
REVIEW

Human Milk Components Modulate
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ABSTRACT

Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several

bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble

cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (a2,3) lactose and

lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance.

Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and

sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 29-fucosyllactose attenuate TLR4 signaling; 39-galactosyllactose inhibits TLR3

signaling, and b-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis.

Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many

gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. Adv Nutr 2016;7:102–11.
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Introduction
Human milk is a putative innate immune system
Providing milk to their infants via the mammary gland is a
major evolutionary advantage for mammals to increase sur-
vival of their offspring (1). As a food, human milk nutrients
are in quantities and proportions that support rapid brain,
enteric, and immunologic development of term neonates.
More recent research on the thousands of distinct bioactive
molecules of human milk, many of them indigestible, is in-
creasing recognition of the importance of human milk in
modulating innate immune signaling to exposure by unfamil-
iar microbes. These bioactive components function to protect
infants against infection and inflammation, and contribute to
healthy microbial colonization of the neonatal intestine, im-
mune maturation, and organ development (2). These consid-
erations lead to the hypothesis that human milk is an innate
immune system whereby breastfeeding mothers protect their
offspring (3, 4) through 3 major innate immune functions: 1)

the inhibition of pathogen binding, 2) prebiotic activity, and
3) immune regulation and modulation of inflammation.

Because of their structural homology to host cell surface
receptors, human milk glycans inhibit the binding of path-
ogens to their mucosal cell surface receptors, the first crucial
step of pathogenesis. Human milk, especially colostrum,
contains abundant glycans that inhibit such binding by Esch-
erichia coli, Campylobacter jejuni (5), norovirus (GII.4 and
GII.10), HIV, rotovirus, and toxins, including cholera toxin,
E. coli stable toxin and labile toxin, and Shiga-like toxin (6, 7).

In addition to inhibiting pathogen binding, a negative event,
humanmilk components can stimulate intestinal colonization, a
positive event. Despite the inoculum of vaginal and fecal micro-
biota during delivery, the numbers and diversity of microbes in
the neonatal intestine are low (8). The humanmilk microbiome
(9, 10), maternal skin, and themother’s saliva provide additional
inocula, whereas humanmilk oligosaccharides (HMOSs)5 selec-
tively promote development of mutualist intestinal microbiota
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communities (11). HMOSs, like other prebiotics, are dietary
carbohydrates that essentially are not digested and arrive intact
in the distal intestine, where they selectively support growth of
mutualist bacteria such as Bifidobacterium bifidum in vitro
(12). The resulting beneficent community of microbes, the in-
testinal microbiota, communicates with the mucosa to regulate
the intestinal immune system and support homeostasis (13–15).
In breastfed preterm babies and in animal models (16, 17), pre-
biotics improve fecal quality, reduce the risk of gastrointestinal
infection, and decrease the incidence of allergic symptoms
(11, 18). The synergy between pathogen inhibition and prebiotic
activity provides resilience to a spectrum of insults that is further
reinforced by inhibition of inflammation per se.

The immature intestinal mucosa is prone to exaggerated
responses to proinflammatory stimuli, increasing the risk of
inflammatory pathology in the neonatal intestine (19). Dur-
ing pregnancy, T helper 2 responses prevent adverse immu-
nologic reactions between the mother and her fetus (20).
Thus, the immature neonatal intestine, relative to the ma-
ture intestine, contains fewer total T cells, which are skewed
toward a Th2 bias (21). Innate inflammatory genes, such as
nuclear transcription factor kB (NFkB), myeloid differen-
tiation primary response 88 (MYD88), toll-like receptor
(TLR) 2, TLR4, and TNF receptor–associated factors (TRAF),
are overexpressed, and negative feedback regulator genes
are underexpressed (19), resulting in the neonatal’s mu-
cosa being overly sensitive to bacterial infection and food
allergy (22).

Human milk contains classic innate immune effectors,
such as antibodies (20, 23), cytokines (24, 25), and cells
(26, 27), reducing exposure to antigens, modulating the re-
sponse to these antigens, and enhancing development and
maturation of the immature immune system. Moreover, hu-
man milk glycoconjugates modulate expression of immune
signaling genes, repress inflammation at the mucosal surface
(28), alter leukocyte function, and modulate cytokine and
TLR expression in intestine epithelial cells.

