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Abstract

Understanding how assemblages of species responded to past climate change is a central goal of 

comparative phylogeography and comparative population genomics, an endeavor that has 

increasing potential to integrate with community ecology. New sequencing technology now 

provides the potential to perform complex demographic inference at unprecedented resolution 

across assemblages of non-model species. To this end, we introduce the aggregate site frequency 

spectrum (aSFS), an expansion of the site frequency spectrum to use single nucleotide 

polymorphism (SNP) datasets collected from multiple, co-distributed species for assemblage-level 

demographic inference. We describe how the aSFS is constructed over an arbitrary number of 

independent population samples and then demonstrate how the aSFS can differentiate various 

multi-species demographic histories under a wide range of sampling configurations while allowing 

effective population sizes and expansion magnitudes to vary independently. We subsequently 

couple the aSFS with a hierarchical approximate Bayesian computation (hABC) framework to 

estimate degree of temporal synchronicity in expansion times across taxa, including an empirical 

demonstration with a dataset consisting of five populations of the threespine stickleback 

(Gasterosteus aculeatus). Corroborating what is generally understood about the recent post-glacial 

origins of these populations, the joint aSFS/hABC analysis strongly suggests that the stickleback 

data are most consistent with synchronous expansion after the Last Glacial Maximum (posterior 

probability = 0.99). The aSFS will have general application for multi-level statistical frameworks 

to test models involving assemblages and/or communities and as large-scale SNP data from non-

model species become routine, the aSFS expands the potential for powerful next-generation 

comparative population genomic inference.
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INTRODUCTION

Comparative population genetics, also known as comparative phylogeography, uses 

aggregate population genetic data collected from regional assemblages to make historical 

demographic inference about how co-distributed taxa responded to landscape 

reconfigurations and/or climate change or how stable species associations have been across 

time and space. These comparative studies range from investigating shared histories of hosts 

with their pathogens (Perkins 2001; Holmes 2008; Wicker et al. 2012), multiple co-invading 

species (Sax et al. 2007; Johnson et al. 2009), simultaneous historic domestications (Wu et 

al. 2007; Kanginakudru et al. 2008), and the assembly of whole communities across 

geographic barriers or from trajectories of northward expansion occurring after the Last 

Glacial Maximum (LGM) (Avise et al. 1987; Hewitt 1996, 2000; Avise 2000). Although 

sometimes employing wide taxonomic sampling, such studies have been typically limited to 

using the easily obtainable mitochondrial or chloroplast DNA and only a handful of nuclear 

loci if any other additional loci at all (Taberlet et al. 1998; Soltis et al. 2006; Lorenzen et al. 

2012). While this level of genetic sampling may be appropriate for the scope of certain 

questions, studies exploring the impact of historical events in shaping modern-day regional 

patterns of genetic diversity and community assembly would assuredly benefit from the 

increased resolution afforded by both next-generation sequencing, which allows sub-

genomic samples across individuals from multiple taxa (Adams & Hudson 2004; Felsenstein 

2006; Robinson et al. 2014a), and widespread taxonomic sampling (Smith et al. 2014). Such 

aggregate population sub-genomic data offer more power to detect a shared demographic 

history for a group of species and/or populations that responded in common to a singular 

event, such as joint domestication of several plants and/or animals (Cao et al. 2014), whole 

biotas expanding during the late Pleistocene (Hewitt 1996, 2000), concurrent invasions by 

multiple non-native species (Gurevitch & Padilla 2004), and epidemic spread of a pathogen 

through its hosts and vectors (Biek et al. 2006). On the other hand, complex ecological 

interactions and species-specific attributes (e.g. differential selection pressures/adaptation, 

dispersal abilities, and/or species interactions (Lorenzen et al. 2011)) consistent with more 

complex models of domestication history (Pedrosa et al. 2005; Liti et al. 2009), community 

assembly (Stone et al. 2012), invasion (Macdougall & Turkington 2005; Lejeusne et al. 

2011), or disease dynamics (Beadell et al. 2006; Holmes 2008) could also be better detected 

with comparative population sub-genomic data.

Researchers can now affordably produce population-level sampling of reduced genomic data 

from multiple non-model species (Ekblom & Galindo 2011; Peterson et al. 2012; Toonen et 

al. 2013; Romiguier et al. 2014; Garrick et al. 2015), yet there remains a massive need for 

new analytical tools to accommodate this surge in data volume and complexity (Sboner et 

al. 2011), particularly in the context of testing alternative comparative demographic 

hypotheses under a single unified analysis. There are two important motivations for building 
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and employing a unified, hierarchical approach given aggregate population genomic-scale 

data. First, the use of multi-level models enables formal hypothesis testing of multi-taxa 

histories given multiple datasets while allowing independence in taxon-specific parameters. 

Secondly, a unified, hierarchical approach increases inferential resolution via the 

“borrowing strength” (i.e. pooling strength) that is increasingly gained as more datasets that 

share parameters are combined within a single multi-level analysis to estimate higher-level 

hyperparameters, versus conducting many separate disjointed analyses to estimate each 

taxon-specific parameter independently (Qian et al. 2004; Congdon 2007; Beaumont 2010).

This approach has been achieved within a hierarchical approximate Bayesian computation 

(hABC) framework for inferring synchronous divergence (Huang et al. 2011; Hickerson et 

al. 2014) and synchronous expansion (Chan et al. 2014) given mitochondrial multi-taxa 

datasets, while hABC techniques have also been deployed for other problems such as 

detecting loci under local selection (Bazin et al. 2010). However, there currently exists no 

such method for the analysis of multiple population sub-genomic datasets under a single 

model (but see (Romiguier et al. 2014)). Developing this capability to achieve a pooled 

analysis on population genomic-scale data will greatly advance community-level 

demographic inference, but pooling a large number of population sub-genomic datasets 

within a single hierarchical analysis on the full data is computationally challenging 

(Beaumont 2010), especially when some taxon-specific parameters are allowed to vary 

independently.

