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Abstract

Separating bone from air in MR data is one of the major challenges in using MR images to derive 

synthetic CT. The problem is further complicated when the anatomic regions filled with air are 

altered across scans due to air mobility, for instance, in pelvic regions, thereby the air regions 

estimated using an ultrashort echo time (UTE) sequence are invalid in other image series acquired 

for multispectral classification. This study aims to develop and investigate a female pelvic bone 

shape model to identify low intensity regions in MRI where air is unlikely to be present in support 

of synthetic CT generation without UTE imaging. CT scans of 30 patients were collected for the 

study, 17 of them also have corresponding MR scans. The shape model was built from the CT 

dataset, where the reference image was aligned to each of the training images using B-spline 

deformable registration. Principal component analysis was performed on B-spline coefficients for 

a compact model where shape variance was described by linear combination of principal modes. 

The model was applied to identify pelvic bone in MR images by deforming the corresponding MR 

data of the reference image to target MR images, where the search space of the deformation 

process was constrained within the subspace spanned by principal modes. The local minima in the 

search space were removed effectively by the shape model, thus supporting an efficient binary 

search for the optimal solution. We evaluated the model by its efficacy in identifying bone voxels 

and excluding air regions. The model was tested across the 17 patients that have corresponding 

MR scans using a leave-one-out cross validation. A simple model using the first leading principal 

mode only was found to achieve reasonable accuracy, where an averaged 87% of bone voxels 

were correctly identified. Finally dilation of the optimally fit bone mask by 5 mm was found to 

cover 96% of bone voxels while minimally impacting the overlap with air (below 0.4%).
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1. Introduction

Several different methods have been recently proposed to generate attenuation maps and 

synthetic CT of patients using magnetic resonance imaging (MRI) data (Chen et al 2007, 

Johansson et al 2011, Greer et al 2011, Lambert et al 2011, Dowling et al 2012, Kim et al 
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2012, Kapanen et al 2013, Hsu et al 2013, Korhonen et al 2014, Uh et al 2014, Kim et al 

2015), with the aim of removing the need for computed tomography (CT) scans to support 

attenuation correction of positron emission tomography (PET) in a PET-MRI system, 

radiation dose calculation and some aspects of image guidance in radiation therapy. One 

class of these methods generates electron density maps based on the alignment between an 

atlas derived from reference CT images and the target MR images (Greer et al 2011, 

Dowling et al 2012, Uh et al 2014). However, such methods are somewhat limited in their 

ability to adapt to patient anatomical variations, a problem that is exacerbated in the female 

pelvis as compared to the male pelvis.

In more individualized approaches, a relation between the attenuation properties and image 

intensities of one or more MRI scans is developed and applied to generate ‘synthetic’ CT 

images (Johansson et al 2011, Kim et al 2012, Hsu et al 2013). One major challenge of 

individualized methods is the difficulty in separating bone from air in MR data due to its 

short T2/T2*. Ultrashort echo time scanning techniques, such as ultrashort echo time (UTE) 

and pointwise encoding time reduction with radial acquisition (PETRA) are able to yield 

signals from tissues with short T2. While intensity thresholding of UTE image data to mask 

air in support of synthetic CT generation has been evaluated and validated for attenuation 

mapping in the head (Hsu et al 2015), this process is challenging in the pelvis due to the 

mobility of air over short time periods. Intra-session changes may lead to air regions 

estimated from UTE not spatially matching the locations of air in other MR volumes from 

the same scanning session. This potential spatial mismatch could lead to misclassification of 

air as bone in the pelvis. Several methods (Chen et al 2007, Kapanen et al 2013, Korhonen 

et al 2014, Kim et al 2015) manually contoured the bony part in pelvis before synthetic CT 

generation, which can be time-consuming and non-repeatable.

