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Introduction

Percutaneous transluminal angioplasty is important for the 
management of occlusive atherosclerotic lesions in humans. 
However, restenosis following angioplasty occurring in up to 
50% of patients[1,2] limits the long‑term effectiveness of this 
treatment. Postangioplasty restenosis pathophysiology has not 
been well‑defined. Early studies to elucidate the mechanisms 
of restenosis focused on intimal de‑endothelialization as a 
primary cause,[3] while more recent studies indicated a potential 
role for adventitial vasa vasorum  (VV) in the initiation 
and/or progression of atherosclerotic lesions and vessel 
restenosis.[4‑9] Adventitial VV is a network of microvasculature 
providing oxygen and nutrients to the outer layers of the 
arterial wall.[10,11] VV disruption may result in impaired 
oxygen transformation, vessel wall hypoxia, accumulation 
of oxidized metabolites, and nutritional deficiencies in 
the vessel wall.[12‑15] VV can also serve as conduits for the 
recruitment of inflammatory cells, including macrophages, 
and noncellular inflammatory components.[16,17] These effects 

can lead to angiogenic and mitogenic factor expressions, 
including adhesion molecules and enzymes, in turn leading 
to smooth muscle cell  (SMC) migration/proliferation, 
neointimal formation, vascular remodeling, and restenosis 
following angioplasty. Even though quantification of VV 
vascularization is reported in undiseased arteries following 
balloon overstretching,[18] responses of adventitial VV to 
angioplasty in severely diseased arteries, where angioplasty 
is normally performed in human patients, have not been 
examined or the relationship of these microvessels to changes 
in the intima. In the present study, we utilized a double‑injury 
rabbit model: Primary lesions induced in carotid arteries by 
perivascular manipulation and balloon injury after 4 weeks. 
High‑resolution three‑dimensional (3D) volumetric data are 
suitable for the visualization and quantification of the entire 
VV microvasculature.[18] Micro‑computed tomography (CT) 
has emerged as the preferred method for this purpose. In the 
present study, we used micro‑CT combined with histological 
and immunobiochemistry methods to quantify the responses of 
VV and assess whether there is an association with neointimal 
formation in experimentally injured arteries following balloon 
dilation.
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Methods

All animal procedures were reviewed and approved by the 
Institutional Animal Care and Use Committee at Shanghai 
Jiao Tong University medical division. Male New Zealand 
white rabbits (2.0–2.5 kg; 10–14 weeks old) were used in 
the present study. Two weeks prior to the first surgery, high 
cholesterol diet  (2% cholesterol  +  6% peanut oil +  92% 
normal chow diet) was begun in all animals, which was 
discontinued on the day of the second surgery (angioplasty) 
as previously described.[19] Animals were divided into three 
groups in order to demonstrate the various stages of vascular 
lesions: Group  1, sham operation group  (n  =  6) where 
animals underwent a sham operation; however, the artery 
was not impaired; Group 2, single‑injury group induced by a 
constrictive thread loop (n = 9); and Group 3, double‑injury 
group induced by angioplasty (n = 10).

Induction of the focal lesion in the right common carotid 
artery rabbits were anesthetized with 3% pentobarbital 
sodium using ear vein administration. Through a medial 
cervical incision, right common carotid arteries were 
exposed, and a 5–0 antibacterial  (polyglactin 910) 
suture  (Ethicon Ltd., Scotland, UK) was placed around 
the artery. Prior to ligation of the thread, a sterile metal 
tube with an external diameter of 0.7 mm was inserted in 
the suture collar parallel with the carotid artery, followed 
by withdrawal of the tube. Ampicillin  (50  mg/kg) was 
administered intramuscularly (i.m.) immediately following 
surgical palliation.

Carotid angioplasty 4  weeks after focal carotid lesion 
induction, the right carotid artery was exposed, and the 
thread collar was found to be nearly completely absorbed 
in both single‑injury and double‑injury groups. Carotid 
angioplasty was performed in the double‑injury group. Two 
vascular clips were placed on the carotid artery in order to 
prevent bleeding; one was placed onto the proximal common 
carotid artery, and the other was placed onto the internal 
carotid artery. A standard 3.0 mm × 17 mm percutaneous 
transluminal coronary angioplasty balloon was inserted in 
a retrograde fashion via the external carotid artery and was 
positioned at the point of ligation. For dilation, the balloon 
was inflated to six atmospheres for 2 min and then deflated 
and retracted, followed by ligation of the external carotid 
artery. All rabbits received a bolus of 100 µ/kg heparin 
intravenous (i.v.), and ampicillin (50 mg/kg) i.m.