Human milk components regulate TLRs
Eleven members of the TLR family are found in humans
(29), and they play central roles in innate immune signaling
(Figure 1A). TLRs are the major pattern recognition recep-
tors of the innate immune system, and recognize a wide
range of pathogen-associated molecular patterns (PAMPs)
that are expressed by microorganisms (29, 30). After recog-
nizing and binding a specific PAMP, each of the TLRs initi-
ates inflammatory signaling through NF-kB. These signaling
cascades result in the secretion of proinflammatory factors
that recruit immune cells, neutrophils, and macrophages,
eventually leading to clear pathogens in infected individuals
(29) (Figure 1B). Commensal bacterial PAMPs have struc-
tures that are different from those of pathogen PAMPs;
not only are they tolerated by TLRs (31–33), but TLR rec-
ognition of commensal microflora is required for intestinal
homeostasis. For example, microbiota cues transduced
by TLRs stimulate circadian clock expression of genes con-
taining retinoic acid receptor–related orphan receptor a

(RORA) or NR1D1 (nuclear receptor subfamily 1, group
D, member 1) gene (REV-ERBa) (34–36), which, in turn,
can influence microbiota colonization (Figure 1B). Also,
pioneer bacterial colonization stimulates extracellular signal-
regulated kinase (ERK) and c-Jun N-terminal kinase sig-
naling pathways. Amplified ERK and c-Jun N-terminal
kinase results in elevation in nuclear transcription factors
activating transcription factor 2 and phosphorylated c-jun
(p-c-jun), respectively, which induce fucosyltransferase 2
(FUT2) gene transcription. At the intestinal mucosa surface,
FUT2 gene activation leads to fucosylation of surface pro-
teins, including TLR4; the formation of this highly fucosy-
lated niche in the intestinal mucosa promotes further
colonization by microbiota that utilize fucose (37).

TLRs also recognize damage-associated molecular pat-
terns (DAMPs), endogenous signals from damaged tissue.
DAMP binding to TLR4 activates a p53/MYD88–independent
pathway that mediates crypt proliferation, promoting wound
healing (38). But if damage is excessively frequent, prolonged,
or elevated, DAMP activation of distinct signaling pathways,
such as TLR4 activation of the b-catenin or Wnt signaling
cascade, can promote intestinal neoplasia (39, 40) (Figure 1B).
Aberrant expression of TLRs is associated with risk of disease
(41). TLR expression and TLR signaling pathway activation
are potential therapeutic targets for treatment of inflamma-
tory diseases (42).

Relative to term infants or adults, preterm infants express
higher concentrations of TLRs, which are associated with a
higher risk of neonatal sepsis or necrotizing enterocolitis
(NEC) (19, 43). The components of human milk that mod-
ulate TLR receptor expression or signaling, summarized in
Table 1, show promise for suppressing the inflammation as-
sociated with neonatal sepsis and NEC. There are 2 groups
of TLR modulatory human milk components. One group
includes lacto-N-fucopentaose III (LNFP III) and sialyl
(a2,3) lactose (3SL), which increase TLR signaling, possibly
toward immunologic balance. Another group includes the
preponderance of human milk bioactive components, such
as soluble toll-like receptors (sTLRs), soluble cluster of differ-
entiation (sCD) 14, lactadherin and lactoferrin, b-defensin 2,
and several oligosaccharides, which depress TLR signaling.
This quenches inflammation at the mucosal surface, con-
tributing to the overall anti-inflammatory activity of human
milk. The specific TLR signaling pathways that can be mod-
ulated by these bioactive human milk components are sum-
marized in Figure 2.