One approach to address this issue is to add bone shape information to assist the air/bone 

separation process. As air is rarely in close contact with bone in the pelvis, defining the 

space in which bone exists would allow for identifying air in remaining low MR intensity 

regions outside of bone for exclusion from tissue classification (e.g. Hsu et al 2013), and 

thus also remove the need for ultrashort TE imaging. Achieving this goal requires a model 

that describes possible shape variance of the pelvic bone. Various methods have been 

proposed for shape model construction, including (1) active shape models where shape 

variability is represented by the variance of coordinates of landmarks placed on the object 

(Cootes et al 1995, Schmid et al 2008); (2) active contour models where shape variability is 

represented by the variance of object contours (Leventon et al 2000, Tsai et al 2003); (3) 

statistical deformation models where shape variability is represented by a series of 

deformation fields that deform a reference image to match a group of training images 

(Chintalapani et al 2007, Thompson et al 2008, Gao et al 2013). As compared to active 

shape models and active contour models, statistical deformation models do not require 

explicit contouring of objects, and are thus less expensive in terms of effort for model 

construction. In this study, a pelvic bone shape model is developed and investigated based 

upon deformable alignment of pelvic CT image volumes across a female population to assist 

bone identification in MRI as the first step in the synthetic CT generation. As actual 

attenuation values will be determined in a subsequent probabilistic tissue classification step 
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that permits voxels to have combinations of tissues, the goal here is to find a bulk space 

where air is unlikely to exist instead of contouring bone tissues accurately. This reduced 

demand for specificity in bone location labeling allows a trade-off between model accuracy 

versus model complexity. As compared to deformable registration based methods (Greer et 

al 2011), the shape model has fewer parameters to be optimized and the search space 

appears to be free of local minima, thus is more computational efficient and robust.

2. Method and materials

We built the model from CT images where bone structure can be easily defined, and applied 

it to MR images for model evaluation. To exclude individual differences that are not due to 

shape variance, all images were first (rigidly plus scale) aligned into the same coordinate 

system. The reference CT was deformably aligned to the resulting images, and Principal 

Component Analysis (PCA) of the population of deformations was used to assemble the 

shape model. The shape model was then used to guide the deformation of the reference MR 

image with labeled bone regions to match the target MR image. Dilation was further 

introduced to improve the coverage of bone voxels. Figure 1 shows a flow chart of the 

model construction and application/evaluation processes.

2.1. Image data for shape model construction

Under institution review board approval, CT image volumes acquired from 30 female 

patients who underwent simulation for external beam radiotherapy were investigated. Of 

these patients, 17 also had corresponding MR scans. CT scans were acquired with slice 

thickness of 3 mm and in-plane pixel size of 1 × 1 mm2. MR scans included T1-weighted 

images were generated using a 3D gradient echo sequence (VIBE Dixon, initially designed 

for breath-hold liver imaging) with TE (in/out-of-phase) equals 2.46/1.23 ms, TR equals 4.1 

ms, flip angle 9°, and voxel size of 1.5 × 1.5 × 1.5 mm3. Fat and water images were 

computed from the in-phase (T1-weighted) and out-of-phase VIBE images. All MR and CT 

images were acquired using a 3T MR scanner (Skyra, Siemens Medical Systems, Erlangen, 

Germany) and CT simulator (Philips Healthcare, Cleveland, OH), respectively. The CT 

scans were done with 120 kVp and 450 mAs. All scans were acquired with patients lightly 

immobilized in vacuum-formed bean bags, and with no other controls on physiological 

movement. Intensity inhomogeneity correction was applied to MR images using a N4 

algorithm (Tustison et al 2014), implemented in a publicly available image analysis software 

environment (SLICER, surgical processing laboratory, Brigham and Women’s Hospital, 

Boston, MA). All MR images were aligned to their corresponding CT images through rigid 

registration implemented in SLICER. This task was trivial as the MR and CT scans come 

from the same patient. All image volumes were reformatted in axial orientation with voxel 

sizes interpolated to 1 × 1 × 1 mm3. Example images used from one subject are shown in 

figure 2. Variations in subject body composition as well as internal motion during scans 

were present in the study population. Figure 3 shows one sample image from the dataset that 

shows motion artifacts as well as one sample image that has relatively high quality.
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2.2. Model construction

2.2.1. Alignment of training images—Since we were interested in bone identification 

only, irrelevant structures were first excluded to reduce alignment complexity. Bony 

surfaces were identified on CT images using an intensity threshold of 150 Hounsfield units 

(HU). These surfaces were dilated by 3 mm to include contrast with adjacent surrounding 

soft tissues. Using an in-house Functional Imaging Analysis Tool (FIAT), morphological 

operations (3 mm dilation, filling holes and 3 mm erosion) were subsequently applied to 

clean up holes and gaps. Non-pelvic bones, such as vertebrae and femurs, were manually 

removed. Example CT images before and after preprocessing are shown in figure 4.