To address this challenge, we describe, examine, and deploy a novel multi-taxa genomic 

data summarization, the aggregate site frequency spectrum (aSFS). The aSFS is comprised 

of multiple site frequency spectra (SFS), a commonly used metric also known as the allele 

frequency spectrum (Watterson 1984; Gutenkunst et al. 2009; Lukic & Hey 2012; Excoffier 

et al. 2013), calculated separately for multiple taxa and collated with independence for 

species identity and order. We use coalescent simulations to explore the behavior of this 

aSFS under different multi-taxa expansion scenarios that are meant to mimic late 

Pleistocene demographic expansions. Subsequently, we use the aSFS coupled with cross-

validated hABC to infer the history of synchronous expansion from three lake populations 

and two oceanic populations of Alaskan threespine stickleback (Gasterosteus aculeatus) 

(Hohenlohe et al. 2010). This system involves multiple population samples that experienced 

similar climatic conditions and has a well-understood evolutionary history of post-LGM 

colonization of small lake populations from oceanic populations with subsequent population 

growth in the lake populations.

MATERIALS AND METHODS

Constructing the aSFS

The SFS is a frequency spectrum of single nucleotide polymorphism (SNP) alleles; each 

SNP is placed into the appropriate class given its allele frequency among sampled 

individuals. Assuming polarized data, it is the frequency of the derived allele that is taken 

into consideration when assigning allele frequency classes; otherwise, the frequency of the 

minor allele is used and the spectrum is “folded” (Bustamante et al. 2001). Consequently, 

assuming an “unfolded” SFS, the number of allele frequency classes equals twice the 
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number of sampled individuals minus one (assuming a diploid organism and no 

monomorphic sites) (Nielsen 2005). The aSFS is then constructed by combining an array of 

n SFSs from n different population samples into a single composite SFS, with the number of 

total bins = n * the number of frequency classes. Subsequently, the n bins within each 

frequency class are re-arranged independently (i.e. order of bins within each frequency class 

has no direct bearing on order of bins within other frequency classes) in descending order of 

proportion of total SNPs (i.e. relative SNP proportions rather than total SNP count) (Figure 

1). Due to this ordering scheme, a property of the aSFS is that the initial order of single 

taxon SFSs has no effect on the resulting aSFS, thereby achieving order-independent 

exchangeability across single taxon SFSs and therefore greatly decreasing combinatorial 

sample space across multi-taxa histories with respect to data and parameters (Gelman et al. 

2003). As an example of this aSFS construction, given an aggregate dataset of five species 

and five individual samples each, there would initially be five SFSs of nine bins each, where 

each bin is a proportion of SNPs within that allele frequency class (i.e. singletons, 

doubletons, etc.); in this case, we exclude monomorphic sites and assume diploidy. In this 

aSFS, the first bin (i.e. the singletons) of all five SFSs would be combined, so that there are 

five SFS singleton bins that are re-arranged in descending order. This would form the first 

five entries of the aSFS. This continues for the remaining bins so that there are a total of 45 

entries in the full aSFS for this aggregate dataset.

In addition to this primary construction that we denote here as aSFS1, we also explored three 

additional alternative constructions of the aSFS, including ordering the single taxon SFSs 

based on their overall skewness in ascending order (aSFS2), based on their singleton value in 

descending order (aSFS3), and in random or arbitrary order (aSFS4) (Supporting Materials 

1). For these alternative constructions aSFS2, aSFS3, and aSFS4, the ordering among taxa 

was maintained across all allele frequency classes.

Justification of the aSFS

Given the instantaneous expansion model we used, individual allele frequency classes of the 

expected SFS can be derived analytically as shown in equation (20) in Wakeley & Hey 

(1997). The entirety of the SFS can thus be represented as a set of expected individual allele 

frequency classes from i = 1 → i = N – 1, with N = number of haploid samples, assuming no 

monomorphic allele frequency classes, such that:

(1)

with S = SFS and E(zi) = allele frequency class of i derived alleles out of N. Then, for n 

number of species datasets, there will be n number of SFSs, which can be collated into a set 

such that:

(2)

The expectation of aSFS can be derived by substituting (1) into (2):

(3)
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Individual bins j = 1...n within each of the allele frequency classes i = 1...(N – 1), of which 

exactly one bin belongs to each of the n species respectively, can then be redefined such that 

for each value of i from 1 → (N – 1):

(4)

with sj = total SNP count of species dataset j. This re-ordering based on relative SNP 

proportions does not affect the individual expected values within the set in (3) of the aSFS, 

yet it frees the bins to be independent of any initial ordering of species while allowing an 

objective and unbiased comparison of bins between different aSFS, specifically the observed 

and simulated. Therefore, the analytical derivation of the single taxon expected SFS under 

any particular history of instantaneous expansion is easily extended to the aSFS across 

multiple taxa that have all experienced an instantaneous expansion.

However, in order for the aSFS to be a useful tool for the inference of community 

demographic histories, the variance of the aSFS elements given a set of population 

parameters needs to be low enough for expected aSFS signatures to be correlated with 

different histories that are predicted under competing hypotheses of community assembly 

(i.e. identifiability). The variance of each bin within the aSFS can be obtained through 

standard statistical theory either via Poisson distributions of each individual bin (Sawyer & 

Hartl 1992; Gutenkunst et al. 2009) or a multinomial distribution of the entirety of the aSFS 

(Adams & Hudson 2004; Excoffier et al. 2013). Because determining these variances across 

all combinations of multi-species demographic histories while allowing various nuisance 

parameters to vary independently across taxa is analytically intractable, we statistically 

evaluated simulated aSFS data to discern how the aSFS behaves under different multi-taxa 

histories of various degrees of synchronous expansion.

Multi-taxa expansion model

To simulate data as well as gain inference, we used a hierarchical demographic model 

involving multiple independent taxa, each having undergone separate instantaneous 

expansion sometime in the past (Figure 2). These instantaneous expansions could have 

occurred synchronously due to a shared response to a hypothesized historical event resulting 

in landscape and/or climate change. Within this context, hyperparameters of interest include 

the degree of synchronicity, or proportion of taxa synchronously expanding within a given 

pulse (ζ), the timing of this synchronous expansion pulse (τs), and the dispersion index of all 

expansion times across taxa (Var(τ)/E(τ)). This model can also be extended to have multiple 

pulses of synchronous expansion, the number of which is defined by ψ; in the case of ψ > 1, 

ζ and τs would both be vectorized according to each pulse of synchronous expansion (i.e. 