Polymer injection and specimen dehydration after 4 weeks, 
all animals were sacrificed using a fatal dose (>100 mg/kg) 
of pentobarbital sodium, i.v. The right carotid was cannulated 
using a 2‑mm‑diameter plastic catheter. In order to clear the 
remaining blood from the carotid artery, we infused 500 ml 
of heparinized saline  (0.9% sodium chloride containing 
10,000 units of heparin) at 100  mmHg. We then infused 
low viscosity, radiopaque polymer compound  (Microfil® 
MV‑122, Flow Tech, Carver, MA, USA) through the catheter 
until the injected effluent flowed freely from the collateral 
common carotid vein. The tissues from each region were 

then removed from the neck and immersed in 10% neutral 
buffered formalin at 4°C overnight to polymerization occur. 
On the following day, the carotid artery was placed in 95% 
alcohol for 48 h. At 24‑h intervals, the glycerin concentration 
was raised to 30%, 50%, 75%, and finally 100% glycerin 
in order to completely dehydrate the carotid segments. 
The specimen was then rinsed with acetone, left at room 
temperature for 24 h, and embedded in a paraffin mold for 
3D micro‑CT imaging.

Micro‑CT imaging and reconstruction to preserve VV 
connectivity, the arteries were scanned in 2‑cm increments 
along the arterial lumen axis without physically cutting the 
carotid artery. In the present study, the micro‑CT scanner 
was configured so that the dimension of the cubic voxels was 
20–25 mm (16‑bit grayscale). The 3D images (an average 
number of 1000 slices per 2‑cm carotid artery segment) 
were imaged using a high‑resolution  (8–36 mm isotropic 
voxel size) micro‑CT imaging system  (µCT80, Scanco 
Medical; Bassersdorf, Switzerland) and analyzed using the 
accompanying software.

Morphometric analysis
All specimens were traced, and cross‑sections were analyzed 
at 2 mm intervals (excluding branching points) in order to 
yield 8–10 micro‑CT cross‑sections per 2‑cm specimen. 
Vessel wall boundaries were defined using a radius of twice 
the distance from the arterial lumen to the outer adventitia. 
Blood vessels within this boundary were determined as 
VV. VV area within the vessel wall area was differentiated 
from nonvascular structures by setting the lower threshold 
values for an intensity range of interest that yielded the best 
identification of VV regions.

Two anatomically different types of VV have previously 
been defined.[18] First‑order VV originated from the main 
carotid arterial lumen and ran longitudinally to the carotid 
artery. Second‑order VV were smaller, and arose from 
branches of first‑order, forming circumferential arches 
around the vessel wall. VV were manually counted and 
measured, and yielded the following morphometric variables 
for each cross‑section: (a) VV density (VV per mm2 vessel 
wall area) was calculated manually counting the VV and 
dividing by total area of the vessel wall;  (b) the ratio of 
the number from second‑ to first‑order VV; (c) the ratio of 
VV luminal volume (Volvv) to the total volume of contrast 
agent (Voltotal) within the arterial wall. VV luminal volume 
obtained was manually traced and measured on each 
cross‑section, and (d) VV luminal surface fraction (the sum 
of VV luminal surface areas per mm3 VolCA, mm2/mm3). The 
VV luminal surface area was calculated using the formula of 
the side surface area of a cylinder (2× π × radius × height).

Histological and immunohistochemical staining following 
micro‑CT reconstruction and analysis, the specimens were 
immersed in 40°C water for 4  h to gently melt the wax 
embedding, followed by removal from the plastic mold 
and were cut every 2 mm. The sections were stained using 
Hematoxylin and Eosin (H and E) and elastic van Gieson 
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staining. The sections were then analyzed in order to 
determine the minimum luminal area (narrowest segment) 
for each carotid artery. This narrowest luminal area was at 
the level where the ligature was placed. Once the section 
with the smallest lumen from each vessel was determined, 
morphometric measurements for luminal, intimal, medial 
and total vascular areas were performed using digitized 
images of the van Gieson stained sections with a KS400 
software package (Axioplan 2 imaging system).

