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ABSTRACT The explosive accumulation of protein se-
quences in the wake of large-scale sequencing projects is in
stark contrast to the much slower experimental determination
of protein structures. Improved methods of structure predic-
tion from the gene sequence alone are therefore needed. Here,
we report a subsantil increase in both the accuracy and
quality of secondary-structure predictions, using a neural-
network algorithm. The main improvements come from the use
of multiple sequence alignments (better overall accuracy), from
"balanced tninhg" (better prediction of «-strands), and from
"structure context training" (better prediction of helix and
strand lengths). This method, cross-validated on seven differ-
ent test sets purged of sequence similarity to learning sets,
achieves a three-state prediction accuracy of 69.7%, signi-
candy better than previous methods. In addition, the predicted
structur have a more realisdtc distribution ofhelx and strand
segments. The predictions may be suitable for use in practice
as a first estimate of the structural type of newly sequenced
proteins.

The problem of protein secondary-structure prediction by
classical methods is usually set up in terms of the three
structural states, a-helix, (-strand, and loop, assigned to
each amino acid residue. Statistical and neural-network
methods use a reduction ofthe data base ofthree-dimensional
protein structures to a string of secondary-structure assign-
ments. From this data base the rules ofprediction are derived
and then applied to a test set. For about the last 10 yr,
three-state accuracy of good methods has hovered near
62-63%. Recently, values of 65-66% have been reported
(1-4). However, when test sets contain proteins homologous
to the learning set or when test results have not been multiply
cross-validated, actual performance may be lower.

Point of Reference

We use as a "reference network" a straightforward neural-
network architecture (5) trained and tested on a data base of
130 representative protein chains (6) of known structure, in
which no two sequences have >25% identical residues. The
three-state accuracy of this network, defined as the percent-
age of correctly predicted residues, is 61.7%. This value is
lower than results obtained with similar networks (5, 7-10)
for the following reasons. (i) Exclusion of homologous pro-
teins is more stringent in our data base-i.e., test proteins
may not have >30% identical residues to any protein in the
training set. Other groups allow cross-homologies up to 49%
[e.g., 2-hydroxyethylthiopapain (lppd) and actinidin (2act) in
the testing set termed "without homology" in ref. 5] or 46%
(4). (ii) Accuracy was averaged over independent trials with
seven distinct partitions of the 130 chains into learning and
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test set (7-fold cross-validation). The use of multiple cross-
validation is an important technical detail in assessing per-
formance, as accuracy can vary considerably, depending
upon which set of proteins is chosen as the test set. For
example, Salzberg and Cost (3) point out that the accuracy of
71.0% for the initial choice of test set drops to 65.1%
"sustained" performance when multiple cross-validation is
applied-i.e., when the results are averaged over several
different test sets. We suggest the term sustained perfor-
mance for results that have been multiply cross-validated.
The importance of multiple cross-validation is underscored
by the difference in accuracy of up to six percentage points
between two test sets for the reference network (58.3-
63.8%).

Use of Multiple Sequence Alignments

It is well known that homologous proteins have the same
three-dimensional fold and approximately equal secondary
structures down to a level of 25-30% identical residues (11).
With appropriate cutoffs applied in a multiple sequence
alignment (12), all structurally similar proteins can be
grouped into a family, and the approximate structure of the
family can be predicted, exploiting the fact that the multiple
sequence alignment contains more information about the
structure than a single sequence. The additional information
comes from the fact that the pattern of residue substitutions
reflects the family's protein fold. For example, substitution of
a hydrophobic residue in the protein interior by a charged
residue would tend to destabilize the structure. This effect
has been exploited in model building by homology-e.g. in
ref. 13-and in previous attempts to improve secondary-
structure prediction (14-18). Our idea was to use multiple
sequence alignments rather than single sequences as input to
a neural network (Fig. 1). At the training stage, a data base
of protein families aligned to proteins of known structure is
used (Fig. 2). At the prediction stage, the data base of
sequences is scanned for all homologues of the protein to be
predicted, and the family profile of amino acid frequencies at
each alignment position is fed into the network. The result is
striking. On average, the sustained prediction accuracy in-
creases by 6 percentage points. If single sequences rather
than profiles are fed into a network trained on profiles, the
advantage is generally lost.