sTLRs and sCD14. The responses of membrane-bound
TLRs to agonist ligands can be amplified or suppressed by
soluble isoforms. For example, sTLR4 from human saliva
blocks the interaction between TLR4 and its coreceptors, in-
hibiting formation of their active complexes, thereby reduc-
ing TLR4 signaling. sTLR4 can modulate TNF-a secretion
through macrophage-like cells (47). In fish, sTLR5 inhibits
the acute phase reaction induced by flagellin (50). TLR2 rec-
ognizes a wide array of cell-wall microbial ligands across
broad groups of species, including lipopolysaccharides
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FIGURE 1 TLRs play critical roles in gastrointestinal inflammatory disorders at the mucosa. Major TLR signaling pathways (A). TLR
signaling mediates major biological functions at the mucosal epithelium (B). PAMPs from pathogens bind TLRs and activate MYD88-
dependent pathways, stimulate proinflammatory secretions, and recruit immune cells to the site of infection, where immune cells
remove cellular debris and restrict new invasion. Through TLRs, bacteria control epithelial cell gene expression, and epithelial cell
products shape the composition of the microbiota. TLRs recognize DAMPs, which are signal molecules released during cell injury and
by cancer cells. DAMPs activate TLRs and the p53/TRIF–dependent notch signaling pathway, promoting the epithelial cell proliferation
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from Gram-negative bacteria (62), peptidoglycan, lipotei-
choic acid and lipoprotein from Gram-positive bacteria
(63, 64), lipoarabinomannan from mycobacteria (65), and
zymosan from yeast (66). TLR2 expression is elevated in a
neonatal rat model of NEC (67, 68). Therefore, TLR2 antag-
onists may suppress inflammation.

Human milk sTLR2 occurs in 6 isoforms from 20–85
kDa (44). In vitro, human milk sTLR2 is capable of modu-
lating TLR2 signaling activation by bacterial lipopeptide
(69). The major function of sTLR2 is for its ectodomain
to act as a decoy receptor, suppressing TLR2 activation,
thereby decreasing IL-8 and TNF-a release (45). sTLR2 re-
duces inflammation by disrupting TLR2 triggering without
compromising bacterial clearance (69).

TLR2 and CD 14 can physically interact and are some-
times coexpressed. CD14 has 2 forms: membrane CD14
and sCD14. sCD14 (molecular weight 48 kDa) was detected
in human milk at a concentration of 53 6 24 mg/mL,
10-fold higher than that in plasma (46). Milk sCD14 mediates
microbial recognition in the neonatal intestine (46). How-
ever, in tissues distant from the site of inflammation, circu-
lating sCD14 exhibits anti-inflammatory effects (46). The
overall role of human milk sCD14 in infant homeostasis re-
mains an enigma.

Glycoproteins Human milk contains glycoproteins that can
regulate TLR4 signaling. Several PAMPs stimulate TLR4, in-
cluding lipopolysaccharide, the fusion protein of respiratory
syncytial virus, and the envelope protein from mouse mam-
mary tumor virus (70). TLR4 binding to lipopolysaccharide,
a structural protein of the Gram-negative bacterial cell wall,
initiates the MYD88-dependent signaling pathway, leading
to activation of NF-kB and proinflammatory secretions. Ex-
cessive signaling from lipopolysaccharide activation can in-
duce systemic inflammation and sepsis (71). Increased TLR4
expression was detected in a neonatal rat NEC model (67,
68) and tissues from NEC patients (72).

Lactadherin, a 46 kDa mucin-associated glycoprotein of
the milk fat globule membrane, binds specifically to ro-
tavirus, inhibits rotavirus replication, and protects against
symptoms of rotavirus infection (73). The intrinsic endoge-
nous activities of lactadherin include promotion of mucosal
wound healing and attenuation of intestinal inflammation
in vivo and in vitro (51, 52, 74, 75). Lactadherin induces
IL-10 and TGF-b release from regulatory T cells and pro-
motes intestinal dendritic cell development (51). Lactad-
herin enhances the ability of macrophages to phagocytize

apoptotic cells, thereby ameliorating inflammatory process
induced by NF-kB and mitogen-activated protein kinase
(53). Moreover, lactadherin activates the signal transducer
and activator of transcription 3–suppressor of cytokine sig-
naling 3 pathways, directly quenching lipopolysaccharide-
induced TNF-a production (51–53).

Lactoferrin (molecular weight ;75–90 kDa) is a major
glycoprotein in human milk, and it is found at its highest
concentrations (5–6.7 g/L) in colostrum (76). Lactoferrin
exhibits many disparate activities, including iron binding,
antibacterial and antiparasitic activity, and stimulating pro-
liferation and differentiation of intestinal epithelial cells (48,
77, 78). Lactoferrin, by virtue of its glycans, is prebiotic, pro-
moting colonization by beneficial bacteria, thereby limiting
pathogen colonization of the intestinal tract (79, 80). Lacto-
ferrin strongly inhibits inflammatory cytokine production at
local sites of inflammation of the gastrointestinal tract (81).
In vivo, lactoferrin protects against intestinal infection and
inflammation (82). In very-low-birth-weight (VLBW) and
extremely-low-birth-weight (ELBW) preterm infants, oral
administration of lactoferrin reduces the risk of late-onset
sepsis (83). Although treatment with lactoferrin in vitro
can activate TRAF 6–dependent NF-kB, a TLR4 proinflam-
matory signaling pathway, lactoferrin simultaneously in-
hibits the ability of lipopolysaccharide binding protein to
adhere to TLR4; the net result is that lactoferrin inhibits lipo-
polysaccharide-stimulated TLR4 signaling and depresses
endotoxemia (54, 55).