In addition, immunohistochemical analysis was performed. 
A  primary monoclonal antibody specific for vascular 
α‑actin (MAB 1522, Chemicon International Inc.) was used 
at a dilution of 1:400 for the evaluation of vascular SMCs. 
For macrophage detection, a monoclonal antibody specific 
for rabbit macrophage CD68 (RAM 11, Dako) was diluted to 
1:6500. The immunohistochemistry protocol has previously 
been described.[19] Briefly, sections were incubated with the 
primary antibody, anti‑mouse IgG secondary antibody (biotin 
conjugate) and avidin peroxidase. The peroxidase was then 
visualized using chromagen. Sections were counterstained 
using H  and  E. A  negative control was performed using 
primary antibodies replaced by mouse IgG isotype control in 
both α‑actin and CD68 staining. The gray area of the stained 
section was analyzed. The unstained area was categorized 
as unclassified cell areas consisting of extracellular matrix 
and unstained cells.

Statistical analysis
All data are presented as mean ± standard error (SE). F‑test 
was utilized to test for equality of variances among samples. 
One‑way ANOVA, followed by a Tukey–Kramer post‑hoc 
test with correction for multiple comparisons was used to 
identify statistical differences among the groups. Individual 
group comparisons were performed using an unpaired 
Student’s t‑test. Correlations among the continuous variables 
were analyzed by linear regression. P < 0.05 was considered 
as statistically significant.

Results

Technical outcomes
All operative techniques were well‑tolerated as suggested 
by normal food intake and normal movement. Three animals 
succumbed during this study. Because of the failure of wire 
traversing, two occluded arteries after primary injury were 
excluded from further study. Of the 30 rabbits initially 
studied, analyses were performed on 25 animals: 6 rabbits 
in sham operation group, 9 rabbits in primary lesion group 
and 10 rabbits in the balloon angioplasty model group.

Micro‑computed tomography imaging
The carotid artery with a primary lesion showed a tendency 
for new vessel formation compared to sham, especially 
second‑order VV with a shift toward second‑ to first‑order 
VV [Figure 1 and Table 1] while no significant differences 
in VV luminal surface fraction or the ratio of Volvv to 
Voltotal were detected in these two groups [Table 1]. Four 
weeks following angioplasty, extensive neovascularization 

of the adventitial VV with a profound shift in the ratio of 
second‑  to first‑order VV was detectable, combined with 
a further decline in VV density  [Figure  1 and Table  1] 
compared to sham. The VV luminal surface fraction and 
the Volvv to Voltotal ratio in the double‑injury group were 
significantly elevated, compared to the sham and primary 
injury groups [Table 1].

Microscopic analysis
Animals subjected to constrictive thread placement 
showed mild formation of neointimal hyperplasia 
compared to sham. Morphometric analyses exhibited a 
significant elevation in intima/media ratio  (I/M) 8 weeks 
following primary lesion [Figure 2a and 2b and Table 2]. 
At 4  weeks following balloon angioplasty, extensive 
intimal hyperplasia was developed with a high rate of 
I/M  [Figure  2c and Table  2]. The thickened neointimal 
exhibited invasion of macrophages and accumulation of 
SMCs. The number of macrophages was mildly elevated in 
the single injury group (81.623 ± 13.240 vs. 70.944 ± 7.223 
Grey/mm2, P = 0.043, Figure 2d and e), coinciding with an 
increase in α‑actin positive SMCs (228.933 ± 81.250 vs. 
171.342  ±  28.52  n/mm2, P  = 0.037, Figure  2g and 
2h) compared to sham. Following angioplasty, both 
macrophages (123.402 ± 5.121 vs. 70.944 ± 7.223 Grey/mm2, 
P  = 0.014, Figure  2f) and SMCs  (352.167  ±  15.942  vs. 
171.342  ±  28.523  n/mm2, P  = 0.012, Figure  2i) were 
significantly elevated.

Neointimal hyperplasia in histological sections with 
adventitial VV neovascularization assessed using 
cross‑sectional micro‑CT images demonstrated a positive 
correlation between I/M ratio and the number of VV in 
the angioplasty group  (R2  =  0.82, P  <  0.001, Figure  3). 
Adventitial VV density declined in both the single‑  and 
double‑injured groups  [Table  1] as compared to sham. 
However, no significant correlation was observed between 
the I/M ratio and VV density.

Discussion

This study was designed to identify the response of 
adventitial VV to acute vascular injury following angioplasty 
and examine potential associations with neointimal 
formation. Adventitial neovascularization and extensive 
intimal hyperplasia, characterized by accumulation of 
macrophages and SMCs, were detected using micro‑CT and 
histology/immunohistochemistry in injured carotid arteries 
following balloon injury.