After the above preprocessing steps, one CT image volume was selected randomly from the 

dataset as the reference. To exclude individual differences that were not due to shape 

variance, the remaining training images in the dataset were first aligned to the reference 

image using rigid registration plus global scaling. Then the reference image was deformed to 

match each of the training images, using a multilevel B-spline deformable registration with 

subsampling rates of [10 10 5], [4 4 2] and [2 2 1] voxels and B-spline grid sizes of 50, 30 

and 15 mm respectively. The regularization parameter for smoothness was 0.005 and the 

maximal number of iterations was 50 for each level. The mean square error between the 

target and reference image was chosen as the similarity metric for both rigid and B-spline 

deformable registration processes. Four anatomic landmarks were identified at the top and 

the bottom and the left and the right of the pelvis, as shown in figure 5, to initialize the rigid 

plus scaling alignment. All alignments were performed using SLICER. Figure 6 shows the 

reference image as well as an example deformation field that warps the reference image to 

match a training image.

2.2.2. Principal component analysis of B-spline coefficients—To extract 

representative modes of shape variance, PCA is usually performed on a matrix composed of 

deformation fields obtained from the non-rigid alignment process. The deformation fields in 

our method were calculated from B-spline coefficients at control points through simple 

interpolation, and thus the high dimensional deformation fields were mapped from the low 

dimensional B-spline coefficients through a linear transformation matrix. Therefore the 

information encoded in deformation vectors and B-spline coefficients is equivalent. PCA 

was performed on the B-spline coefficients instead of the deformation vectors to yield more 

compact descriptions of shape variance and save computational effort by reducing the 

matrix size.

The B-spline coefficients of the ith deformation field were organized into a vector vi and 

PCA was performed on the matrix

(1)

PCA of V yields N orthogonal principal modes m1, m2, ···, mN. This gives the shape model 

where the possible shape variance s of pelvic bone is described by a linear combination of 

the leading k principal modes plus the mean B-spline coefficients v̄
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(2)

2.3. Application of model to identify pelvic bone in MR images

2.3.1. Deformable alignment guided by shape model—To identify pelvic bone on 

MR images, we deformed the corresponding MR data of a reference image A to match a 

target image M. The bone regions on the reference MR image were identified and labeled 

according to the corresponding CT image. The deformation process was guided by the shape 

model developed in 2.2 by constraining the search space to be within the space spanned by 

principal modes. The problem can be formulated as

(3)

where D is the similarity metric between the target and reference images and T is the 

deformation field that is calculated from B-spline coefficients v at control points using the 

cubic B-spline interpolator B. By using the subspace model (2), we only need to optimize 

over the k model coefficients (α1, ···, αk). As compared to deformable registration, our 

model has far fewer parameters involved in the optimization process.

In our approach, we chose the mean square intensity error between the reference and the 

target water images as the similarity metric D. The images were first normalized based on 

the mean intensity of the T1-weighted images from the same acquisition that yielded the 

water images. Since we were interested in pelvic bone only, the value of the similarity 

metric was evaluated only in the regions where the deformed reference image indicated the 

existence of bone (i.e. fell within the labeled bone space on the reference image). The 

optimization problem was thus

(4)

With the binary operator introduced by the masked bone space, the optimization problem in 

equation (4) is not differentiable. Given the small number of parameters, we may simply 

traverse a grid of parameter values to find the optimal solution. Furthermore, if we assume 

the uniqueness of minimum of the search space, a binary search scheme may be used to find 

the optimal coefficients efficiently.