Among the many glycoproteins of human milk are also
an unidentified component of molecular weight >80 kDa
that, in vitro, elevates concentrations of IL-8, IL-6, and
TNF-a in a TLR4-dependent manner (56). That notwith-
standing, the overall activity of human milk is strongly
anti-inflammatory.

b-defensin 2. Human milk contains small bioactive pep-
tides, including defensins; of these, b-defensin 2 affects
TLR signaling. b-defensin 2 is present at;8.5 mg/mL in co-
lostrum and ;1 mg/mL in mature milk, and it displays
broad antimicrobial activity against pathogenic bacteria
(84). This suggests that the presence of b-defensin 2 in
milk may help defend both the mammary gland and the in-
fant intestine. The b-defensin 2 supplied by milk can be aug-
mented by b-defensin 2 from the mucosa, and mucosal
release of b-defensin 2 can be further elicited by human
milk hyaluronan. b-defensin 2 enhances TLR4/CD44–
dependent intestinal epithelial defense against pathogens

involved in regeneration after mucosal injury. TLR activation by PAMPs or DAMPs can activate COX-2, PGE2, EGFR, Wnt, and b-catenin
signaling, promote epithelial cell proliferation, but the growth mediated by these pathways can also lead to tumorigenesis. CD,
cluster of differentiation; COX-2, cyclooxygenase 2; DAMP, damage-associated molecular pattern; EGFR, epidermal growth factor receptor;
IkB, inhibitor of NF-kB; IRAK, interleukin 1 receptor–associated kinase; IRF, interferon regulatory factor; MD2, lymphocyte antigen 96; MYD88,
myeloid differentiation primary response 88; PAMP, pathogen-associated molecular pattern; SIGIRR, single immunoglobulin and toll–
interleukin 1 receptor; ST2, iterleukin 1 receptor-like 1; TAK, TGF b activated kinase; TBK, TRAF family member-associated NF-kB activator
binding kinase; TIRAP, toll-interleukin 1 receptor domain–containing adaptor protein; TLR, toll-like receptor; TRAF, tumor necrosis factor
receptor–associated factor; TRAM, translocation-associated membrane protein; TRIF, TIR domain–containing adapter-inducing interferon b.
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(85). For example, low concentrations of b-defensin 2 are
associated with lower TLR4/lymphocyte antigen 96 concen-
trations and more severe NEC (86). In addition, human
milk b-defensin 2 suppresses TLR7 expression in breast
and colon epithelial cells (57). TLR7, expressed in endo-
somes, is stimulated by single-stranded RNA, and during a
virus infection TLR7 mediates signaling that leads to release
of IFN, the innate immune response to viral attack (87).
High TLR7 expression occurs in a rat NEC-like model
(68). The ability of b-defensin 2 to inhibit TLR7 leads to
the hypothesis that b-defensin 2 in milk may contribute to
a decrease in the long-term risk of gastrointestinal inflam-
matory diseases in the breastfed infant and a reduced risk
of breast cancer in mothers who had breastfed (57).

HMOSs. HMOSs, a heterogeneous mixture of complex car-
bohydrate structures appended to a lactose or a polylac-
tosamine backbone, are the third most abundant solid
component of human milk (6). The HMOSs are composed
of at least 200 individual oligosaccharides and exhibit the
biological activities of human milk. HMOS preparations
stimulate immune-modulatory activity on the neonatal in-
testinal mucosal surface (88–91) and modulate cytokine
production (58, 92–95). Colostrum HMOSs modulate
TLR3-, TLR5-, and IL-1b–dependent PAMP signaling path-
ways, depressing acute phase inflammatory cytokine protein
expression and elevating cytokines involved in tissue repair
and homeostasis (58). One oligosaccharide found in espe-
cially high concentrations in colostrum compared with
mature milk, 39-galactosyllactose, specifically quenches poly-
inosine-polycytidylic acid (ligand for TLR3)–induced IL-8
concentrations (58).

