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ABSTRACT

The nutritional status of an individual or population needs to be assessed through valid and reliable biomarkers. Cutoffs generally have an

underlying relation to health status and are one of the important quantitative criteria against which biomarker outputs are compared. For this

reason, cutoffs are integral for surveys, surveillance, screening, interventions, monitoring, and evaluation. Despite their importance, nutritional

biomarker cutoffs have not been adequately addressed in the literature. Furthermore, the field has not reached a consensus on which cutoff to

use for each biomarker, and different cutoffs are often used for the same biomarkers in published studies. This review provides a comprehensive

overview of cutoffs related to nutritional biomarkers and highlights some of the high-priority research gaps and challenges of using

micronutrient case studies. Adv Nutr 2016;7:112–20.
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Introduction
Experts view biomarkers as representative molecules or as
responses to a disease or intervention, although several over-
lapping definitions of biomarkers exist in the literature (1,
2). The NIH defines biomarkers as biological measurements
(e.g., in blood or urine) that are used to indicate “normal bi-
ological processes, pathogenic processes, or pharmacologic
responses to therapeutic intervention” (1). Although a wide
range of biomarkers are available whose utility depends on
the purpose of evaluation, no single biomarker has thus far
been deemed to be a gold standard for all purposes (3).

Nutritional biomarkers are essential for assessing the nutri-
tional status of an individual and/or population. These bio-
markers are commonly used in basic and clinical research and
in community assessments. In general, program managers and
policymakers use population-level biomarkers for screening,
surveillance, and monitoring and evaluation of interventions;
clinicians use biomarkers mainly for diagnosis, prognosis, and
treatment; and researchers use biomarkers for any or all of these
purposes based on their needs (4). There are some important
attributes that need to be considered for population-level
biomarkers such as sensitivity, specificity, predictive values, like-
lihood ratios, field friendliness, measurement error, and low

cost. On the other hand, in a clinical setting, assay features con-
ducive to point-of-care testing are important, as are the previ-
ously mentioned characteristics (5). Although assessment at a
population level is used to plan and evaluate population-based
interventions, the assessment of individuals can be used for
treatment, follow-up, or counseling. The important distinction
between individual- and population-based assessment is that,
whereas the former needs to be precise at the individual level,
the latter may not provide certainty with regard to every
single individual’s true status. Despite these differences,
some population-level biomarkers and their cutoffs may still
be valid for detecting individuals at risk of deficiency (6).

An essential component of applying nutritional biomarkers
for clinical or public health purposes is the development and
acceptance of cutoffs designed to identify those who are at risk
of adverse health outcomes as a result of either under- or
overexposure to nutrients and those who are not at risk of these
outcomes. Relying upon specific micronutrients as case studies,
this review summarizes the literature on cutoffs for nutritional
biomarkers and highlights the challenges of using them.

Current Status of Knowledge
What are cutoffs?
The Institute of Medicine (7) defines a cutoff for a biomarker
as a “specified quantitative measure used to demarcate the
presence or absence of a health-related condition; often
used in interpreting measures obtained from analysis of
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blood.” Cutoffs generally reflect the underlying health status
of the population and are required for translating, stratify-
ing, and reliably distinguishing the spectrum of results that
represents a continuum from deficiency to excess obtained
from a biomarker analysis (8, 9). The continuum of bio-
marker results is often broken down into 3 categories: inad-
equate, adequate, and excess intake (10).

Cutoffs are important for making good decisions about
how to translate what we know about diet, nutrition, and
health into evidence-based standards of care or programs
and are important for comparing data across studies, re-
gions, and countries (11). They play an integral role in nu-
tritional surveys, intervention, monitoring, and evaluation
and help compare surveillance results across populations
that assess progress against global health targets. Cutoffs
provide benchmarks and are commonly used in research
and clinical settings because of their inherent uses, including
1) simplicity of risk classification as deficient compared with
excess; 2) ease of interpreting effect measures such as OR
and relative risk; 3) estimating diagnostic criteria; 4) deci-
phering the underlying relation between the biomarker re-
sults and health outcomes; and 5) summarizing data more
efficiently (8, 12, 13).

