoproducts (P3, P4) at 9.39 min and 9.97 min had a cluster of ions centered at m/z 434 

(abundance ratio:1:3:3:1), which correspond to a monohydroxylated photoproduct (Figure 

S1b, c). The third tribrominated photoproduct (P5) at 12.83 min displayed an ion cluster 

centered at m/z 452 (abundance ratio: 1:3:3:1), which corresponds to a dihydroxylated 

compound (Figure S1d). The main product produced during the irradiation of 2,6-DBP was 

a debrominated hydroxylated compound, monobromo-dihydroxybenzene (P6), with 

molecular ion clusters at m/z 186.94 and 188.94 (abundance ratio: 1:1) (Figure S2). Unlike 

our previous phototransformation study with 2,4-DBP,28 no dibromo-dihydroxybenzene 

product was detected in this study. Additional photoproducts of 2,6-DBP were formed 

during UV irradiation; however, these products were not further investigated due to their 

low concentration or low extraction efficiency.

The time-dependent formation of the six photoproducts, expressed as the apparent product 

yield calculated with Eq. 1, is shown in Figure 3. The apparent total yields of these products 

were 31 ± 8% at pH = 7.4 after a 2 h irradiation period. The apparent yields of two 

tetrabrominated dimeric products (P1, P2) initially increased and then decreased with 

irradiation time, and reached 0.68 ± 0.20 % in 2 h, which provides further evidence that they 

were formed during the irradiation of 2,6-DBP. The tribrominated product had slightly 

lower yields (0.51 ± 0.16 %, 2 h) than the tetrabrominated product. A lag time was observed 
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for the formation of the tribrominated photoproducts (P3, P4, P5), which suggest that these 

compounds are debromination products derived from the tetrabrominated compounds 

(Figure 3, Figure S3). Monobromo-dihydroxybenzene, was a main product and its apparent 

yield reached 29.5 ± 7.5% after 2 h.

Formation of bromophenoxyl radicals by irradiation of 2,6-DBP

To determine whether the formation of dimeric photoproducts from BPs involves a radical 

mechanism, an aqueous solution of 2,6-DBP (pH = 7.4) was subjected to room temperature 

EPR analysis before and during UV irradiation. No EPR spectrum corresponding to a 2,6-

dibromophenoxyl radical was observed without UV irradiation (Figure 4a), whereas a six-

line EPR spectrum was observed immediately upon irradiation of the sample (Figure 4b). 

The observed six-line spectrum had hyperfine splitting constants of aH (2 meta) = 3.45 G 

and aH (1 para) = 1.04 G, and center g-value of 2.0046. By comparison to the literature and 

theoretical calculations,40,41 this radical was identified as a 2,6-dibromophenoxyl radical. 

The arguments that support this assignment are as follows:

1. The g-values of the EPR spectra are indicative of the types of radicals present and 

measure how the magnetic environment of the unpaired electrons differs from that 

of a free, gas-phase electron (g = 2.0023). In principle, the g-values of EPR spectra 

can be used to determine whether a radical is carbon-centered or oxygen-centered. 

As a general guide, the g-value increases the closer an unpaired electron is to an 

oxygen, with the general rank order gcarbon-centered radicals < 2.0030,42 

gcarbon-centered radicals near an oxygen = 2.0030–2.0040,43 and goxygen-centered radicals > 

2.0040.44 In this study, the g-value was 2.0046, which suggests that an oxygen-

centered radical is formed during UV irradiation of an aqueous solution of 2,6-

DBP.

2. The spectrum exhibits 1:2:1 pattern with a small hyperfine splitting on each line, 

indicating that all three hydrogens at positions 3, 4, and 5 of 2,6-DBP are present. 

This hyperfine splitting pattern in therefore consistent with an oxygen-centered 2,6-

dibromophenoxyl radical.

3. The observed spectrum was reproduced using WinSim software (NIEHS) and the 

above reported experimental spectral parameters for a 2,6-dibromophenoxyl radical 

(Figure 4c). Satisfactory agreement was achieved with a correlation coefficient 

greater than 0.98.