2.4. Evaluation and validation

We evaluated the shape model by calculating the percentage of correctly identified bone 

voxels as well as the percentage of air being misclassified as bone, where air voxels were 

defined on corresponding CT images at a threshold of −400 HU. For each of the 17 patients 

that had both MR and CT scans, we constructed the shape model from the remaining 29 CT 

scans and applied the model to identify pelvic bone on the MR image of the patient whose 
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CT was not used in the model development. To evaluate the complexity of the search space, 

we calculated the objective function values by brute force sampling of coefficients of the 

first three principal modes. To validate the choice of similarity metric, the model was fitted 

to CT data by directly maximizing the percentage of identified bone voxels, as the bone 

label map was already defined on CT images, and compared to the result when applying the 

model to MR images. Finally, the effect of dilation on the identified space was studied by 

evaluating both the percentage of correctly identified bone voxels and the percentage of air 

voxels mislabeled as bone.

3. Results

The B-spline coefficients with in pelvic bone area ranged from −41.27 to 49.71, with a mean 

of −0.24, standard deviation of 8.33 and a mean absolute of 6.35. The percentage of total 

variance of deformations (B-spline coefficients) across patients explained by each mode is 

shown in figure 7. The first leading mode accounts for 14% of the total variance. Figure 8 

shows the deformation field corresponding to the first principal mode and figure 9 shows the 

reference image deformed by the first principal mode by varying the coefficients between 5 

(red contour) and −15 (green contour) of the standard deviation of the population.

We explored the properties of the search space by plotting the objective function values 

under various model coefficients, as shown in figure 10. The objective function was 

observed to be free of local minima, thus justifying adoption of a binary search scheme to 

find the optimal model coefficients more efficiently than brute force or more complex 

searching schemes. Details of the binary search algorithm can be found in the appendix.

Using the first leading principal mode only, the leave-one-out cross validation process 

achieved an averaged bone identification rate of 87% across 17 patients. The lowest 

coverage was 79% and the highest coverage was 94%. The standard deviation across the 17 

patients was 6%. The averaged total volumes of unidentified bone were 118.33 cm3 and the 

standard deviation of unidentified bone volumes was 70.77 cm3. The averaged percentage of 

air voxels misclassified as bone was 0.02% and the standard deviation across patients was 

0.08%. The averaged total volumes of misclassified air were 0.23 cm3 and the standard 

deviation of misclassified air volumes was 0.70 cm3. For most patients, the largest portions 

of missing bone voxels were located at the bottom (femoral head) and top of the segmented 

pelvis. Figure 11 shows the averaged portion of missing bone voxels of the total amount of 

missing bone voxels in each slice (axial plane). The peaks appear around slice 81 and slice 

175. Figure 11 also shows the two axial slices of the reference image as well as a coronal 

view with yellow lines indicating the position corresponding to the specific axial slice. This 

trend could be due to the bias introduced by the selected reference image and (in the case of 

the femoral heads) somewhat arbitrary means of cutting off the more distal bone from the 

segmentation. The spinal elements attached to the pelvis further contributed to misclassified 

bone voxels (20% of the total misclassified bone voxels) as the model was initially 

developed to describe pelvic bone shape only. Figure 12 shows examples of the identified 

bone voxels overlapped with the ground truth CT images for 4 patients where the model 

achieves the best performance, average performance and worst performance.
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The optimal model coefficient found for each of the 17 patients ranged from 87 to −350, 

with a mean of −28 and a standard deviation σ = 211. The averaged maximal decreases 

(when compared to individual optimizations) in bone coverage when varying the model 

parameter by ±1.5σ and ±1σ around the mean were 9.7% and 6.3% across these 17 patients, 

respectively. These added errors are large compared to the coverage with the first mode, and 

suggest that the variation across individuals warrants the use of some deformation to achieve 

a reasonable tradeoff of sensitivity and specificity in bone/air separation. On the other hand, 

varying the model parameter by ±0.5σ around the optimal model parameter found for each 

patient decreased the model performance by 1.6% only, indicating the model is robust to 

small deviations from the true optimum. It is possible in the future to use this added 

knowledge to permit an even faster search for the optimal combination of deformation 

model and marginal expansion.

Fitting the model to CT data using the first leading mode, the leave-one-out cross validation 

achieved an average bone identification rate of 88%, which is similar to the result obtained 

from MR, thus validating our choice of the mean square error as the optimization criterion. 