Balanced Training

Most secondary-structure prediction methods have been
optimized exclusively to yield a high overall accuracy. This
method can lead to severe artifacts because of the very
uneven distribution of secondary-structure types in globular
proteins: 32% a-helix, 21% (-strand, and 47% loop (our data
base). Usually, loops are predicted quite well, helices are
predicted medium well, and strands are predicted rather
poorly. This imbalance can be corrected if the network is

7558



Proc. Natl. Acad. Sci. USA 90 (1993) 7559

-nS

,4#."iI
.

pick
maximal

unit

p ->
current

prediction

CI

input first or second or
layer hidden layer output layer

FIG. 1. Network architecture. A sequence profile of a protein family, rather than just a single sequence, is used as input to a neural network
for structure prediction. Each sequence position is represented by the amino acid-residue frequencies derived from multiple sequence alignments
as taken from the homology-derived structure ofproteins (HSSP) data base (12). The residue frequencies for the 20-residue types are represented
by 3 bits each (or by one real number). To code the N- and C-terminal ends an additional 3 bits are required (or one real number). The 63 bits
originating from one sequence position are mapped onto 63 (21 for real numbers) input units of the neural network. A window of 13 sequence
positions, thus, corresponds to 819 (273) input units. The input signal is propagated through a network with one input, one hidden, and one output
layer. The output layer has three units corresponding to the three secondary-structure states, helix, ,-strand, and "loop," at the central position
of the input sequence window. Output values are between 0 and 1. The experimentally observed secondary structure states (19) are encoded
as 1,0,0 for helix; 0,1,0 for strand; and 0,0,1 for loop. The error function to be minimized in training is the sum over the squared difference between
current output and target output values. Net cascade: the first network (sequence-to-structure) is followed by a second network (structure-
to-structure) to learn structural context (not shown). Input to the second network is the three output real numbers for helix, strand, and loop
from the first network, plus a fourth spacer unit, for each position in a 17-residue window. From the 17 x (3 + 1) = 68 input nodes the signal
is propagated via a hidden layer to three output nodes for helix, strand, and loop, as in the first network. In prediction mode, a 13-residue sequence
window is presented to the network, and the secondary-structure state of the central residue is chosen, according to the output unit with the
largest signal.

trained with each type of secondary structure in equal
proportion (33%), rather than in the proportion present in the
data base or anticipated in the proteins to be predicted. The
result is a more balanced prediction (Fig. 3; Table 1), without
affecting, negatively or positively, the overall three-state
accuracy. A similar result was reported by Hayward and
Collins (22). The main improvement is in a better 3-strand
prediction, the most difficult of the three states to predict.
The method maintains full generality-i.e., it is equally
applicable to all-a, mixed a,B, and all-,B proteins. No knowl-
edge of the structural type of the protein is required, as is the
case for methods optimized on particular structural classes
(9, 23).

Training on Structural Context

Even if a prediction method has high overall accuracy and is
well balanced, it can be woefully inadequate in the length
distribution of the predicted helices and strands. For exam-

ple, the reference network predicts too many short strands
and helices and too few long ones (Fig. 4). The predictions of
this network appear fragmented compared with typical glob-
ular proteins. Published prediction methods have similar

shortcomings in the length distribution ofsegments to various
extents, except for two methods that optimize the sum of
segment scores by dynamic programming (W. Kabsch and
C.S., personal communication and ref. 24). The shortcoming
is partly overcome here by feeding the three-state prediction
output of the first, "sequence-to-structure," network, into a
second, "structure-to-structure," network. The second net-
work is trained to recognize the structural context of single-
residue states, without reference to sequence information.
Training it is very similar to that used for the sequence-to-
structure network. The output string of the first network-
e.g., the partially incorrect string HHHEEHH (two 3-strand
residues in the middle of a helix)-becomes the input to the
second network and is confronted with correct structure
HHHHHHH, a helical segment. Network couplings are
optimized to minimize the discrepancy. The addition of the
structure-structure network increases the overall accuracy
only marginally but reproduces substantially better the length
distribution of helices and strands. A simple way of measur-
ing the quality of segment lengths is to compare the average
length of helices and strands in the data base to those in the
predicted structures ((La) = 6.9, (Lp) = 4.6, Fig. 4). A similar
second-level network was used by Qian and Sejnowski (5),
but no effect of improved prediction of segment lengths was
reported.

Protein Alignment profile table

: :: :: GSAPD NTEKQCVHIRLMYFW
G GGGG 5.

I E E ..... .. 2 . 3.
y yyyy.5.

D DDDD ....5.
P PP PP .5 .
E AE AA ..3...2.
D V V EE ...I .2 . 2...
G GG GG 5.
D DDDD ....5.
P PPPP ... 5
D DT DD I4.1 .
D NQ NN 1 3.,.1
G GN GG 41..I
V VIVV.. 4.1.
N EP KK I..1 1.1-2.
P PPPP5,

G GG GG 5.
T TTTT... . ,, .5
D E K S A .1 1.1 .. 11.
F FF F F . . 5.