4. The effect of increasing microwave power on the saturation behavior of a sample 

can give information regarding the relaxation properties of the sample, which can 

help to identify unknown signals. The EPR spectrum observed in this study was 

saturated at high microwave power (Figure S4), which is consistent with the 

nonlinear behavior of more readily saturated phenoxyl-type radicals such as tyrosyl 

radical.45

Characterization of carbon-centered radicals generated by irradiation of 2,6-DBP

Previous studies show that phenoxyl radicals exist in equilibrium of the oxygen-centered 

radical (“eno” form) and carbon-centered radical (“keto” form)46 (Scheme 1). The EPR 
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spectrum shown in Figure 5 was observed when an aqueous solution containing 2,6-DBP 

(10 mmol/L) and the spin trap DMPO (50 mmol/L) was irradiated at 280 nm in the absence 

of dioxygen. Computer simulation of this EPR spectrum indicates that the spin adduct 

corresponds to a carbon-centered radical with hyperfine splittings aN = 16.1 G, αH = 23.6 G, 

NoH = 0.68, where NoH is the ratio of the nitrogen splitting constant to the hydrogen 

splitting constant (NoH = aN/aH).47 The similarity of this adduct and the previously reported 

2-chlorophenyl-DMPO adduct (aN = 15.8 G, αH = 23.8 G, NoH = 0.65)48 suggested that it 

was formed by reaction of the spin trap with an aryl radical generated during the 

photochemical reaction of 2,6-DBP. EPR spin trapping experiments with DMPO 

demonstrated that high levels of keto radical were produced during the irradiation of 2,6-

DBP (Figure 5). Irradiation of solvent alone produced background EPR signals that are 

approximately 50-times weaker (Figure 5a, b), indicating that 2,6-DBP was directly 

involved in radical formation.

The formation of 2,6-dibromophenoxyl radicals during the direct irradiation of 2,6-DBP 

provides compelling evidence that the photoformation of dimeric products from 2,6-DBP 

and other bromophenols28 involves the formation of bromophenoxyl radicals as an initial 

step. Previous studies have demonstrated that the photochemical formation of phenoxyl 

radicals from a neutral molecule or the phenolate anion have different pathways.37 Since 

2,6-DBP has a pKa of 7.52,49 57% and 43% of 2,6-DBP in the reaction solution (pH = 7.4) 

exist in the phenol and phenolate forms, respectively. The effect of pH on the formation of 

2,6-bromophenoxyl radicals was investigated to determine which form contributes to the 

formation of bromophenoxyl radicals. As the pH was increased from 6.5 to 10.3, the UV 

absorbance increased as well as the generation of 2,6-bromophenoxyl radicals (Figure S5), 

which indicates that an increase in phenolate content is favorable for the formation of 2,6-

bromophenoxyl radicals. Therefore, 2,6-bromophenoxyl radicals are mainly formed by 

direct photodissociation of the 2,6-dibromophenolate ion in the current reaction system. In 

brief, the 2,6-dibromophenolate ion in aqueous solution takes up photoenergy during 

irradiation. The excited 2,6-dibromophenolate then rapidly looses an electron to generate 

2,6-dibromophenoxyl radicals.

Based on the resonance structure of 2,6-dibromophenoxyl radicals (Scheme 1), we expected 

that 2,6-dibromophenoxyl radicals would have a relative long half-life. Therefore, an 

additional LFP experiment was performed to study the stability of 2,6-dibromophenoxyl 

radicals in aqueous solution. Briefly, a solution of 2,6-DBP was irradiated with a 266 nm 

laser pulse (λmax, 2,6-DBP = 285 nm, Figure S6) in the presence of nitrogen. The transient 

absorption spectra showed two peaks centered near 400 nm that are located in the absorption 

region of phenoxyl radicals (Figure S7a).50 The molecular decay kinetics at λ=385 nm 

absorption showed that the 2,6-dibromophenoxyl radical decay in water solution followed 

first-order process in the absence of a quencher. Its decay rate constant was 8.2 (± 0.6) × 103 

s−1 and its lifetime 122 ± 5 μs (See Figure S7b.). Similarly, published lifetimes of other 

phenoxyl radicals are also longer than 100 μs.51
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Radical formation increases with irradiation time and concentration of 2,6-DBP

The effect of irradiation time and concentration of 2,6-DBP in aqueous solution (pH 7.4) on 

the absolute concentration of bromophenoxyl radicals (280 nm cutoff) was determined by 

EPR using 3-carboxy-PROXYL as a standard (Table 1, Figure S8). The total amounts of 

2,6-dibromophenoxyl radicals in eno and keto forms increased with irradiation time and 

with the concentration of 2,6-DBP. With an increase in either the time of exposure or the 

concentration of 2,6-DBP, an apparent steady-state level of eno or keto radical was attained 

(Figure S9A, B), which is consistent with an equilibrium between the formation and loss of 

the 2,6-dibromophenoxyl radicals. Previous theoretical and experimental studies showed 

that the keto form of phenoxyl or chlorophenoxyl radicals is more stable than the eno 

form.52 Consistent with these earlier studies, the amount of the keto form of the 2,6-

bromophenoxyl radical formed at the same irradiation time (5.6 min) or exposure 

concentration (5 mM) was 5.3- or 5.8-fold higher than that of the eno form.