29-Fucosyllactose, representing ;30% of total HMOSs
from most human milk, inhibits binding and infection of
several distinct enteropathogens. Many human pathobionts
bind to human mucosal surface receptors that terminate in

a1,2-linked fucose as their essential first step of pathogene-
sis; 29-fucosyllactose competitively inhibits this binding and
protects against infection (5). Moreover, 29-fucosyllactose
depresses CD14 mRNA levels and reduces membrane-
bound CD14, a coreceptor of lipopolysaccharide. This at-
tenuates lipopolysaccharide-induced inflammation during
infection by type I pili E. coli, including adherent and inva-
sive E. coli, enterotoxigenic E. coli, and uropathogenic
E. coli (3).

LNFP III is an oligosaccharide that contains the Lewis X
epitope. LNFP III promotes the recruitment of suppressor
macrophages and maturation of the dendritic cell 2 pheno-
type, releasing IL-4 and IFN-g, which foster Th2 responses
(59). The immune-modulatory activities of LNFP III that
are mediated through TLR4 signaling include the activation
of ERK and mitogen-activated protein kinase signaling path-
ways (59). LNFP III binds the dendritic cell–specific inter-
cellular adhesion molecule 3–grabbing nonintegrin and
inhibits HIV-1 transfer to CD4+ T lymphocytes (96).

In contradistinction to most other HMOSs, 3SL is re-
ported to exhibit proinflammatory characteristics (60).
3SL stimulation of mesenteric lymph node CD11c+ den-
dritic cells causes the release of cytokines that expand Th1
and Th17 T cell populations. This modulation by 3SL is me-
diated through TLR4 signaling (60).

Other individual HMOSs that suppress inflammation of
the intestinal mucosa have been identified. For example,
disialyllacto-N-tetraose suppresses NEC-like inflammation in
neonatal rats (61), but whether the mechanism involves
TLRs is not known. Overall, the biological activities reported
for HMOSs are predominantly the attenuation of inflamma-
tory signaling and processes.

Other milk components. In some investigations, human
milk decreased TLR2 and TLR3 signaling but increased
TLR4 and TLR5 signaling. The components responsible

TABLE 1 Human milk components modulate TLR signaling1

Molecules in human milk
Identified
in milk TLR signaling pathways modulated References

sTLR signal pathway inhibitors
sTLR2 Yes Anti-inflammatory via TLR2 (44, 45)
sCD14 Yes Anti-inflammatory via TLR2/4 (46, 47)
sTLR4 No Anti-inflammatory via TLR4 (48, 49)
sTLR5 No Anti-inflammatory via TLR5 (50)

Glycoproteins
Lactadherin Yes Anti-inflammatory (TLR4) (51–53)
Lactoferrin Yes Anti-inflammatory via TLR4 (54, 55)
Unknown protein (.80 kDa) Yes Proinflammatory via TLR4 (56)

Peptides
β-defensin 2 Yes Anti-inflammatory via TLR7 (57)

Oligosaccharides
39-GL Yes Anti-inflammatory via TLR3 (58)
29-GL Yes Anti-inflammatory via TLR4 (CD14)/STAT3/SOCS2 (3)
LNFP III Yes Proinflammatory via TLR4/ ERK/MAPK (59)
3SL Yes Proinflammatory via TLR4 (60)
DSLNT Yes Anti-inflammatory; TLR targets not known (61)

1 CD, cluster of differentiation; DSLNT, disialyllacto-N-tetraose; ERK, extracellular signal-regulated kinase; LNFP III, lacto-N-fucopenaose III; MAPK, mitogen-
activated protein kinase; sCD, soluble cluster of differentiation; SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator of tran-
scription; sTLR, soluble toll-like receptor; TLR, toll-like receptor; 29-FL, 29-fucosyllactose; 39-GL, 39-galactosyllactose; 3SL, sialyl (a2,3) lactose.
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for these activities and their mechanisms of TLRmodulation
remain unknown (56). Isolation of the active components
and mechanistic studies that follow from the availability of
pure effector molecules may allow additional TLR modula-
tors to be identified from human milk. Molecules of human
milk whose oral consumption modulates intestinal inflam-
matory disorders have strong potential to yield clinically
useful prophylactic and therapeutic agents.