ζ1, ..., ζψ and τs1, ..., τsψ, respectively). Each of the jth taxa not in a pulse of synchronous 

expansion has an independent, freely varying idiosyncratic time of expansion (τi). Likewise, 

each of all taxa has an independent, freely varying current effective population size (NE) and 

expansion magnitude represented as a fraction of its current size (ε). The sets of τi, NE, and ε 

then each form vectors, and are considered nuisance parameters.
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Simulation study of the aSFS

Coalescent simulations of multi-taxa frequency data were orchestrated using the program 

fastsimcoal2 (Excoffier et al. 2013). The unfolded, derived single taxon SFS with relative 

SNP proportions was simulated directly using the FREQ data setting. These relative 

proportions represent a probability distribution across the bins based on branch length ratios 

of the simulated coalescent gene genealogies given the parameterization. The weighted 

mean of the branch lengths across multiple simulations is used to derive a simulated SFS 

under a specific history (Nielsen 2000). Given that each simulation represents a single gene 

genealogy, the number of simulations could thus be interpreted as a rough proxy for 

genomic sampling intensity (i.e. number of SNPs). For this reason, 25,000 simulations were 

used for each simulated SFS per taxon to approximate the sampling effort for a typical non-

model organism (e.g. a dataset of 25,000 sequence blocks, each with one SNP, produced by 

restriction-site associated DNA sequencing (RAD-seq)). By extension, 25,000 * 5 (125,000) 

simulations would comprise a comparative population dataset of five taxa.

Different sampling schemes were taken into consideration by testing six different levels of ζ 

and ψ given five different numbers of taxa (5, 10, 20, 50, 100) and three different numbers 

of haploid individuals per taxon (10, 20, 50). In total, this equaled 15 separate combinations 

of sampling parameters (Table 1). For each of these sets, six scenarios were simulated: all n 

taxa synchronously expanding (ζ = 1.0), three intermediate levels where a subset of all n 

taxa synchronously expand (0.0 < ζ < 1.0), no taxa synchronously expanding (ζ = 0.0), and a 

scenario involving duo synchronous expansion pulses at two different times with equal 

number of taxa in each (ζ1, ζ2 = 0.5; ψ = 2) (Figure 2; Table 2). For each scenario/sampling 

combination (90 in total), there were 100 replicates, equaling 9,000 simulated multi-taxa 

aSFS datasets in total. For each simulated single taxon SFS within a replicate, parameter 

values were independently drawn from the following distributions: NE ~ U(100,000, 

500,000); ε ~ U(0.01, 0.04); τi ~ ln U(30,000, 200,000) generations ago. For scenarios 

where there was a single synchronous expansion group (ψ = 1), τs = 20,000 generations ago, 

whereas for the scenario involving two different pulses of synchronous expansion (ψ = 2), 

τs1 = 20,000 and τs2 = 50,000 generations ago (Table 3).

The simulated aSFS data were then visualized by way of boxplots and PCA. First, aSFS 

replicates were plotted using the boxplot function in R, with the x-axis containing every 

aSFS bin and the y-axis representing the relative SNP proportion values across the 100 

replicates for that bin. This was done for each of the six synchronous expansion scenarios 

within each of the 15 sampling configurations (Table 1), resulting in six boxplots per 

sampling configuration for a total of 90 boxplots. Secondly, for each sampling 

configuration, all of the aSFSs among the 100 replicates across every one of the six 

synchronous expansion scenarios (totaling 600 aSFSs per sampling configuration) were 

entered into a PCA using the princomp function in R. For the PCA, the covariance matrix 

was used, with each of the 600 replicated aSFSs treated as a separate observation (i.e. rows) 

and each bin of the aSFS treated as a separate variable (i.e. columns). The number of 

columns differed depending on the specific sampling configuration, as the product of the 

number of taxa and number of allele frequency classes determines the number of columns 

(i.e. entries in the aSFS); hence, each sampling scheme had a different number of aSFS 

Xue and Hickerson Page 6

Mol Ecol. Author manuscript; available in PMC 2016 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



entries, but always had 600 replicates. Since the nature of PCA does not allow more 

variables than observations, in sampling sets where this is violated, only the first 600 non-

monomorphic aSFS entries were used.

Additional simulations were conducted to investigate alternative model specifications 

(Supporting Materials 2). In particular, we tested how the behavior of the aSFS changes 

when numbers of sampled SNPs or generation times were heterogeneous across taxa, as 

might be expected with empirical data. For our exploration of SNP sampling heterogeneity, 

we simulated SNP data rather than SFS data and randomly sampled the number of SNPs 

independently across taxa from a uniform distribution with a lower bound of 1,000 SNPs 

and a higher bound of 10,000 SNPs. This range allowed an examination of aSFS robustness 

when SNP sampling was decreased from our previous assumption of 25,000 SNPs. For our 

exploration of generation time heterogeneity, we conducted simulations with a twofold and 

fivefold difference in generation times among taxa, with the former across 10 taxa and the 

latter across 50 taxa.

aSFS-hABC coupled inference of five stickleback populations

To demonstrate application of the aSFS to empirical data, we coupled it with an hABC 

statistical framework and applied it to a publicly available RAD-seq dataset sampled from 

five stickleback populations, with at least three that likely experienced expansion into lakes 

following colonization from oceanic populations after the LGM (Hohenlohe et al. 2010). 

We used this joint aSFS-hABC framework to sample from both the posterior probability 

distribution of model space, with each discrete value of ζ as a separate model, and the 

posterior probability distribution of ζ, τs, E(τ) (mean time of expansion among species), E(ε) 

(mean expansion magnitude among species), E(NE) (mean effective population size among 

species), Var(τ)/E(τ), Var(ε)/E(ε), and Var(NE)/E(NE) (Csilléry et al. 2010).