Despite these advantages, a great deal of uncertainty and
confusion exists regarding the use of cutoffs in nutritional
assessment at the clinical and community levels. Their utility
differs between clinical, epidemiological, and other research
(14). The methods used to identify a cutoff are seldom docu-
mented in the literature, and optimal cutoffs are often cho-
sen in a fairly nonsystematic manner—sometimes selected
strategically to minimize the P value and improve the statis-
tical significance that relates to prognostic factor outcomes
(10, 15, 16). To our knowledge, no universally accepted cut-
offs are available for many micronutrient biomarkers, and
even some well-accepted cutoffs may not always correlate
with physiological indexes or functions (17–19). Thus, se-
lecting an appropriate cutoff for a given biomarker requires
careful derivation and “agenda-free science” (20).

Categorizing continuous biomarker values using cutoffs.
Figure 1 shows the distribution and overlap of populations
with normal and deficient nutrient status. Ideally, a cutoff
accurately distinguishes people with optimum from those
with suboptimum values. In real-life situations, however,
values in the deficient and optimum areas are usually cate-
gorized correctly, but the status of those in the gray area
(the overlapping area of the 2 curves in Figure 1) who
have subclinical deficiency is difficult to interpret and often
misclassified (22). The gray area represents both persons
with low or deficient nutritional biomarker values and those
with normal values. These misclassifications can affect the
sensitivity and specificity of the biomarker (23).

For a given cutoff, the sensitivity and specificity of a bio-
marker provides the probability of identifying the true nutri-
tional status with precision (22). A good diagnostic and/or
screening test should maximize both the sensitivity and
specificity of the biomarker (24). However, in some situations,

it is impractical to select a cutoff that has both high sensitiv-
ity and specificity; instead of compromising 1 over the other,
cutoffs can be chosen to minimize the misclassification (8,
15). For example, if a follow-up procedure involves per-
forming invasive or expensive diagnostic tests at an individ-
ual or population level, cutoffs with high specificity may be
preferred; conversely, if there is a high penalty for not diag-
nosing an individual (e.g., clinical diagnosis of a fatal condi-
tion), then a cutoff with high sensitivity may be selected.
Thus, depending on the circumstance, it may be necessary
to maximize either sensitivity or specificity, sometimes one
at the expense of the other.

How are cutoffs developed and validated?
Receiver operating characteristic curves. Many cutoffs
currently used for nutritional biomarkers were derived using
receiver operating characteristic (ROC)6 curves (Figure 2)
(8, 25). ROC curves are graphical displays of the true-positive
rate (sensitivity) on the vertical axis plotted against the
false-positive rate (1-specificity) on the horizontal axis (21,
21, 26, 27). ROC curves are useful for evaluating and com-
paring the effectiveness of biomarkers in distinguishing nu-
tritional deficiency from optimal status (22, 28).

AUC, also called the “c statistic,” is a commonly used
summary measure of the cutoff ’s accuracy. AUCs can range
from 0.5 to 1.0, where 0.5 results from random chance or
has no predictive ability,$0.75 is good, and >0.9 is excellent
(15, 21, 29). The larger the AUC, the better the diagnostic
ability of the test (22, 30). To illustrate this further, com-
monly used iron biomarkers have AUCs significantly higher
than 0.5. The AUCs for some iron biomarkers are as follows:
serum ferritin (SF), 0.82; soluble transferrin receptor, 0.80;
soluble transferrin receptor/log ferritin, 0.79; and mean
cell hemoglobin concentration, 0.68 (31). When multiple
biomarkers are available for the same nutrient, users might
prefer the biomarker with the highest AUC (32). Although
AUCs can help ascertain a biomarker’s usefulness, they should
not be relied upon solely for identifying optimal cutoffs. As
discussed previously, other factors such as sensitivity, specific-
ity, and ROC curves should be considered as well (22).