A rabbit model is commonly used to study responses to 
clinical angioplasty in a severely diseased artery.[20] In order 
to reproduce the morphological characteristics observed in 
patients who have undergone angioplasty, an initial injury 
must be induced in order to develop constrictive lesions, 
which will undergo angioplasty. The injury methods can 
include balloon injury,[21] wire loop,[22] air desiccation,[23] 
thermal drying,[24] or irradiation.[25] Recently, perivascular 
manipulation of the vessel wall using either placement 
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of constrictive[26] or nonconstrictive cuffs around the 
vessel[27] or temporary ligation of the vessel[19] rapidly 
induced a focal atherosclerotic‑like lesion, comprised of 
morphological changes in human atheroma. These alterations 
included macrophage and SMC infiltration into the arterial 
subendothelium, foam cell, cholesterol cleft, necrotic core, 
or fibrous capsule formation.

In the present study, we utilized a two‑step injury model 
of the rabbit carotid artery, featuring a combination of a 
constrictive loop induced primary lesion and secondary 
balloon dilation. Manipulation of the outside of the rabbit 
right carotid artery accompanied by administration of a 
high cholesterol diet yielded mild intimal hyperplasia with 
increased densities of macrophage and SMC and decreases 
in lumen area[19,26,27] resembling features seen in early human 
atherosclerosis. Following the second injury that occurred 

after balloon dilation, further remodeling of the carotid artery 
was evident with acute luminal dilatation, plaque fracture 
and extensive neointimal hyperplasia, reproducing the results 
of balloon angioplasty in human diseased vessels. We did 
not utilize the left carotid artery in the same animal with no 
balloon dilation as control, since after infusing and removing 
one side of artery for immediate fixation, it is difficult to 
maintain equal pressure to infuse the other artery. Lower 
pressure led to compromised resolutions in the micro‑CT 
images and a reduced number of VV in the second infused 
artery, even following the first and second infused arteries in 
the same condition (data not shown). To avoid this bias, we 
used the first infused right carotid artery as our study vessel 
and compared across all groups.

Kwon et al.[18] reported results of arterial microcirculation 
following balloon injury in undiseased pig coronary arteries 

Figure 1: Top: Representative three‑dimensional micro‑computed tomography (CT) images of carotid arteries from the sham operation group (a), 
primary injury group (b), and angioplasty group (c). A denser plexus of microvessels in the adventitia was shown in the angioplasty group. 
Bottom: Representative cross‑sectional micro‑CT images of carotid artery from the sham operation group (d), primary injury (e) group and 
angioplasty group (f). Two anatomically different vasa vasorum (VV) types are identified: First‑order VV (arrows) and second‑order VV (arrowheads).
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Table 1: Quantitative computerized digital analyses of micro‑CT images

Items Sham group (n = 6) Single injury (n = 9) Angioplasty (n = 10) F P
VV Number (n) 5.833 ± 0.477 7.429 ± 0.841 14.4 ± 1.176*† 21.374 0.000
VV density (n/mm2) 1.295 ± 0.110 0.927 ± 0.165* 0.857 ± 0.063* 4.074 0.033
Ratio 2nd/1st order VV 1.325 ± 0.371 1.784 ± 0.139 2.440 ± 0.214* 5.451 0.013
Volvv/Voltotal 0.176 ± 0.055 0.118 ± 0.035 0.326 ± 0.087† 2.728 0.094
VV endothelial surface fraction (VV endothelial 
surface areas/vessel wall volume mm2/mm3)

2.996 ± 0.689 2.794 ± 0.333 5.450 ± 0.799*† 5.424 0.015

*significantly different vs. sham operated group; †significantly different vs. single injury group. CT: Computed tomography; VV: Vasa vasorum; 
Volvv: VV luminal volume; Voltotal: the total volume of contrast agent.
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using micro‑CT. These investigators observed that the 
number of VV vessels, especially in second‑order VV, was 
increased in the injured vessel. The density of newly formed 
vessels was also increased, correlating with vessel stenosis. 
In our current study, we observed a similar response of VV 
neovascularization with significantly increased second‑order 
VV in experimentally injured carotid arteries after balloon 
angioplasty. New VV vessels were proportional to intimal 
hyperplasia. Notably, mild VV neovascularization and 
neointimal hyperplasia were detected in carotid arteries 
following primary injury. These vessels may serve as further 
neovascularization following angioplasty‑induced injury.