Figure 13 shows the averaged percentage of correctly identified bone voxels by fitting the 

model to MRI data as well as the percentage of mislabeled air voxels versus radius of 

dilation of the identified bone space, with error bars specifying the standard deviation across 

the population. Dilating the space by 5 mm improved the overlap with true bone to 96%, 

while the percentage of air voxels mislabeled as bone remained below 0.4%. Figure 14 

shows an example of the bone label of the reference image overlapped with one target 

image, before and after the model-guided deformation. The coverage of bone voxels in the 

target image was improved after the deformation and dilation further improved the bone 

coverage.

With the bone spaces identified by the shape model, the remaining dark spaces in MR 

images can be labeled as air and excluded from the following tissue classification process. 

The air spaces were identified by thresholding the MR images in non-bone spaces at 

intensity cutoffs of 300, 150 and 300 for the T1-weighted, water and fat images respectively. 

All images were normalized by the mean intensity of the T1-weighted images before 

thresholding. Examples of the thresholded MR images with and without the bone mask are 

shown in figure 15. Without the bone identification step, intensities of bone voxels and air 

voxels both fall below the threshold, resulting in mixture of air and bone. After the bone 

identification step, bone area was first masked out before thresholding and air regions were 

identified without mislabeling bone as air.

Including the 2nd and 3rd principal modes into the model resulted in an averaged 

improvement in coverage of bone of less than 2% prior to dilation. After the 5 mm dilation 

was applied, the difference between the model with 3 modes and the model with 1 mode was 

only 0.06%. On the other hand, the model with 3 modes resulted in an air misclassification 

rate slightly higher than the model with 1 mode. The difference was 0.2% without dilation 

and 0.3% after the 5 mm dilation. This result suggests that using the 1st leading mode may 

achieve a sufficiently accurate model for separation of bone and air while maintaining 

simplicity and computational efficiency.
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4. Discussion

In this study, we investigated a female bone shape model to facilitate bone identification as 

the first step in the workflow of synthetic CT generation from pelvic MR data. By 

identifying a space that contains the pelvic bones plus a small expansion, a simple intensity 

threshold can be applied to the remainder of voxels within the pelvis to exclude air voxels 

from the tissue classification process, without mislabeling bone as air. This permits 

classification of bone without the use of ultrashort TE imaging in the pelvis.

While previous investigations of pelvic shape model (Chintalapani et al 2007, Thompson et 

al 2008, Gao et al 2013) aimed at contouring bone structure accurately and evaluated the 

resulting models by surface distance, we focused on a simpler problem of identifying a 

region that contains bone and excludes air. Therefore we evaluated the model in terms of the 

coverage of bone and the overlap with air. Under this evaluation criterion, a single principal 

mode was observed to achieve sufficient accuracy, which reduced the model complexity as 

compared to most existing methods where more than 10 modes were typically involved. In 

comparison to results reported in existing work, our method gains computational efficiency 

where the one segmentation takes 69 s on average on a shared 2.8 GHz CPU with 40 cores 

(i.e. we do not specifically allocate all cores as other jobs run with equal priority), as 

compared to 2.5 h on an 8-core machine with a 3.2 GHz CPU as reported (Gao et al 2013). 

Spatial dilation was further introduced to improve the coverage of bone, while the overlap 

with air remained reasonably small even with a 5 mm dilation that covered 96% of pelvic 

bone voxels. By performing PCA on B-spline coefficients instead of deformation vectors, 

we were able to produce a more compact shape model that reduced computational burden 

for alignment with MR images. With the constraint enforced by the shape model, local 

minima in the search space were removed effectively thus allowing an efficient binary 

search scheme to be used to find the optimal solution. The proposed method achieved 

reasonable accuracy on a heterogeneous dataset with variations in image quality, suggesting 

the model may be robust to potential imaging artifacts.