Biophysics: Rost and Sander



7560 Biophysics: Rost and Sander

relierenice inet

F hbalalced nlet

L lict wilIh profiles

C jury of 12 nets

71}-

(15S

45i

( protein family
* known 3-D structure
o homologue

distance = % of non-identical residues

FIG. 2. Partition of protein families into training and test set. The
structurally known representatives of the families used for training
the network have a distance of at least 75% to those used for testing
(sequence distance in percent nonidentical residues; drawn sche-
matically). Each family contains homologous sequences, defined as
those with a sequence identity >30%o to the representative. 3D, three
dimensional.

"Jury of Networks"

An additional two percentage points in overall accuracy were
gained by ajury of networks that predicts by simple majority
vote ofa set of 12 different networks. The increased accuracy
is an effect of noise reduction, mitigating the ill effects of
incomplete optimization when any single network settles into
a local minimum of the error function.

Overafl Improvement

The final jury of networks outperforms all known methods in
overall accuracy, balanced ,B-strand prediction, and length
distribution of segments as follows.

(i) The overall accuracy is 69.7%, three percentage points
above the highest value reported so far [66.4% (4)]. The
actual improvement may be larger, as their test set has
sequence similarities ofup to 46% relative to the training set.
The improvement is six percentage points relative to the best
classical method tested on our data base [63.4%, ALB (20)].
For a new protein sequence, one can expect a prediction
accuracy between 61% and 79% (1 SD about the average over

Oihelix OstQrnd
( it thoscr'vetdl (tif observed)

FIG. 3. Testing five secondary-structure prediction methods on
the same set of proteins reveals the contribution of different devices
to the improvement of accuracy. Qtoti, overall prediction accuracy
for the three states (helix, strand, loop; number ofresidues predicted
correctly divided by the total number of residues). Qhelix and Qstrand,
prediction accuracy calculated separately for helix and strand (e.g.,
number of helix residues predicted correctly divided by number of
observed helix residues). The methods tested on our data base are
ALB (20), first-level network with no balanced learning and no
profiles (reference net), a two-level network cascade with balanced
learning and no profiles (balanced net), a two-level network cascade
with profiles and balanced learning (net with profiles), and 12
different networks combined by majority vote (jury of 12 nets). Some
groups achieve higher accuracy than does ALB, but the accuracy
values are not strictly comparable, as they are based on differ-
ent test data sets and, in part, on test proteins with detectable
sequence similarities to proteins on which the method was trained.
Values for Qtotal (Qhelix, Qstrand, Qjp) are 65.5% (65,45, 74), COMBINE
(2); 63.0%6 (58, 54, 68), SIMPA (1); and 66.4%, Zhang et al. (4).
Observed versus predicted matrix for the best method is indicated in
Table 1.

individual proteins of 70.2%), provided several homologous
sequences are available. Values for three-state accuracy
should not be confused with those for two-state accuracy (9,
23). Two-state predictions-e.g., for the state helix/
nonhelix-carry less information and have a base value for
random prediction of 50%-i.e., 17 percentage points higher
than that for three-state methods.

(ii) Accuracy is well-balanced at 70% helix and 64% strand,
measured as the percentage "correct of observed" (Fig. 3).
The percentages "correct ofpredicted"-i.e., the probability
of correct prediction, given a residue predicted in a particular
state-are 72% helix and 57% strand.

(iii) The length distribution of segments is more "protein-
like" (Fig. 4). Unfortunately, the length distribution is not

Table 1. Observed versus predicted matrix for best method of Fig. 3
Residues predicted

Residues predicted Total correctly,* %
Helix Strand Loop observed Of observed Of predicted

Residues observed
Helix 5552 774 1,646 7,972 70 72
Strand 517 3229 1,310 5,056 64 57
Loop 1548 1592 8,227 11,367 72 73

Total predicted 7617 5595 11,183 24,395
Correlation

coefficient (21) 0.58 0.50 0.50
*Prediction ofjury of 12 nets method.
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FIG. 4. Deviation in the length distribution of observed and
predicted segments is an additional criterion by which prediction
methods can be evaluated. (a) Difference in the length distribution of
helix segments-i.e., number ofobserved segments in a given length
range minus number of predicted segments. (b) Difference in the
length distribution of strand segments. Predictions by the simple net
(no profile, not balanced, no cascade) result in too many short
segments, too few long segments; prediction by the jury of 12 nets
results in a length distribution much closer to the observed one.
Average segment lengths are as follows: reference net, (La) = 4.2 and
(Lp) = 2.9 residues; jury of 12, (La) = 8.9 and (La) = 5.1 (observed:
(L.) = 9.0 and (L3) = 5.1).

generally given in the literature, but most methods are
inferior in this regard.