Despite increases in the total number, we have shown that the 
density of newly formed VV was decreased in injured arteries 

following balloon dilation. The difference in VV density 
between Kwon el al.[18] and our studies may likely reflect 
difference in the stage of restenosis. In the present study, we 
evaluated restenosis at an early phase, as indicated by a lack 
of the severe intimal hyperplasia, the surface of the lumen 
was larger than sham. It is possible that the 4‑week time 
point is not sufficient and a longer period may be necessary 
for complete remodeling of the injured area and restenosis. 
Low VV densities after balloon dilation can cause hypoxia, 
oxidative stress and microflammation in the balloon‑injured 
artery wall, which could lead to intimal growth. This is 
supported by micro‑CT results of Gössl et al.[28] These authors 
found that the areas of low VV densities within coronary 
arteries show decreased oxygenation and increased oxidative 
stress, which can cause microinflammation and subintimal 
proliferation and potentially initiate the early atherosclerosis 
development. It is possible that angiogenic stimulation to 
enhanced VV neovascularization during the early phase 
of acute vessel injury can reduce intimal hypoxygen by an 
increased oxygen supply. Kwon et al.[18] showed a potential 
for advanced restenosis, as the artery lumen stenosis 
was about 45% following balloon injuries.[18] Although VV 
neovascularization can serve as a compensatory mechanism 
for the delivery of more oxygen and nutrients to injured 
vessel walls for vascular repair during the advanced stage of 
restenosis, higher densities of VV may actually aggravate the 

Figure 2:  (a‑c) Hematoxylin and Eosin staining of carotid arteries  (×5). Mild intimal hyperplasia  (surrounded by black dash line) was shown 
8 weeks after absorbable suture was wrapped around the carotid artery (b). Pathologic intimal thickening with thrombotically active plaque was 
observed 4 weeks following balloon angioplasty (c). Arteriolar vasa vasorum (VV) filled with polymer (black) in sections; (d‑f) Increased invasion of 
macrophages (brown) (×5) in single and double injury groups, revealed by monoclonal antibodies against macrophage marker CD68; (g‑i) Accumulation 
of smooth muscle cells (×40) in injury groups. Spindle‑shaped smooth muscle cells were brown in color with long nuclei stained dark blue.
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Table 2: Cross‑sectional area of rabbit carotid arteries 
at the narrowest segment

Items Sham group 
(n = 6)

Single injury 
(n = 9)

Angioplasty 
(n = 10)

F P

Lumen 0.794 ± 0.126 0.660 ± 0.039 1.052 ± 0.015 1.735 0.201
Intima 0.070 ± 0.011 0.500 ± 0.105 1.006 ± 0.172*† 9.437 0.001
Media 0.388 ± 0.037 0.561 ± 0.085 0.739 ± 0.049*† 5.140 0.015
I/M 0.179 ± 0.023 0.885 ± 0.194* 1.400 ± 0.238* 7.609 0.003
*significantly different vs. sham operated group; †significantly different 
vs. single injury group. I/M: Intima/media ratio.



Chinese Medical Journal  ¦  August 5, 2015  ¦  Volume 128  ¦  Issue 15 2095

restenosis. This could function as a conduit for macrophages 
or inflammatory factor infiltration that could promote the 
progression of inflammation and restenosis formation. This 
is supported by Moulton et al.[17] who showed that inhibition 
of VV neovascularization reduced macrophage accumulation 
and progression of atherosclerotic plaques. Indeed, along 
with increased VV formation, the invasion of macrophages 
was detected in the primary atherosclerotic group and was 
further enhanced following balloon injury. Two aspects of 
VV neovascularization in the progression of restenosis may 
explain why some studies showed that angiogenic cytokines 
can accelerate reendothelialization, improve endothelial 
function, and significantly reduce intimal proliferation in 
models of balloon‑induced arterial injury,[29,30] while other 
studies have shown that angiogenic cytokines can accelerate 
atherogenesis.[16,31] Further experimental studies are required 
in order to better understand of the right timepoint for both 
angiogenesis and anti‑angiogenesis/anti‑inflammation 
therapy in order to reduce arterial restenosis.

We found that the luminal surface of VV was higher in the 
double injured angioplasty group, compared to the sham and 
primary injury groups. This could indicate elevated exchange 
between cellular and noncellular components and the vascular 
wall. This could allow more oxygen and nutrition transported 
into the vessel wall, which could enhance arterial repair 
following acute injury. Alternatively, it could promote intimal 
hyperplasia and restenosis, as newly formed VV are considered 
to be more fragile, leaky and more prone to rupture.[5]

In conclusion, The double‑injury rabbit model of restenosis 
coupled with perivascular manipulation and secondary 
balloon injury closely mimics human disease. Marked 
VV neovascularization occurred in rabbit carotid arteries 
following balloon injury. The number of VV was increased 
proportionally to intimal hyperplasia while VV density 
was decreased in the injured arteries. Additional studies are 
required to determine whether modifying VV growth could 
provide therapeutic effects on neointimal hyperplasia and 
restenosis following arterial injury.
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