Youden index (J). J is a summary statistic of the ROC curve
used to interpret and evaluate biomarkers (33). This mea-
sure of overall diagnostic effectiveness is a function of sensi-
tivity and specificity. J can be defined by J = (maximum
sensitivity(c) + specificity(c) 2 1) over all cutoffs c, 2N <
c < N (28, 34). According to Ruopp et al. (33), “the cutoff
that achieves this maximum is referred to as the optimal cut-
off (c*) because it is the point that optimizes the biomarker’s
differentiating ability when equal weight is given to sensitiv-
ity and specificity.” J can range from 0 to 1, with values closer
to 1 indicating a perfect diagnostic test and values closer to 0
signifying a limited effectiveness (28, 34). In many cases, a
biomarker’s sensitivity and specificity have an inverse relation,

6 Abbreviations used: RBP, retinol-binding protein; ROC, receiver operating characteristic; SF,

serum ferritin.
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and moving the cutoff increases 1 while lowering the other
(34). For continuously distributed biomarkers, J occurs at
the intersection of fx and fy, the probability density functions
of cases and controls, respectively. In the ROC curve, J is the
maximum vertical line from the curve to the positive diag-
onal, making it the point on the curve furthest from chance
(22, 34).

Reference values, reference distribution, and reference
limits. Reference limits are another common method for
generating cutoffs (35).They are derived from a reference
distribution and are based on 3rd or 5th and 95th or 97th
percentiles or on a z score, which indicates the biomarker
cutoff values as a number of SDs above or below the refer-
ence median or mean (8, 35–37). Reference values are ob-
tained from a well-defined reference sample population
(8). Figure 3 describes the relation between reference values
and reference distribution, reference limits, and how refer-
ence sample are used to arrive at these values (8).

Reference limits help interject the continuum of variables
using z scores, and the central 95% of the distribution is as-
sumed to represent a normal range, although unusually high
or low values may not necessarily relate to an impairment of
health status (5, 19). The reference intervals are the values
that are between the lower and upper reference limits
(37). The WHO uses z scores for classifying some of the
commonly used anthropometric biomarkers. For example,
using the WHO growth standard median, the proportion
of children with values >2 SDs are categorized as overweight
and those with values >3 SDs as obese (38).

Criteria for selecting a reference sample. The reference
limits for a biomarker are generated using a cross-sectional
analysis of a reference sample that is derived from a homoge-
nous healthy population of reference individuals who meet
well-defined inclusion and exclusion criteria. Although an ideal
goal, in real-life situations healthy and unhealthy members of
the reference sample are not always easy to distinguish from
one another (5, 19, 39, 40). In fact, the selection of healthy ref-
erence individuals is the most difficult step in generating
reference values. The characteristics of the individuals in the
reference sample are rarely documented systematically, and
the investigators seldom have access to a healthy population
(19). On average, 120 subjects are needed within each category
to generate the reference limits for subgroups within each strata
such as age groups or sex (5, 41). More often than not, only a
small pool of samples are selected to derive a reference range,
and it is assumed that the healthy individuals stratified by age
and sex are essentially identical (42). When a large random
sample is not accessible, a small pool of random samples
that represent a large geographic area are selected (42). Because
of these challenges in sample selection, the strict exclusion cri-
teria are seldom used, and the reference sample group is drawn
from the general population, as in the case of NHANES III
(1988–1994) and the United Kingdom National Diet and Nu-
trition Survey (8). However, in some cases [e.g., measurement
of hemoglobin for NHANES III (1988–1994)], strict exclusion
criteria are followed, and the reference sample chosen consists
only of healthy individuals (8).