Formation mechanism of dimeric photoproducts

The 2,6-dibromophenoxyl radicals formed during UV irradiation are likely involved in the 

formation of dimeric photoproducts of 2,6-DBP (Figure 1). In general, phenoxyl radicals 

readily undergo C-C and C-O coupling reactions, whereas O-O coupling products are 

seldom found due to the instability of these products.29 FMO theory calculations 

demonstrate that the coupling of phenoxyl radicals occurs preferentially at the site of the 

highest spin density. SOMO electron-spin densities calculated by AM1/UHF show that the 

ortho and para positions of phenoxyl radicals have a high spin density.53 Since both ortho 

positions in 2,6-DBP are occupied by electron withdrawing bromine substituents, ortho-

ortho C-C coupling, ortho-para C-C coupling and O-ortho-C coupling reactions are unlikely 

without loss of bromine. Therefore, the tetrabrominated, dimeric photoproducts formed 

during the irradiation of 2,6-DBP likely represent para-para C-C coupling and O-para-C 

coupling products.

Taken together, the experimental evidence suggests that the two dimeric, tetrabrominated 

photoproducts (P1, P2) formed during irradiation of an aqueous solution of 2,6-DBP are 4′-

OH-BDE73 and 4,4′-di-OH-PBB80. As illustrated in Scheme 1a, the formation of 4′-OH-

BDE73 occurs via O-para-C coupling of an eno with a keto 2,6-dibromophenoxyl radical. 

Initially, an ether adduct is formed, followed by hydrogen tautomerization to yield 4′-OH-

BDE73. The formation 4,4′-di-OH-PBB80 is presented in Scheme 1b and involves the C-C 

self-condensation of two keto 2,6-dibromophenoxyl radicals in para position. The 

tetrabrominated biphenoxyl intermediate (with two ketone groups) subsequently undergoes 

hydrogen tautomerization to form the dihydroxylated photoproduct observed by HPLC-

LTQ-Orbitrap MS and GC/MS analysis. Subsequently, 4′-OH-BDE73 and 4,4′-di-OH-

PBB80 undergo debromination to yield the three tribrominated products observed by HPLC-

LTQ-Orbitrap MS and GC/MS. This interpretation is supported by the lag time of their 

formation relative to the tetrabrominated compounds. These three tribrominated 

photoproducts were tentatively identified as 4,4′-di-OH-PBB36, 4-OH-PBDE34 and 4′-OH-

PBDE27 (Scheme 1). Similar photodegradation pathways have been reported for 

decabromodiphenyl ether,54 which represents a typical photodegradation pathways for 

halogenated organic pollutants.55
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Environmental Implications

Our findings demonstrate that both oxygen and carbon-centered 2,6-dibromophenoxyl 

radicals are generated during irradiation of 2,6-DBP with UV light. O-para-C coupling and 

C-C coupling reactions of these 2,6-dibromophenoxyl radicals result in the formation of a 

monohydroxylated PBDE and a dihydroxylated PBB. Both dimeric photoproducts were 

tentatively identified as 4′-OH-BDE73 and 4,4′-di-OH-PBB80. Subsequently, the primary 

photoproducts undergo debromination reactions, resulting in complex mixtures of 

photoproducts. Our findings demonstrate that OH-PBDEs can be formed via free radical 

mechanisms in aqueous solutions of BPs, such as 2,6-DBP, in during irradiation. Moreover, 

our study suggests that di-OH-PBBs are formed via the same mechanism.

Taken together, these observations are important because BPs are frequently found in 

surface water, with the average concentrations in the ng-μg/L range.19,20,26,27 For example, 

the reported concentrations of 2,6-DBP in surface water from Ganges and Yamuna rivers in 

the northern India are 2.5 and 3.3 μg/L, respectively;26 the concentration of 2,4,6-TBP in 

surface water from Saitama Prefecture in Japan is 0.3 μg/L;19 while the total maximum 

concentrations of BPs including 2,4-DBP and 2,4,6-TBP in surface water from the river and 

sea, Korea are 118 and 52.9 ng/L, respectively.27 Even higher BP levels are found in 

sediments and aquatic species. BP concentrations in sediments from the Rhone estuary, 

France, range from 26 μg/kg to 3.7 mg/kg,20 and concentration of 2,4,6-tribromophenol as 

high as 2.4 mg/kg has been reported in crustacean.56 Based on environmental levels of BPs 

in natural water, and assuming an apparent yield of 1‰ (e.g., apparent yield4,4′-di-OH-PBB80 

= 1.9‰) and conversion that is independent of BP concentration, the production of OH-

PBDEs and di-OH-PBBs from BP phototransformation is estimated to reach pg/L levels.