Translating Findings on TLR Regulators into
Treatments for Neonatal Inflammatory
Diseases
NEC
In VLBW (<1500 g) and ELBW (<1000 g) preterm infants,
NEC and sepsis are the 2 most prevalent gastrointestinal
medical emergencies. The incidence of NEC was 7%, and
the mortality rate of infected neonates was as high as 20–
30% (97). Preterm infants fed donor human milk have a
58% lower incidence of NEC relative to those fed a cow
milk–based formula (98); likewise, those receiving their
mothers’ own milk exhibited a 77% lower risk of NEC rel-
ative to those fed formula (99). The likelihood of NEC

decreased by a factor of 0.83 for each 10% increase in
the proportion of total intake as human milk (100). In a
cohort of 1272 ELBW infants, the feeding of human
milk was associated with a reduction in the risk of NEC
or death within the first 2 wk of life in a dose-dependent
manner (100). A meta-analysis from 4 small clinical trials
revealed that infants receiving human milk have one-
quarter of the risk of developing clinically confirmed
NEC and one-third of the risk of developing any NEC as
infants fed formula (101).

Consensus on the underlying etiology of NEC has not yet
been achieved. A prevalent hypothesis for NEC pathogenesis
is that abnormal intestinal colonization provokes an inap-
propriately heightened inflammatory response in the imma-
ture intestinal epithelium (58). Increased concentrations of
proinflammatory cytokines are found in intestinal samples
from NEC patients (102), suggesting that they play an im-
portant role in the pathobiology of NEC. Elevated TLR acti-
vation results in increased concentrations of cytokines in
infants (19). An experimental rat model of NEC overex-
presses the majority of TLRs in the ileum: TLR2 and TLR4
concentrations were highly upregulated; TLRs 1, 3, 7, and

FIGURE 2 Human milk
components that modulate TLRs. To
date, several human milk
components have been identified
that modulate TLRs. Human milk
components that suppress TLR
signaling include sTLR2 and sCD14,
which dampen TLR2 signaling;
sCD14, lactadherin, lactoferrin, and
29-FL, which attenuate TLR4
signaling; 39-GL, which suppresses
TLR3 signaling; and b-defensin 2,
which inhibits TLR7 signaling.
Human milk depresses TLR5
signaling, but the molecule
responsible remains unknown.
Human milk components that
simulate TLRs include LNFP III, which
promotes the Th2 response; 3SL,
which stimulates CD11C+ dendritic
cells; and a large protein (.80 kDa)
that stimulates cytokine release, all of
which act through TLR4 signaling.
CD, cluster of differentiation; LNFP III,
lacto-N-fucopentaose; sCD, soluble
cluster of differentiation; sTLR,
soluble toll-like receptor; Th, T helper;
TLR, toll-like receptor; MW, molecular
weight; 29FL, 29-fucosyllactose; 39GL,
39-galactosyllactose; 3SL, sialyl (a2,3)
lactose.
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9 were moderately elevated; TLR6 was slightly elevated; and
TLR5 expression was suppressed (67, 68). Other data from
human, rat, and murine tissues also support the association
between TLR expression and the onset of NEC (72, 103,
104). Among the most common bacterial PAMPs observed
in NEC patients are lipopolysaccharides, the primary lig-
and of TLR4 (44). Thus, the role of TLR4 in NEC is under
intense investigation (19, 47, 63, 67, 103–109). TLR4 ex-
pression in the rat intestinal mucosa increases during
hypoxia and exposure to lipopolysaccharide (67, 72),
whereas in mice, TLR4 expression increases, but that of
TLR9 decreases (104). Mice deficient in TLR4 expression
have, along with a reduced proinflammatory response, a
lower propensity toward NEC (105). In view of these data,
TLR4 has been proposed as a primary target for NEC
treatment (110).

Human milk components known to regulate TLR4 in-
clude lactoferrin (Figure 2). Because lactoferrin also ex-
hibits many other protective functions at the mucosal
surface, it is a major candidate for NEC therapeutics, and
it and its derivatives have proceeded to clinical trials
(111). For example, after wide testing in vitro and in
vivo, talactoferrin, a human recombinant lactoferrin, was
granted investigational new drug status from the FDA (112).
Clinical trials have been undertaken in VLBW Turkish
neonates to test the efficacy of bovine lactoferrin for the
prevention of NEC (111).