The biomarker measurements in individuals are rarely
constant, and reference intervals generated from a reference

FIGURE 1 A good
discriminatory test with
almost perfect ability to
discriminate between people
with a nutrient deficiency and
those with optimum nutrient
status. The ability to correctly
detect all the true negatives
depends on the specificity of
the biomarker; the ability to
correctly detect all the true
positives depends on the
sensitivity of the biomarker.
FN, false negative; FP, false
positive; TN, true negative; TP,
true positive. Adapted from
reference 21 with permission.
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sample using single time point measurements may not be
accurate in all scenarios (43). Ideally, multiple measure-
ments are collected, and statistical procedures are used to
eliminate the impact of within-person variation. Therefore,
to minimize interindividual variability, the population must
not only be healthy but homogenous as well (19). Ideally, the
reference sample should be the same in terms of age, sex,
ethnicity, geography, socioeconomic status, and any other
characteristic known to affect the measurement of the ref-
erence population (8, 44). It is important to eliminate indi-
viduals who have illnesses, take medications, smoke, have
chronic alcohol abuse problems, or have certain physiolog-
ical characteristics (such as pregnancy, lactation, strenuous
exercise, or inflammation) when developing the reference
intervals for a normal population. However, eliminating in-
dividuals with inflammation from a reference population is
not always feasible because some populations may have per-
sistent undetected low-grade inflammation (19). When
there are obvious differences within a population, the refer-
ence values should be adapted to represent different sub-
groups (42), and sometimes new reference intervals may
need to be estimated (19). For example, there has been some
consideration for redefining BMI cutoffs for Asian Americans
because the established BMI cutoff is inappropriate for this
group [e.g., their risk of health conditions such as diabetes in-
creases at a much lower BMI compared with non-Hispanic
whites (45)].

Trigger levels for surveillance and public health decision
making. Cutoffs establish a benchmark for estimating the
prevalence of certain nutrition-related public problems,
such as determining whether a population has optimum sta-
tus, deficiency, or excess levels. Over the years, international

organizations such as the WHO, the International Vitamin
A Consultative Group, and the International Zinc Nutrition
Consultative Group have identified trigger levels that might
signal public health problems (8). These trigger levels should
be interpreted with caution because they have not yet been
validated in population-based surveys (46). Table 1 provides
the WHO classification system for interpreting low SF and
high transferrin receptor concentrations at a population
level as examples of trigger levels for iron biomarkers.

Validation. The standard process of biomarker validation is
to compare it to a gold standard of practice with a sufficient
population and a defined condition (47). Cutoffs can only be
validated through systematic clinical trials and reliable, ac-
curate, harmonized assays. Although NHANES provides ref-
erence data that allow the determination of reference limits
and cutoffs for healthy US populations, it is important to re-
member that it is cross-sectional and cannot be used to val-
idate cutoffs (23, 48).

Factors that influence cutoffs
Inherent intra- and interindividual variability influences the
sensitivity and specificity of cutoffs and, more importantly,
the interpretation of biomarkers (23, 43, 49). Understanding
the purpose of the cutoff (e.g., for measurements in an indi-
vidual or population), patient-specific factors (e.g., under-
lying biological variations), and external factors (e.g.,
laboratory methods and assays used to measure the bio-
marker) is critical in generating and applying cutoffs and
reference limits (43). Some examples of these factors include
assay characteristics such as assay method, time and method
of sample collection, and individual characteristics such
as age, sex, genetics, life stage, race/ethnicity, amount of

FIGURE 2 Receiver operating characteristic
curves. Three plots and their respective AUCs are
given. The diagnostic accuracy of marker C (white
area) is better than those of markers B and A. X is
the best cutoff for the biomarker. TN, true negative;
TP, true positive. Adapted from reference 21 with
permission.
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exercise, presence or absence of inflammation, obesity, fast-
ing and hydration status, kidney function, drugs used, nutri-
tional status, and environmental exposure (including
smoking), and so on (43). Although these factors are not
of equal importance for each biomarker, at least a few critical
ones need to be considered.