While levels of di-OH-PBBs have not been investigated in environmental samples, pg/L 

levels of OH-PBDEs have been reported by several studies.1,2,5,10 Our findings suggest that 

the transformation of BPs by sunlight irradiation may contribute to the production of OH-

PBDEs and di-OH-PBBs in aqueous environments. Given that phenoxyl radicals may also 

react with dissolved organic matter (DOM) or other constituents in natural water, further 

studies are needed to determine to which extent the phototransformation of BP contributes to 

the contamination of surface waters with OH-PBDEs. Moreover, our mechanistic study 

suggests that di-OH-PBBs may represent a currently overlooked group of potentially 

(eco-)toxic contaminants in aquatic environments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Irradiation (1 h) of an aqueous solution of 2,6-dibromophenol (80 μmol/L) results in the 

formation of dimeric products. Representative (a) HPLC-LTQ-Orbitrap spectra of two 

tetrabrominated compounds which extract m/z = 495.71–505.71 and three tribrominated 

compounds which extract m/z = 415.79–425.79. (b–f) HPLC-LTQ-Orbitrap MS spectrum of 

each peak.
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Figure 2. 
(a) GC spectra of 2,6-DBP (aqueous solution, 80 μmol/L) after irradiation time of 1 h; and 

(b,c) mass spectra of the two tetrabrominated compounds at retention time of 10.85 min and 

15.69 min, respectively.
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Figure 3. 
Formation of photoproducts from direct phototransformation of 2,6-DBP (aqueous solution, 

80 μmol/L) with different time. Irradiated samples were analyzed by a HPLC-LTQ-Orbitrap 

and products were quantified with the internal standard method. P1, P2 are tetrabrominated 

products, P3-P5 are tribrominated product, P6 is monobromo-dihydroxybenzene. The 

symbols and error bars represent the mean and SD of three replicates. The calculated 

different product yields with reaction time are listed in Table S1.
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Figure 4. 
EPR spectra of 2,6-dibromophenoxyl radical generated during UV irradiation of 2,6-DBP 

(10 mmol/L). Spectra were obtained using a modulation amplitude of 1 G, time constant of 

164 ms, receiver gain of 5.02 × 104, microwave power of 13 dB, and a scan time of 7 min 

over 50 G (αH (2 meta) = 3.45 G, αH (1 para) = 1.05 G, g = 2.0046). PB, phosphate buffer 

(pH 7.4).
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Figure 5. 
EPR spectra from a solution containing 2,6-DBP (10 mmol/L) and DMPO (50 mmol/L) 

after 5.6 min of 280 nm excitation in the presence of air. Modulation amplitude 1.0 G, gain 

5.02 × 104, power 20 mW, 7 min scan with 164 ms time constant (αN = 16.07 G, αH = 23.58 

G).
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Scheme 1. 
Photoformation pathways of dimeric products from 2,6-DBP under UV irradiation. 

Representative path (a) shows the formation of OH-PBDEs from eno and keto form radicals 

with dimerization, H tautomerisation and debromination; and path (b) shows the formation 

of di-OH-PBBs from keto form radical with self-condensation, H tautomerisation and 

debromination after irradiation.
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Table 1

Free radical concentration from UV irradiation of 2,6-DBP with irradiation time and concentration of 2,6-

DBP.

Conditions “keto” form (μmol) “eno” form (μmol) # Samples

Reaction time (min)

1.4 3.9±0.6 0.5±0.1 3

2.8 5.9±0.8 1.0±0.3 3

4.2 6.5±0.5 1.2±0.5 3

5.6 7.1±0.9 1.3±0.5 3

7.0 7.1±0.4 1.3±0.3 3

8.4 7.1±0.6 1.3±0.5 3

2,6-DBP concentration (mM)a

1 0.3±0.1 0.1±0.1 3

5 5.8±0.9 1.0±0.6 3

10 7.1±0.4 1.3±0.3 3

a
The exposure time was 5.6 min for each concentration.
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