Tests on Completely New Proteins

How accurate are predictions likely to be in practice? As a
final check, the network system was trained on the full set of
151 sequence families of known structure and then tested on
26 protein families for which a first x-ray or NMR three-
dimensional structure became available after the network

number
sequence
observed
predicted

architecture had been finalized. None of these additional test
proteins had >25% sequence identity relative to any of the
training proteins (Fig. 5). In this final set, 72% ofthe observed
helical and 68% of strand residues were predicted correctly.
The overall three-state accuracy for this set of completely
new protein structures was 70.3%.

Predictions via Electronic Mail

Secondary-structure predictions using the currently best
version of the profile network from Heidelberg (PHD) are
available via electronic mail. Send a message containing the
word "help" to PredictProtein@EMBL-Heidelberg.de. In
practice, the predictions give a good first hypothesis of the
structural properties of any newly sequenced water-soluble
protein and may be an aid in the planning of point-mutation
experiments and in the prediction of tertiary structure.

Conclusion

There are two important practical limitations: most of the
advantage of the current method is lost when no sequence
homologues are available; and the method in its current
implementation is not valid for membrane proteins and other
nonglobular or non-water-soluble proteins.
A major limitation in principle of the current method lies in

its limited goal: secondary structure is a very reduced de-
scription of the complexities of three-dimensional structure
and carries little information about protein function. How-
ever, as long as reliable prediction methods for protein
three-dimensional structure and function are not available,
secondary-structure predictions of improved quality are use-
ful in practice-e.g., for the planning of point-mutation
experiments, for the selection of antigenic peptides, or for
identification of the structural class of a protein. Indeed,
interest in the community is substantial: during 6 mo. since
submission of this manuscript, >3,000 predictions for a wide
variety of sequences have been requested and served via
electronic mail.
Looking ahead, we would not be surprised to see increas-

ingly successful use of evolutionary information in attempts
to predict more complex aspects of protein structure and
function. Sequence families grouped around one structure as
well as structural superfamilies with common folds but di-
vergent sequences (26, 27) contain a wealth of information
not available 14 yr ago at the time ofthe first attempts at using
homologous sequences for improved prediction (16). Having
posed the puzzle of protein folding, evolution may hand us
the key to its successful solution.

Note Added in Proof. Since the submission of this paper (April 1993)
the method described has been improved further. By explicitly using

.........6.....2 3 .4. 5. 6 .7. 8
AFDGTWKVDRNENYEKFMEKMGINWKRKLGAHDNLKLTITQEGNKFTVKESSNFRNIDVVFELGVDFAYSLADGTELTG

EEEEEEEEE HHHHHHH HHHHHHH EEEEEEE EEEEEEE EEEEEEE EEEE EEEE
EEEE HHHHHHHHHHHHHHHHHHHH EEEEEE EEEEEEE EEEEEEEEEE EHHEE EE

number ......... ...... 0 1 .2 3.
sequence TWTMEGNKLVGKFKRVDNGKELIAVREISGNELIQTYTYEGVEAKRIFKKE
observed EEEEE EEEEEEEE EEEEEEEEE EEEEEEEE EEEEEEEEE
predicted EEEE HHEEEEEE HHHHHHHHH EEEEEEE EEEEEEE

FIG. 5. Example of prediction for a protein sequence by the currently best method. The 13barrel structure of intestinal fatty acid-binding
protein has just become available through Protein Data Bank [code lifb (25)]. Prediction accuracy is 71.8%. In this 3-sandwich structure, 8 out
ofthe 10 13-strands are predicted correctly (one strand is ambiguous, and one strand is predicted as helix, but the ends ofthe segment are correct),
and the two helices are predicted as one long helix (E: strand, H: helix). For all 26 new protein chains, including lifb, overall accuracy averaged
over single residues is 70.3%; averaged over single proteins, it is 71.1%. The estimated probabilities of correct prediction, given a residue
predicted in a helix, strand, or loop were 69%, 58%, or 77%, respectively (see text for probabilities relative to the number of residues observed
in the three states). These 26 protein chains were not available publicly at the time of development of the method and were only used once in
a final test of the currently best method. They are as follows: lace, lcox, lcpkE, ldfn.B, Senl, lf3g, 3fgf, 2gbl, lgly, lgmf.A, lhcc, lhdd_C,
2hip-B, lifb, lmsbA, lnsb_B, 5p2l, lpi2, 2pk4, lrop-A, lsarA, 2scp.A, lsnv, 3trx, 3znf, 2ztaA (all taken from the Protein Data Bank prerelease
of July 1992; membrane proteins and proteins with many metals or SS bridges were not considered).
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conservation weights and the numbers of insertions and deletions in
the multiple sequence alignments as input to the network system, the
sustained overal three-state accuracy becomes 71.4% on the same
data set used in this paper.
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