Individual characteristics. Age is one of the primary crite-
ria used to establish cutoffs and therefore potentially fits the
partition criteria for most biomarkers (19). Cutoffs devel-
oped for 1 age group, usually healthy adults, are often adap-
ted for other age groups. However, caution is warranted
when applying the same cutoffs to all age groups because in-
appropriate extrapolations can result in spurious overesti-
mation or underestimation of the prevalence. This is
especially true in certain age groups, such as older adults
who have other underlying physiological and pathological
conditions (17) that may warrant specific cutoffs.

Some issues to consider when altering cutoffs for use
in other age groups are 1) how physiological variations

resulting from age can be distinguished from the patholog-
ical aging process; 2) whether the reference values used in
adults can be used and applied in older adults; 3) what the
role of medication is and how it influences biomarkers;
and 4) whether the cutoffs for younger adults can be used
to indicate normal status for older adults with benign, non-
fatal conditions (19). Despite these lingering issues, it is
sometimes necessary and acceptable to include elderly
adults who are not healthy to create reference limits, pro-
vided that the disease and medications do not interfere
with the biomarkers being measured (39). For example,
the commonly used cutoff in adults for SF is 15 mg/L; how-
ever, this cutoff may yield inaccurate and unreliable results
for the elderly because they often have a spike in SF levels
as a result of concomitant chronic disorders (30). Simi-
larly, NHANES data consistently indicate that folate status
varies by age. Serum and RBC folate concentrations are
twice as high among older than younger adults (50, 51). Al-
though this is primarily associated with supplement use,
higher folate levels can be observed among older adults
who do not use dietary supplements. In addition to age,
other equally important partition criteria include ethnic-
ity, sex, body weight, and physiological state (19). In
fact, studies have shown ethnicity-specific differences in
some biomarker measurements (52), but these differences
are seldom accounted for or even acknowledged.

Pregnancy is 1 of the physiological states that usually re-
quire a separate cutoff from that used in nonpregnant
women. However, cutoffs are rarely well defined for preg-
nancy, causing spurious results, especially if nutrient deple-
tion progresses rapidly during pregnancy (as with RBC
folate) (51). Hemodilution, especially in the second and third
trimesters, affects how the biomarker measurements are inter-
preted, and the cutoffs used for nonpregnant women may
therefore not be appropriate for pregnant women (53, 54).

Another challenge with selecting cutoffs for certain pop-
ulations (such as pregnant women) is the size of the sample
from which the cutoff is derived. Even in large surveys, such
as NHANES, samples stratified by trimester or even preg-
nancy status are relatively small, thereby further restricting
the statistical power of drawing meaningful conclusions.
Hence, samples should only be stratified when the popula-
tion subgroups are adequately represented (42).

Using different cutoffs for individuals or populations
with different characteristics might be appropriate when the
absolute difference among groups in the biomarker mea-
surement is greater than a moderate level of analytical
measurement error (55). For example, when serum zinc
concentrations were reanalyzed from NHANES II (1976–
1980) data, the authors proposed different cutoffs for differ-
ent sexes, ages, and time/fasting status for serum zinc con-
centrations because there was a meaningful difference
above and beyond the coefficient of variation between
groups (55).

Utility of cutoffs based on user needs. Cutoffs chosen
can vary based on user needs. The cutoffs selected for a

TABLE 1 Trigger levels (cutoffs) for SF1

SF values below
trigger level,2 %

Transferrin receptor
values above

trigger level,3 % Interpretation

,204 ,10 Iron deficiency not
prevalent

,204 $10 Iron deficiency and
inflammation prevalent

$205 $10 Iron deficiency prevalent
$205 ,10 Iron depletion prevalent
1 Reproduced from reference 46 with permission. SF, serum ferritin.
2 Apply cutoffs by age group.
3 Apply cutoffs recommended by the assay manufacturer until an international refer-
ence standard is available.

4 ,30% for pregnant women.
5 $30% for pregnant women.