Stickleback RAD-seq data were obtained from the NCBI Short Read Archive (http://

www.ncbi.nlm.nih.gov/sra/; accession numbers SRX015871-SRX015877). Short reads were 

processed (cleaned by quality and sorted to individuals by barcode) using Stacks with 

default settings (Catchen et al. 2013). The reads were then aligned to a reference genome 

(Ensembl, assembly Broad S1.75) using Bowtie with a maximum of 3 mismatches within the 

first 34 bases, including the restriction site, and a sum of base quality for all mismatches in 

the read no greater than 70 (Langmead et al. 2009). Afterward, SNPs were called from the 

SAM alignment files using Stacks with a minimum read depth of 5 and the bounded SNP 

model with error bounds between .001 and .01 (Catchen et al. 2013).

Each of the five population samples (three lake from Bear Paw Lake, Boot Lake, and Mud 

Lake, and two oceanic from Rabbit Slough and Resurrection Bay) was treated as a separate 

empirical SFS (five in total) for constructing the aSFS. The SNPs used for calculating these 

empirical SFSs were chosen to lessen the impact of linkage (Braverman et al. 1995) and 

missing data. To reduce bias due to linkage, genomic blocks were delineated such that read 

ends were > 1,000 base pairs from another read end. To curb the effect of missing data, one 

SNP per genomic block with the least missing data was selected. After this thinning process, 

the SNPs were converted into folded SFSs (i.e. using the minor allele frequency versus the 

derived allele frequency due to unpolarized data) for each population using PGDSpider 
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(Lischer & Excoffier 2012), dadi (Gutenkunst et al. 2009), and custom scripts. During this 

process, to address the issue of missing data, the down-projection function in dadi was used 

to convert each population to 20 haploid samples each (from 20 individuals each). The SFSs 

of the five stickleback population samples were then converted into an aSFS with relative 

SNP proportions.

Given the sampling configuration outlined above (i.e. five SFSs; 20 haploid samples each), 

coalescent simulations of the aSFS for the five stickleback population samples were 

conducted in fastsimcoal2 for the hABC analysis using the aSFS as the summary statistic 

vector. We used a discrete uniform hyper-prior of ζ by simulating with equal prior 

probabilities the five histories of zero, two, three, four and all five populations 

synchronously expanding (i.e. ζ = 0.0, 0.4, 0.6, 0.8, and 1.0 respectively), the hyper-prior τs 

~ U(1,000, 20,000), and the following prior distributions for independently drawn 

population-specific parameters: NE ~ U(10,000, 100,000); ε ~ U(0.001, 0.010); τi ~ U(1,000, 

100,000), with time in units of scaled generations. Each single taxon SFS was simulated 

with 2,000 gene genealogies. To perform hABC rejection sampling, we used the 2,500 

shortest Euclidian distances between simulated aSFS vectors and the observed aSFS vector 

out of a total of 2,500,000 simulations from the hyper-prior space (Blum & François 2010). 

This data matrix of 2,500,000 simulations was used for both model selection and 

hyperparameter estimation within the hABC framework.

We then assessed model selection and hyperparameter estimation performance through a 

simulation-based cross-validation of the hABC inference using 50 “leave one out” replicates 

per ζ value for model selection and 50 “leave one out” replicates in total for hyperparameter 

estimation (ζ, τs, E(τ), E(ε), E(NE), Var(τ)/E(τ), Var(ε)/E(ε), and Var(NE)/E(NE)), where a 

single simulated aSFS was used as observed data per “leave one out” replicate (Csilléry et 

al. 2012). Cross-validation was performed using three different tolerance levels: 0.001, 

0.004, and 0.050. For model selection, mean posterior probabilities across the 50 replicates 

per model for each tolerance level were recorded, and for hyperparameter estimation, the 

Pearson's r correlation between the simulated true value and the inferred value (for both 

median and mode) across the 50 total replicates for each tolerance value was recorded.

Furthermore, we repeated the hABC inferential analysis and “leave one out” cross-

validation using a Dirichlet-process prior for ζ (Oaks 2014) (Supporting Materials 3), as well 

as conducted a separate cross-validation analysis comparing our hABC method with a more 

traditional approach of overlaying separate composite likelihood estimates (Supporting 

Materials 4).

RESULTS/DISCUSSION

Behavior of the aSFS under different synchronous expansion scenarios

The overall shape of the aSFS was unequivocally unique for each of the six synchronous 

expansion scenarios, as best exemplified when taxa number was at its highest value (Figure 

3). In particular, the aSFS curve had a distinctive form between both scenarios with extreme 

values of ζ (i.e. ζ = 0.0 and ζ = 1.0), with transitional aSFS shapes in scenarios between the 

two extremes in accordance with intermediate values of ζ. Additionally, the aSFS revealed 
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characteristic contours between the single and duo pulse scenarios (i.e. ζ = 1.0; ψ = 1 and ζ1, 

ζ2 = 0.5; ψ = 2; these were the two scenarios in which all taxa were synchronously 

expanding, with the key difference being a change in number of pulses, ψ). Moreover, in 

using PCA on the aSFS, there was a clear occupation of distinctive principal component 

(PC) space by each of the six scenarios when plotting PC2 vs. PC1 for each of the sampling 

configurations (Figure 4), with PC1 consistently explaining a majority of the variance 

(>70%) and the cumulative variance explained by PC1 and PC2 being an overwhelming 

amount (>85%) (Table S1). Similarly to the aSFS shape, the simulated histories clustered 

along a cline in the direction of increasing ζ, with the single and duo pulse scenarios 

occupying adjacent yet separate PC space. Additionally, there was an apparent distinction of 

τs values in PC space when employing a distribution of values for τs (Figure S1). These 

results, which remained robust and consistent under various assumption violations 

(Supporting Materials 2) including varying SNP numbers and utilizing heterogeneous 

generation times among taxa, support that the aSFS captures valuable information about 

differences in ζ, ψ, and τs between various aggregate demographic histories across a range 

of sampling regimes from taxonomically narrow to broad.