Neonatal sepsis. Another major cause of neonatal death is
sepsis, a systemic infection that causes tissue injury and
inflammation. Neonatal sepsis is classified into 2 types:
early- and late-onset. Early-onset sepsis, mostly caused by
the maternal intrapartum transmission of invasive orga-
nisms, initiates at <3 d of life and has an incidence of
;0.77 cases per 1000 live births in North America, with a
mortality rate of 24% (112). Late-onset sepsis initiates at
>3 d of life, with VLBW premature infants being at highest
risk, and has a death rate of ;36% (113). The high risk of
sepsis in the neonate is commonly attributed to its hyperin-
flammatory immature immune system, in combination with
abnormal colonization by pathogens: group B streptococcus
and E. coli are more associated with early-onset sepsis
(114), and coagulase-negative staphylococci, Gram-negative
bacilli and fungi are more associated with late-onset sepsis
(115). As the number of multidrug resistant Gram-negative
microorganisms increase in neonatal intensive care units
(116), treating neonatal sepsis with broad-spectrum antibi-
otics is becoming problematic, and novel drugs are needed.
Drugs that would target TLR signaling seem especially
promising as a potential new generation of therapies against
neonatal sepsis.

Targeting TLR signaling follows from the postulate that
exaggerated proinflammatory signal pathway activation by
TLR recognition of PAMPs is central to the pathogenesis
of neonatal sepsis. Polymorphisms in TLR2 and TLR5 are
associated with preterm sepsis (115). Blood phagocytic cells
in neonates that have already initiated neonatal sepsis

express elevated concentrations of TLR2 (117). Twenty-
four hours after sepsis was induced in mice by cecal ligation
and puncture, TLR2 and TLR4 gene transcription and ele-
vated TLR4 protein translation were apparent in the liver,
lung and spleen, and the degree of expression was correlated
with mortality (118). Mice with lethal sepsis by Gram-
negative bacteria are protected by anti-TLR4 antibodies, illus-
trating that TLRs could be promising therapeutic targets
(119). Initiation of breastfeeding within 1 h after birth
reduces the incidence of sepsis in neonates at high risk
(120). Bioactive milk components that are under investiga-
tion include bovine lactoferrin. The multiple activities of
lactoferrin includes repression of TLR4 signaling, and
lactoferrin administration reduces the risk of the first episode
of culture-proven late-onset sepsis in low-birth-weight neo-
nates from 13% to 3% (121). Thus, lactoferrin and other
human milk components known to modulate TLR expres-
sion or activity show promise as orally administered benign
agents for prophylaxis and therapy against inflammatory
conditions of neonates.

Conclusions
TLR signaling is central to innate immunity, and neonatal
inflammatory diseases involve the loss of TLR signaling ho-
meostatic control. Human milk contains components, in-
cluding sTLRs, sCD14, glycoproteins, small peptides, and
oligosaccharides, that modulate the immune system and
suppress inflammation. In contradistinction, 3SL, LNFP
III, and a glycoprotein of >80 kDa increase TLR signaling,
but these could contribute toward balancing complex signal-
ing networks of the innate immune system. Beyond initiat-
ing inflammatory processes through NF-kB cascades, TLRs
also function in mucosal homeostasis and inflammation
through the activation of innate and adaptive immunity,
promotion of cell proliferation, maintenance of the mucosal
intestinal epithelial barrier, and coordination of mucosal
homeostasis. Human milk on the whole is strongly anti-
inflammatory. sTLR2 and sCD14 inhibit TLR2 signaling;
sCD14, lactadherin, lactoferrin, and 29-fucosyllactose in-
hibit TLR4 signaling; 39-galactosyllactose inhibits TLR3 sig-
naling, and b-defensin 2 inhibits TLR7 signaling, thereby
quenching inflammation at the mucosal surface. Feeding
human milk to neonates decreases their risk of sepsis and
NEC. TLR regulatory components in human milk hold
promise as benign oral prophylactic and therapeutic treat-
ments for the many gastrointestinal inflammatory disorders
mediated by abnormal TLR signaling. Their molecular char-
acterization and synthesis will allow preclinical and clinical
studies to test their efficacy for the prevention or ameliora-
tion of NEC, neonatal sepsis, inflammatory bowel diseases,
and other gastrointestinal inflammatory disorders of diverse
etiologies.
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