FIGURE 3 The concept of reference values and their relation
to reference distribution, reference limits, and reference intervals.
Adapted from reference 8 with permission.
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population may or may not be relevant or applicable in a
clinical setting. For example, an SF cutoff of <15 mg/L is
used for population-level assessments of iron status (for
children older than 5 y and adults) (46). However, a higher
cutoff is often used in clinical settings to diagnose iron defi-
ciency because of the high probability that patients with
higher SF concentrations have iron deficiency (56). Simi-
larly, in a clinical setting, a serum vitamin B-12 cutoff based
on the risk of adverse outcomes might be especially useful
for detecting subclinical vitamin B-12 deficiency (48). How-
ever, using a clinical cutoff for detecting adverse outcomes at
a subclinical level may not be feasible or practical for a
population-level assessment.

Implications of laboratory methods for cutoffs. Using cut-
offs without considering the laboratory method imple-
mented to measure the biomarker is problematic. For
example, Thacher and Clark (57) demonstrated that a single
serum sample assessed as showing adequate vitamin D status
in 1 laboratory had inadequate vitamin D status according to
another, and the difference between the laboratory measure-
ments was up to 17 mg/L. Unfortunately, many studies pub-
lished in the literature do not always indicate the type of
methods and assays used to measure biomarkers, although
many cutoffs are assay-specific. Therefore, caution should
be exercised when extrapolating values to biomarker mea-
surements by other assays or when values from different lab-
oratories are compared. Even when the assay methods are
sufficiently similar, the method of analysis (such as whether
the cells are washed before the assay) affects cutoffs, as in the
case of zinc protoporphyrin, 1 of the biomarkers used to de-
tect iron deficiency (53).

The challenges associated with assay-specific cutoffs were
highlighted in an NHANES III (1988–1994) analysis in
which the population distribution of serum folate was used
to determine deficiency cutoffs using a microbiological assay
(58). These cutoffs were subsequently applied to continuous
NHANES serum folate values measured by immunoassay.
Because the microbiological assay measured all folate forms,
its ranges were;30% higher than the ranges obtained from
the immunoassay. When the cutoffs generated through the
microbiological assay were applied to the results produced
from the immunoassay, the risk of folate inadequacy was ex-
aggerated (58). Calibration equations were therefore applied
to the immunoassay-derived values to determine trends of
time in the United States before and after the implementa-
tion of folic acid fortification.

Another issue that restricts the comparability of data
across different studies is the lack of availability of interna-
tional reference materials for many biomarkers (59). For ex-
ample, soluble transferrin receptor, a useful biomarker for
diagnosing iron deficiency (less affected by inflammation
than SF) lacks assay standardization, which limits the ability
to compare data across different surveys (60–62). Harmo-
nizing international reference materials and initiating open
interactions between laboratories regarding the analysis are
needed so that population prevalence of micronutrient

deficiency (or excess) can be precisely calculated and com-
pared (18, 63). Finally, a common albeit important challenge
is using different cutoff units (15, 64), e.g., a serum folate
cutoff of <4 mg/L in 1 study compared with a <10 nmol/L
cutoff in another. This issue is rampant in the literature,
and manufacturers compound this problem (64).

Biomarkers of vitamin B-12, retinol-binding protein,
and vitamin D as exemplars of cutoff challenges
Vitamin B-12 biomarkers. The inconsistencies in cutoffs
for vitamin B-12 biomarkers in the literature can be attrib-
uted to a variety of factors, including lack of a gold standard,
whether 2 or 3 SDs from a reference range’s mean was used
to set the cutoff, and the population from which the distri-
bution was obtained (17, 20, 48). Table 2 demonstrates how
different cutoffs can affect the prevalence of B-12 deficiency
in an NHANES sample of people aged $60 y with normal
renal function (48). Depending on the cutoff, the prevalence
of vitamin B-12 deficiency was as low as 3% or as high as
26% (65). Similarly, methylmalonic acid cutoffs are quite
variable, and the literature reports cutoffs ranging from
210 to 480 nmol/L, sometimes even within the same labora-
tory methods (20).