Effect of sampling on resolution

Increasing the number of taxa sampled heavily improved the resolution of the aSFS in 

distinguishing aggregate histories (Figure 4b), which is consistent with a previous result 

using mitochondrial data (Chan et al. 2014). This evidence of “borrowing strength” is 

corroborated by the decrease in variance among aSFS replicates when taxa number was 

increased (Figure 5a), which resulted in the aSFS shape becoming more distinctively 

characterized for each particular scenario. Moreover, the favorable comparison of our 

unified aSFS-hABC coupled approach to separately conducted composite likelihood 

inferences further exemplifies the “borrowing strength” yielded by the aSFS (Supporting 

Materials 4).

Notably, this positive relationship between resolution and sampling was absent with 

increased sampling of individuals per taxon (Figures 4a, 5b), despite the fact that increasing 

either the number of taxa or number of individuals per taxon both independently increase the 

size of the aSFS (i.e. the number of bins is a function of the number of taxa * the number of 

allele frequency classes). However, if one is attempting to distinguish between scenarios 

within the very recent past and/or a narrow temporal range, intensified sampling of 

individuals could perhaps improve resolution by better identifying rare alleles and 

decreasing the intervals between allele frequency classes (Keinan & Clark 2012; Robinson 

et al. 2014b). Nonetheless, perhaps unsurprisingly, datasets with greater community 

sampling (i.e. increasing the number of taxa) rather than sampling of individuals per taxon 

can be better leveraged to test alternative models of aggregate history due to the “borrowing 

strength” resulting from an increase in the number of “copies” or iterations for each allele 

frequency class. Presumably, sampling from greater numbers of loci would also likely lead 

to increasing inferential resolution, though our level of sub-genomic sampling should be 

sufficient for the range of parameters addressed here (e.g. ≥ 1,000 SNPs; ε ≤ 0.04; τs = 

20,000 generations ago) (Adams & Hudson 2004; Robinson et al. 2014a).
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aSFS-hABC coupled inference of five stickleback populations

Using our hABC procedure, the 2,500 shortest Euclidian distances between the observed 

aSFS vector and simulated aSFS vectors (out of a total of 2,500,000 prior simulations) 

strongly supported a history involving synchronous expansion of all five populations after 

the LGM assuming either a two year generation time (Bell et al. 2004) or a one year 

generation time (Bell et al. 2006), the generation times commonly used for threespine 

stickleback (ζ = 1.0 and τs = 1,000-1,200 generations ago). Specifically, the posterior 

probability of model space for a synchronous ζ = 1.0 history was 0.99, whereas the posterior 

probability for a synchronous pulse involving four of the five populations (ζ = 0.8) was 0.01 

(and zero posterior probability for all other models). Additionally, for hyperparameter 

estimation, the median, mean, and mode of ζ = 1.0. Furthermore, other hyperparameter 

estimates were in agreement with a shared history of recent, large expansions of these 

stickleback populations (Table 4).

In the cross-validation simulation analysis using “leave one out” pseudo-observed datasets 

simulated under known model values, when the synchronous ζ = 1.0 scenario was the true 

model, its mean posterior probability across the 50 replicates was > 0.59 for all three 

tolerance levels. Similarly, when the true models were ζ = 0.0 – 0.8, the synchronous ζ = 1.0 

scenario only yielded posterior probabilities of < 0.29 with a sharp decline as the true model 

decreased in ζ value for all three tolerance levels (Table 5). Additionally, the Pearson's r 

correlations for hyperparameter estimations were > 0.80 for ζ, > 0.59 for τs, > 0.87 for E(τ), 

and > 0.68 for Var(τ)/E(τ) across both median and mode inference and all three tolerance 

levels (Table 6). These cross-validation results further demonstrate that the aSFS can be 

informative of the demographic hyperparameters ζ and τs, as well as overall variability in τ. 

When evaluating the Dirichlet-process prior for ζ as would be suggested by Oaks (2014) by 

using the “leave one out” cross-validation procedure, there was little difference in the 

accuracy of the inferred posterior distribution of model space and hyperparameter estimates 

in comparison to our discrete uniform prior on ζ, with perhaps an overall slight decrease in 

accuracy under the former (Supporting Materials 3).

The hABC results are in agreement with current understanding that stickleback populations 

expanded in independent yet relatively simultaneous founder effects from marine sources 

when the freshwater lakes in coastal Alaska were newly formed due to deglaciation of the 

Gulf of Alaska within the last 10,000 years (Bell & Ortí 1994; Hohenlohe et al. 2010). Of 

note, though the hABC inferential analysis left open the small possibility of partial 

synchronous expansion of the five stickleback population samples (i.e. ζ = 0.6-0.8), the very 

strong support for a single synchronous expansion group (i.e. ζ = 1.0) suggests that the 

sampled coastal populations also expanded during the same time period as the lake 

populations, either independently or in serial. Although the two marine population samples 

in the dataset have often been used as a proxy for the ancestral source population in past 

studies (Caldecutt & Adams 1998; Bell et al. 2004; Cresko et al. 2004; Kimmel et al. 2005; 

Shaw et al. 2007; Messler et al. 2007; Hohenlohe et al. 2010) due to presumed panmixia 

among oceanic populations (Hohenlohe et al. 2010, 2012), it is conceivable that, as marine 

conditions radically changed after the LGM, widespread oceanic populations may have 

expanded simultaneously as well (O'Reilly et al. 1993; Orti et al. 1994). This is especially 
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plausible given glacial presence in the Gulf of Alaska during the LGM (Barclay et al. 2009) 

and the following surge in sea-level after glacial retreat creating new coastal habitats (Clark 

et al. 1978).

Considerations

In our construction of the aSFS, the number of haploid individuals per taxon is held constant 

within a dataset to allow one-to-one matching between allele frequency classes. However, 

empirical datasets will often have a different number of samples per taxon. This can be 

addressed using a projection function, such as the one available in the program dadi, in 

which all individual SFSs can be down-projected to the same sampling number by averaging 

every sub-sampling combination, which was done in our stickleback analysis (Gutenkunst et 

al. 2009). Beyond the case of sampling different numbers of individuals per taxon, this 

relatively simple projection method would also be needed if there were numerous missing 

calls, which inevitably would vary across taxa. Alternatively, to achieve equal variance for 

each allele frequency class across taxa and thus maintain full exchangeability, one could 

randomly sub-sample individuals at each SNP in the observed data to yield the same number 

of individuals across taxa.