Our investigation used a randomly selected sample from the dataset as the reference image, 

which may introduce bias and systematical error in bone identification, such as the missing 

bone voxels at the top of pelvis, as shown in figure 11. In the future, more sophisticated 

model construction schemes, such as multi-atlas fusion (Gao et al 2013) or iterative boosting 

(Chintalapani et al 2007) may be explored to remove the potential bias and improve model 

performance and a larger training dataset may be investigated to construct a more 

representative shape model. The next step will also incorporate this model into the entire 

workflow of synthetic CT generation and further validate its sufficiency in supporting 

treatment planning by comparing the final bone classification result on MR images to results 

on CT images as well as the dose calculated from synthetic CT images to the ones calculated 

from real CT images.
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Appendix

An illustrative example of using the binary search scheme to find the optimal coefficient is 

given below, where the shape model consists of the first leading principal mode only.

Initialize α = [α(1), α(2)], convergence threshold ε, maximum number of iteration N.

Set j = 1. Set mean square error D0 and difference between iterations d to be sufficiently large.

while d >ε and j<N

 v1 = v̄+ α(1)m1, v2 = v̄+ α(2)m1, T1 = B(v1) and, T2 = B(v2)

 If D(T1(A), M) > D(T2(A), M)

  α =[(α(1) + α(2))/2, α(2)]

 else

  α =[α(1), (α(1) + α(2))/2]

 end

  d = D0 – min (D(T1(A), M), D(T2(A), M))

  D0 = min (D(T1(A), M), D(T2(A), M))

  j = j + 1

 end

 if D(T1(A), M) > D(T2(A), M)

  output α(2)

 else

  output α(1)

end
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Figure 1. 
Flow chart showing the model construction and evaluation processes.
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Figure 2. 
Example MR and CT images from one study subject. (a) T1-weighted (in-phase), (b) fat, (c) 

water and (d) CT image.
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Figure 3. 
Example T1-weighted MR images used for this study with different image qualities. Left: 

image that shows motion artifacts (lines indicated by red arrows). Right: image of relatively 

high quality.
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Figure 4. 
CT image (a) before and (b) after preprocessing.
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Figure 5. 
Landmarks placed on CT image volumes to assist alignment.
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Figure 6. 
(a) Reference image. (b) Target image with deformation vectors. (c) Deformed reference 

image.
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Figure 7. 
Percentage of variance explained by each mode.

Liu et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2017 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Deformation fields corresponding to the first principal mode with the reference image in the 

(a) axial plane and (b) coronal plane.
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Figure 9. 
Contours of two deformation samples (red and green) using the first principal mode with the 

respective coefficients of 5 and −15 of the standard deviation of the population, with the 

reference CT images (grey) in the axial (left) and coronal plane (right).

Liu et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2017 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Plot of the objective function values with (a) the coefficients of the 2nd versus 3rd principal 

mode at the optimal value for the coefficient of the 1st principal mode, (b) the coefficients of 

the 1st versus 3rd principal mode at the optimal value for the coefficient of the 2nd principal 

mode, and (c) the coefficients of the 1st versus 2nd principal mode at the optimal value for 

the coefficient of the 3rd principal mode.

Liu et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2017 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Analysis of the location of missing bone voxels. Left: percentage of missing bone voxels in 

each axial slice, two peaks appear at slice 81 and slice 175. Right: (a) axial slice 81 of the 

reference image. (b) Coronal plane with yellow line corresponding to axial slice 81. (c) 

Axial slice 175 of the reference image. (d) Coronal plane with yellow line corresponding to 

axial slice 175.
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Figure 12. 
Example pelvic CT images with color wash indicating bone voxels identified by the 

deformed reference image for 4 patients that have different model performances: (a) patient 

that has bone coverage of 93%. (b) Patient that has bone coverage of 94%. (c) Patient that 

has bone coverage of 85%. (d) Patient that has bone coverage of 79%.
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Figure 13. 
Left: fraction of correctly identified bone voxels under various radius of dilation. Right: 

fraction of air voxels mislabeled as bone under various radius of dilation. The length of the 

error bar corresponds to the standard deviation across the population.
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Figure 14. 
Labeled regions (green) of the reference image overlapped with the target image (with red 

contours for bone region) (a) before deformation (b) after deformation and (c) applying a 5 

mm dilation of the labeled region after deformation.
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Figure 15. 
(a)–(c) Thresholded fat, T1-weighted and water image without bone mask. Threholded 

regions were contoured by red lines. (d)–(f) Thresholded fat, T1-weighted and water image 

after bone identification. Thresholded regions were contoured by green lines.
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