The validity of serum vitamin B-12 concentrations as
biomarkers of vitamin B-12 status has been questioned for
some time (66). Approximately 2.5–5.2% of patients diag-
nosed with vitamin B-12 deficiency have spurious normal
values (>148 pmol/L) (48, 66). However,;20–40% of older
adults have low levels of serum vitamin B-12 but no clinical
or metabolic signs of vitamin B-12 deficiency (48, 66). The
mismatch between the serum vitamin B-12 cutoffs and the
presence of deficiency or sufficiency complicates the inter-
pretation of vitamin B-12 status data in populations and
makes comparison difficult.

Retinol binding protein and serum retinol. Retinol bind-
ing protein (RBP) has several inherent advantages over ret-
inol as a biomarker of vitamin A status. However, RBP is not
widely used for assessing vitamin A status at a population
level because of a lack of consensus on the RBP cutoff for
this purpose (67). Over the years, authors of several studies
have proposed cutoffs for RBP that reflect concentrations of
<0.70 mmol/L serum retinol and that ranged broadly from
0.69 to 1.29 mmol/L (67). Because the proposed cutoffs di-
verge greatly, it has not been practical to derive a universally

TABLE 2 Prevalence estimates of vitamin B-12 deficiency using
different cutoffs for serum vitamin B-12 and MMA

Cutoffs
Prevalence estimates for
vitamin B-12 deficiency, %

Serum vitamin B-12, pmol/L
,148 2.9 6 0.2
,200 10.6 6 0.4
,258 25.7 6 0.6

Serum MMA, nmol/L
.376 2.3 6 0.2
.271 5.8 6 0.3
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accepted cutoff for RBP that validly and reproducibly re-
flects a serum retinol concentration of <0.70 mmol/L. Fur-
ther research is needed to establish a relation between serum
retinol concentration and RBP in a wide array of pop-
ulations to demonstrate its validity and reliability before a
universally accepted cutoff for RBP can be proposed (67).

A second challenge is the misclassification bias that re-
sults from the inappropriate usage of biomarker cutoffs. A
study was conducted to compare the proportion of children
aged <5 y that were classified as vitamin A-deficient using 2
different cutoffs in 2 datasets (67). Children were diagnosed
as deficient if the values of serum retinol were lower than
<0.70 mmol/L or <1.05 mmol/L (67). When the serum ret-
inol cutoff of <1.05 mmol/L was applied to both datasets, vi-
tamin A deficiency prevalence was >50%; however, when a
lower cutoff (<0.70 mmol/L) was applied to the same study
subjects, only #15% were vitamin A-deficient (67).

Vitamin D biomarker. In addition to the challenges men-
tioned previously, it is important to consider the functional con-
sequences and policy implications for individuals and for public
health overall when deriving cutoffs. At a population level, the
cutoffs selected affect prevalence estimates, which may have
ramifications for nutrition public policy (7) and decisions about
the course of treatment in clinical settings (48). For example, a
variety of cutoffs are used for vitamin D (in relation to bone
health) that range from 20 to 50 mg/L (68). Many studies
have been using higher cutoffs, and when these values are com-
pared with earlier estimates, it artificially inflates the prevalence
of vitamin D deficiency in the North American population,
possibly resulting in unwarranted clinical interventions (7).

Improving the precision and utility of cutoffs
Cutoffs are developed to provide a dichotomous interpretation
of biomarker outcome measures. If conceptualized graphically,
cutoffs can be conceived as a step function that explains the re-
lation between a continuous covariate and an outcome where
the risk is assumed to be constant up to a certain cutoff, beyond
which it abruptly drops or rises to a new level, where again it
stays constant (13). In reality, however, this is biologically arti-
ficial because the actual risk increases along a continuum as
values move further away from optimal levels. Thus, tension
exists between keeping the cutoffs practical and simple and
capturing the breadth of the information that the biomarker
offers (69).