Another circumstance of note is that selection and affiliated hitchhiking effects may 

confound detection of synchronous demographic signal, since the SFS under positive 

selection events can mimic the SFS under expansion demographic histories (Barton 1998, 

2000; Andolfatto 2001) to the point that it can be challenging to detect selection on specific 

loci under severe demographic changes (Poh et al. 2014). This may very well be the case in 

the particular stickleback populations used as an application of the aSFS (Hohenlohe et al. 

2010). However, demographic changes are likely to coincide with instances of very strong 

selection, as when populations expand into novel environments and ecosystems (Kingsolver 

et al. 2001; McKinnon & Rundle 2002; Prentis et al. 2008), such that these processes may 

not be necessarily entirely mutually exclusive. Furthermore, this issue is minimized by the 

aSFS through its process of data pooling across multiple taxa, thereby strengthening the 

common demographic signal, and can be further curtailed by selecting SNPs in linkage 

equilibrium to reduce the influence of genetic hitchhiking. Alternatively, it may be of 

interest to detect synchronous episodes of selection across multiple populations, in which 

case, the aSFS could be potentially leveraged to detect genetic hitchhiking occurring across 

the genome.

Alaskan population samples of threespine stickleback were selected to demonstrate the 

utility of the aSFS due to their well-understood demographic histories of post-LGM 

population expansion. However, due to the populations’ shared history, this empirical 

system is only one type of intended application of the aSFS. To clarify, the aSFS is also 

well-suited for independent, separate species that are hypothesized to have had similar (or 

dissimilar) demographic responses to common events. For such application, differences in 

generation time and per-generation mutation rate among taxa are expected if widely 

disparate taxa are used. Differences in generation time may be addressed by using parameter 

scalars (Supporting Materials 2), whereas differences in per-generation mutation rate should 

be of minimal concern since SFS-based inferential methods that ignore monomorphic sites 
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assume a mutation must have already occurred and thus are unconcerned with mutation rates 

(Nielsen 2000; Excoffier et al. 2013). Future implementations of the aSFS could perhaps 

exploit mutation rates to better calibrate the timing of events, and similarly, utilize linkage 

information when more (or less) than one SNP is found on a locus, such as in Lohse & 

Frantz (2014), rather than randomly selecting one SNP and discarding the rest.

It also may be of interest to estimate not only the degree of synchronous demographic 

changes within a dataset, but also to identify the specific taxa undergoing synchronous 

and/or independent demographic changes. Developing a tractable solution that does not take 

away from the convenience of performing a unified analysis on the overall dataset (which is 

not trivial, especially with very large datasets) may be challenging. A possible avenue to 

explore is to conduct a separate PCA on the individual SFSs to detect clustering and hence 

find candidates belonging to synchronous expansion groups, similar to what was done in a 

recent, similar study (Chan et al. 2014). To detect candidates systematically, this could 

potentially involve developing a manner in which to quantify clustering, perhaps using 

Euclidean distances, as well as objectively distinguishing membership of clusters.

Conclusion

The central goal of this study was to investigate whether the aSFS is an informative 

summarization of a multi-taxa aggregate genomic dataset for community-scale comparative 

population genomic inference. Using coalescent simulations to observe the behavior of the 

aSFS under different expansion scenarios with various levels of synchronicity, we have 

demonstrated that signatures in our aSFS are indicative of the degree to which different 

species experienced synchronous demographic histories, especially at higher taxa numbers. 

The aSFS thus has the powerful potential to be used for hierarchical statistical inference of 

community history given population sub-genomic data sampled broadly across taxa. In 

future studies, one could utilize the exact analytical calculation of the expected single 

population SFS under instantaneous growth histories (Wakeley & Hey 1997; Kamm et al. 

2015) and develop an hABC or hierarchical composite likelihood framework using a 

Poisson distribution to account for the variance of each individual bin of the expected aSFS 

(Sawyer & Hartl 1992) or a multinomial distribution that treats the aSFS bins as 

probabilities (Adams & Hudson 2004), similar to what has been done in previous spectral 

methods (Gutenkunst et al. 2009; Lukic & Hey 2012; Excoffier et al. 2013). Additionally, 

although we focused on synchronous and asynchronous expansion, the aSFS may also be a 

valuable tool for evaluating a wide range of other aggregate demographic history models 

such as synchronous compression, multiple pulses of population size change, divergence, 

migration, adaptation, meta-population dynamics, and cyclical histories of size change and 

admixture (Jesus et al. 2006). Incorporating these types of models can broaden the 

hypotheses that can be tested and the histories that can be explored, including those related 

to various anthropogenic activities, isolation events, regions of connectivity, parallel 

adaptation, host/pathogen histories, and climate change driving community-wide expansion 

and admixture.

As population sub-genomic data from assemblages of non-model organisms are used to 

answer questions about the demographic trajectories resulting from late Pleistocene isolation 
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due to the LGM and subsequent expansion and admixture after warming during the 

Holocene (Hewitt 1996, 2000; Taberlet et al. 1998; Waltari et al. 2007; Provan & Bennett 

2008; Qiu et al. 2011), with downstream inference about how future climate change trends 

will drive geographic changes in biodiversity (Thomas et al. 2004; Guisan & Thuiller 2005; 

Provan & Bennett 2008; Chevin et al. 2010; Lavergne et al. 2010; Hoffmann & Sgrò 2011; 

Bellard et al. 2012), our aSFS will play a key role for estimating the temporal and spatial 

dynamics underlying the aggregate demographic responses to fluctuating shared habitat as 

well as test ecological models such as the neutral theory of regional biodiversity (Hubbell 

2001). This new wave in comparative population sub-genomics will allow researchers to 

understand better the impact of large-scale processes on regional patterns of biodiversity and 

community assembly, representing an integration with community ecology that could also 

highlight regions of greater historical stability and genetic diversity as well as identify areas 

of higher connectivity (Moritz & Faith 1998; Taberlet et al. 1998; Myers et al. 2000; Moritz 