What avenues can be pursued to improve the precision
and utility of cutoffs? One option is to use the “gray zone”
approach, which entails providing 2 cutoffs that are sepa-
rated by a gray zone (15). In this method, the first cutoff
is chosen to include deficiency with near certainty, and the
second cutoff is chosen to exclude deficiency with near cer-
tainty (70). When the biomarker values fall into the gray
zone (suggesting subclinical deficiency), additional assess-
ment tools can be used to validate the results. This option
results in less loss of information and seems to be more use-
ful than the historically used black or white binary outcome
(15, 70). Even when multiple cutoffs are used, the rules for

choosing them should be determined a priori, clearly de-
fined and justified, and include a 95% CI (15).

The gray zone approach is slowly gaining momentum in
other fields (e.g., anesthesiology) and has thus far been
shown to be efficient (70). It provides flexibility and better
reflects biological systems than the absolute cutoffs. For ex-
ample, with a binary approach, a cutoff value of 148 pmol/L
for serum vitamin B-12 concentration would classify some-
one with a value of 147 pmol/L as having vitamin B-12 de-
ficiency and someone with 149 pmol/L as having adequate
vitamin B-12 status, even if these outputs might simply be
a result of random variability. Both of these values would
fall into the gray zone when a more flexible cutoff approach
is used. Although the gray zone approach does not yield an
absolute diagnosis, it flags people for additional analysis to
make a more precise diagnosis. This approach uses the pre-
cious resources more efficiently than would have been oth-
erwise used to administer an intervention to individuals
who did not need it.

Conclusions
Cutoffs provide benchmarks against which clinical- and
population-level interventions, surveillance, and surveys
are measured. When cutoffs are inconsistent, it questions ev-
erything else it measures. Over the years, the WHO has
played a lead role in developing and validating population-
level cutoffs for many nutritional biomarkers, and US gov-
ernment agencies such as CDC have been partners in these
efforts. The Institute of Medicine is another key player in
this sphere. Table 3 provides a list of research gaps and pri-
orities for the cutoff agenda specific to nutritional bio-
markers. The nutrition community should support these

TABLE 3 List of research gaps and priorities for cutoffs
pertaining to nutritional biomarkers1

Harmonize cutoffs for commonly used nutritional biomarkers that
have not yet been validated by the WHO (e.g., serum
vitamin B-12, 25-hydroxyvitamin D, MMA, RBP).

Identify and develop reliable, harmonized assays and accepted
reference materials (e.g., assay measurements for sTfR).

Examine the use of different micronutrient deficiency
cutoffs depending on the different inflammatory states (71).

Validate cutoffs derived from cross-sectional studies
(e.g., NHANES) with those derived using large prospective studies.

Compare statistically derived cutoffs with those developed
based on clinical signs of deficiency/excess and
substantiate the similarities or differences.

Harmonize the use of cutoffs for different age groups,
sex, race/ethnicity, life stage such as pregnancy, lactation,
and population with diverse genetic endowments.

Develop cutoffs for emerging biomarkers [e.g., development
of metallothionein in mRNA analyses in lymphocytes
as a biomarker of zinc status (72)].

Validate trigger levels for population-based surveys.
Conceptualize other methods similar to the gray zone
approach to capture continuous biomarker data in a
simple yet valid and reliable way.

1 MMA, MMA, methylmalonic acid; RBP, retinol-binding protein; sTfR, soluble transfer-
rin receptor.
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efforts in a unified way and consistently use the cutoffs val-
idated by the WHO and other normative agencies.

Huge challenges and opportunities await those involved
in the development of reference limits and cutoffs, especially
with the advent of new technologies such as lab on a chip,
genomics, and proteomics. The field has been progressing
rapidly, and more advances are yet to come (42). In this
era of rapid change, it is the responsibility of the nutrition
community to address the remaining gaps to move the sci-
ence forward while using the available knowledge to provide
guidance for programs and policies today.
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