2002; Myers 2003; Brooks et al. 2006; Vandergast et al. 2008; Carnaval et al. 2009; 

Murphy et al. 2010). This approach can also be utilized to address other comparative 

population genomic questions, such as those that focus on disentangling the history of 

multiple domestication events (Gerbault et al. 2014), multiple invasion histories (Dlugosch 

& Parker 2008), or complex disease/epidemiological dynamics (Grenfell et al. 2004). Future 

advances to increase aggregate-scale inferential capabilities in the fields of population 

genomics, community ecology, and conservation science will greatly benefit all practitioners 

and increase integration across fields.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Constructing the aSFS
(a) Five hypothetical SFSs are calculated from representational genomic data for five 

separate taxa of five diploid samples each (i.e. nine non-monomorphic frequency classes, or 

11 total frequency classes). (b) The five SFSs are combined into one collated frequency 

spectrum. (c, d) First, only the singletons, or the first non-monomorphic bin, is focused 

upon. (e) The bin is rearranged in descending order of proportion or percentage of SNPs. (f) 

This is done for all bins to produce the aSFS.
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Figure 2. Synchronous expansion scenarios
(a) None of n taxa synchronously expanding at one time (ψ = 1; ζ = 0.0). (b) Minority of n 

taxa synchronously expanding at one time (ψ = 1; ζ = 0.2-0.4). (c) Half of n taxa 

synchronously expanding at one time (ψ = 1; ζ = 0.5-0.6). (d) Majority of n taxa 

synchronously expanding at one time (ψ = 1; ζ = 0.7-0.8). (e) All of n taxa synchronously 

expanding at one time (ψ = 1; ζ = 1.0). (f) Half of n taxa synchronously expanding at one 

time, half of n taxa synchronously expanding at another time (ψ = 2; ζ1 = 0.5-0.6; ζ2 = 

0.4-0.5).
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Figure 3. Boxplot of the simulated aSFS across 100 replicates for each scenario (sampling 
configuration 13)
Derived allele frequency bin is plotted on the x-axis and proportion of total SNPs is plotted 

on the y-axis. Note that the simulated aSFS is considerably differentiated between scenarios, 

and at this sampling configuration, which is at a high taxa number (100), the aSFS across 

100 replicates is also well characterized (i.e. little variance). (a) ψ = 1; ζ = 0.0. (b) ψ = 1; ζ = 

0.25. (c) ψ = 1; ζ = 0.5. (d) ψ = 1; ζ = 0.7. (e) ψ = 1; ζ = 1.0. (f) ψ = 2; ζ1 = 0.5; ζ2 = 0.5.
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Figure 4. PCA graphs for simulated aSFSs
Each PCA graph was derived from 600 simulated aSFSs corresponding to six different 

synchronous expansion scenarios (100 replicates each); the scenario that each point 

corresponds is referenced in the legend. PC1 is plotted on the x-axis and PC2 is plotted on 

the y-axis. See Tables 1 – 3 for more information on the specifics of the synchronous 

expansion scenarios pertaining to each sampling configuration and simulation 

parameterization settings. (a) Comparing differences between individuals/taxon sampling 

levels at 10 taxa. Note that there was hardly any change (and perhaps even increased 
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dispersion) as the number of haploid samples increased. i) 10 haploids/taxon (sampling 

configuration 4). ii) 50 haploids/taxon (sampling configuration 6). (b) Comparing 

differences between taxa amount at 20 haploids/taxon. Note that the clustering for 

synchronous expansion scenarios tightened and became more distinct as number of taxa 

increased. i) 5 taxa (sampling configuration 2). ii) 10 taxa (sampling configuration 5). iii) 20 

taxa (sampling configuration 8). iv) 50 taxa (sampling configuration 11). v) 100 taxa 

(sampling configuration 14).
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Figure 5. Boxplot of the simulated aSFS across 100 replicates among different sampling 
configurations
Derived allele frequency bin is plotted on the x-axis and proportion of total SNPs is plotted 

on the y-axis. (a) Comparing differences between taxa amount at 20 haploids/taxon. Note 

that the characterization for synchronous expansion scenarios appreciably increased (i.e. 

decreased variance within scenarios) as number of taxa increased. i) 5 taxa (sampling 

configuration 2). ii) 20 taxa (sampling configuration 8). iii) 100 taxa (sampling 

configuration 14). X: ψ = 1; ζ = 0.0. Y: ψ = 1; ζ = 1.0. Z: ψ = 2; ζ1 = 0.5; ζ2 = 0.5. (b) 

Comparing differences between individuals/taxon sampling levels at 10 taxa. Note that the 
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amount of within aSFS bin variance did not radically change as sampling increased. i) 10 

haploids/taxon (sampling configuration 4). ii) 20 haploids/taxon (sampling configuration 5). 

X: ψ = 1; ζ = 0.0. Y: ψ = 1; ζ = 1.0. Z: ψ = 2; ζ1 = 0.5; ζ2 = 0.5.
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Table 1

Configurations of sampling parameters, which include taxa assemblage size and haploid individuals per taxon.

Sampling configuration Taxa assemblage size Haploid individuals/taxon

1 5 10

2 5 20

3 5 50

4 10 10

5 10 20

6 10 50

7 20 10

8 20 20

9 20 50

10 50 10

11 50 20

12 50 50

13 100 10

14 100 20

15 100 50
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Table 2

Description of six synchronous expansion scenarios per sampling configuration.

Sampling configurations Synchronous expansion scenario

1-3 ψ = 1; ζ = 0.0

ψ = 1; ζ = 0.4

ψ = 1; ζ = 0.6

ψ = 1; ζ = 0.8

ψ = 1; ζ = 1.0

ψ = 2; ζ1 = 0.6; ζ2 = 0.4

4-6 ψ = 1; ζ = 0.0

ψ = 1; ζ = 0.3

ψ = 1; ζ = 0.5

ψ = 1; ζ = 0.8

ψ = 1; ζ = 1.0

ψ = 2; ζ1 = 0.5; ζ2 = 0.5

7-9 ψ = 1; ζ = 0.0

ψ = 1; ζ = 0.25

ψ = 1; ζ = 0.5

ψ = 1; ζ = 0.75

ψ = 1; ζ = 1.0

ψ = 2; ζ1 = 0.5; ζ2 = 0.5

10-12 ψ = 1; ζ = 0.0

ψ = 1; ζ = 0.2

ψ = 1; ζ = 0.5

ψ = 1; ζ = 0.8

ψ = 1; ζ = 1.0

ψ = 2; ζ1 = 0.5; ζ2 = 0.5

13-15 ψ = 1; ζ = 0.0

ψ = 1; ζ = 0.25

ψ = 1; ζ = 0.5

ψ = 1; ζ = 0.7

ψ = 1; ζ = 1.0

ψ = 2; ζ1 = 0.5; ζ2 = 0.5

ψ: Pulses of synchronous expansion

ζ: Proportion of taxa synchronously expanding
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Table 3

Parameter settings for simulation study.

Synchronous expansion scenario Current effective 
population size

Instantaneous expansion magnitude Expansion time

ψ = 1; ζ = 0.0 NE ~ U(100,000, 
500,000)

ε ~ U(0.01, 0.04) (25x – 100x) τi ~ ln U(30,000, 200,000) generations 
ago (taxa idiosyncratically expanding)
τi1 = 20,000 generations ago

ψ = 1; 0.0 < ζ < 1.0 (3 scenarios) NE ~ U(100,000, 
500,000)

ε ~ U(0.01, 0.04) (25x – 100x) τs = 20,000 generations ago (taxa 
synchronously expanding)
τi ~ ln U(30,000, 200,000) generations 
ago (taxa idiosyncratically expanding)

ψ = 1; ζ = 1.0 NE ~ U(100,000, 
500,000)

ε ~ U(0.01, 0.04) (25x – 100x) τs = 20,000 generations ago (taxa 
synchronously expanding)

ψ = 2; ζ1 = 0.5-0.6; ζ2 = 0.4-0.5 NE ~ U(100,000, 
500,000)

ε ~ U(0.01, 0.04) (25x – 100x) τs1 = 20,000 generations ago (recent 
synchronous expansion)
τs2 = 50,000 generations ago (ancient 
synchronous expansion)
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Table 4

aSFS-hABC coupled hyperparameter estimation.

ζ τ s E(τ) E(ε) E(NE) Var(τ)/E(τ) Var(ε)/E(ε) Var(NE)/E(NE)

Min. 4 1,000 1,000 3.01e-03 43,123 0.00 0.02e-03 58.34

2.5% 5 1,009 1,009 3.86e-03 54,130 0.00 0.19e-03 598.24

Median 5 1,207 1,209 5.90e-03 70,578 0.00 1.12e-03 4,558.05

Mean 5 1,274 1,275 5.92e-03 70,416 0.64 1.20e-03 4,974.40

Mode 5 1,085 1,086 5.82e-03 72,187 0.26 1.04e-03 3,087.52

97.5% 5 1,882 1,882 7.96e-03 86,037 0.00 2.70e-03 11,700.79

Max. 5 2,569 2,569 8.83e-03 95,999 275.56 4.04e-03 19,271.65
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Table 5

aSFS-hABC coupled cross-validation mean model posterior probabilities.

Tolerance level of accepted simulations = 0.001

Mean model posterior probabilities

ζ = 0.0 ζ = 0.4 ζ = 0.6 ζ = 0.8 ζ = 1.0

True model

ζ = 0.0 0.624 0.204 0.113 0.044 0.015

ζ = 0.4 0.172 0.421 0.254 0.113 0.040

ζ = 0.6 0.112 0.274 0.352 0.186 0.077

ζ = 0.8 0.053 0.100 0.192 0.410 0.244

ζ = 1.0 0.008 0.036 0.088 0.219 0.649

Tolerance level of accepted simulations = 0.004

Mean model posterior probabilities

ζ = 0.0 ζ = 0.4 ζ = 0.6 ζ = 0.8 ζ = 1.0

True model

ζ = 0.0 0.616 0.204 0.115 0.047 0.018

ζ = 0.4 0.171 0.411 0.256 0.117 0.044

ζ = 0.6 0.113 0.269 0.343 0.188 0.086

ζ = 0.8 0.055 0.098 0.190 0.403 0.253

ζ = 1.0 0.008 0.038 0.090 0.221 0.643

Tolerance level of accepted simulations = 0.050

Mean model posterior probabilities

ζ = 0.0 ζ = 0.4 ζ = 0.6 ζ = 0.8 ζ = 1.0

True model

ζ = 0.0 0.567 0.211 0.127 0.064 0.031

ζ = 0.4 0.161 0.365 0.273 0.142 0.059

ζ = 0.6 0.115 0.259 0.310 0.206 0.110

ζ = 0.8 0.059 0.104 0.193 0.362 0.283

ζ = 1.0 0.010 0.047 0.106 0.245 0.592
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Table 6

aSFS-hABC coupled cross-validation Pearson's r correlation between hyperparameter simulated true value 

and estimated value.

Tolerance level of accepted simulations = 0.001

ζ τ s E(τ) E(ε) E(NE) Var(τ)/E(τ) Var(ε)/E(ε) Var(NE)/E(NE)

Median 0.808 0.611 0.893 0.466 0.512 0.711 0.504 0.525

Mode 0.843 0.630 0.915 0.451 0.451 0.872 0.013 0.340

Tolerance level of accepted simulations = 0.004

ζ τ s E(τ) E(ε) E(NE) Var(τ)/E(τ) Var(ε)/E(ε) Var(NE)/E(NE)

Median 0.820 0.604 0.888 0.446 0.446 0.717 0.478 0.491

Mode 0.852 0.637 0.910 0.376 0.401 0.853 −0.214 0.230

Tolerance level of accepted simulations = 0.050

ζ τ s E(τ) E(ε) E(NE) Var(τ)/E(τ) Var(ε)/E(ε) Var(NE)/E(NE)

Median 0.804 0.645 0.872 0.377 0.348 0.735 0.422 0.388

Mode 0.829 0.598 0.901 0.112 0.293 0.683 −0.099 0.063
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