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Abstract

Topic models and neural networks can discover meaningful low-dimensional latent repre-
sentations of text corpora; as such, they have become a key technology of document repre-
sentation. However, such models presume all documents are non-discriminatory, resulting
in latent representation dependent upon all other documents and an inability to provide dis-
criminative document representation. To address this problem, we propose a semi-super-
vised manifold-inspired autoencoder to extract meaningful latent representations of
documents, taking the local perspective that the latent representation of nearby documents
should be correlative. We first determine the discriminative neighbors set with Euclidean
distance in observation spaces. Then, the autoencoder is trained by joint minimization of
the Bernoulli cross-entropy error between input and output and the sum of the square error
between neighbors of input and output. The results of two widely used corpora show that
our method yields at least a 15% improvement in document clustering and a nearly 7%
improvement in classification tasks compared to comparative methods. The evidence dem-
onstrates that our method can readily capture more discriminative latent representation of
new documents. Moreover, some meaningful combinations of words can be efficiently dis-
covered by activating features that promote the comprehensibility of latent representation.

Introduction

The performance of document analysis and processing systems based on machine learning
methods, such as classification[1][2], clustering[3][4], content analysis[5], textual similarity[6],
and statistical machine translation (SMT)[7], is heavily dependent on the level of document
representation (DR), as different representations may capture and disentangle different degrees
of explanatory ingredients hidden in the documents[8]. From the view of bag of words model,
a document is typically represented via a point or vector in space whose dimensions (features)
represent certain aspects of the document, such as observed variable (i.e., word or phrase). The
vector space model (VSM) presents document vectors with different term-weighting
approaches to observed words, such as tf-idf. However, such a representation ignores the
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semantic relations between words; due to the phenomena of polysemy and synonymy,
observed words are highly correlated.

Some attempts to extract meaningful latent representations in text corpora have been pro-
posed to overcome the limitation of the VSM. Latent semantic indexing (LSI)[9] decomposes
the original vector space and project documents onto a subspace that captures the semantic
relations between words. Several unsupervised topic models that have shown superior perfor-
mance over LSI, including probabilistic latent semantic analysis (PLSA)[10] and latent
Dirichlet allocation (LDA)[11]. These models conceptualize each document as a list of mixing
proportions of latent topics, thus interpreting each topic as a distribution of vocabulary[12].
Such models can reveal latent topic representations by implicitly preserving the statistical rela-
tion of word co-occurrence[13]. Some supervised topic models, such as supervised latent
Dirichlet allocation (SLDA)[14] and MedLDA[15], use side information (i.e., category labels)
to improve the predictive power of latent document representations. Neural networks can also
capture meaningful latent document representations (i.e., distributed representations) with
deep learning techniques, including autoencoders[16], restricted Boltzmann machines (RBMs)
[17], neural topic models (NTMs)[18] and document neural autoregressive distribution esti-
mators (DocNADEs)[19]. These methods use the word count vector as input and synthesize
the input through different hidden layers of various deep neural networks. Similar to topic
models, such hidden layers can provide low-dimensional document representations. In
essence, topic models and neural networks are embedded with latent factors or topics, preserv-
ing the salient statistical structure of intra-documents[19]. Although they represent an
improvement for DR, such methods take a global perspective on document space as Euclidean,
assuming that all documents are non-discriminatory and indicating that the latent representa-
tion is dependent on all other documents. Thus, they cannot provide more discriminative
representation. However, recent studies[20][21][22] have shown that natural observations,
such as documents and images, concentrate in the vicinity of a smooth lower-dimensional
manifold, unable to fill up the Euclidean space. Consequently, better representation of the
latent document semantics depends on modeling the local document relationship within a
neighborhood.

Several topic models that consider the geometrical structure of documents were proposed,
such as Laplacian probabilistic latent semantic indexing (LapPLSI)[23], locally consistent topic
modeling (LTM)[24], and the discriminative topic model (DTM)[25]. Such models provide
topic distributions that concentrate around the document manifold and are more effective
than PLSA and LDA in text clustering and classification. However, they rely on the explicit
construction of neighborhood graphs and fail to provide a definite mapping function between
latent representations and manifold. Regarding neural networks, two autoencoder variants—the
denoising autoencoder (DAE)[26] and the contractive autoencoder (CAE)[27]-demonstrate a
promising ability to learn robust latent representations, which could induce the “intrinsic data
structure”. However, these methods consider self-reconstruction without considering valuable
class label information. Thus, learned representations may not be sufficiently reasonable in
terms of similarity measurements because the representations of inter-class neighbors may
congregate in the latent space[28].

Our main contribution is that taking a localized approach, we propose a semi-supervised
manifold-inspired method known as the locally embedding autoencoder (LEAE). Given an
input vector regarding the bag of words representation of each document, LEAE extracts
meaningful low-dimensional latent representation via a regularized autoencoder, assuming
that the latent representation of each document is strongly associated with its neighbors. Spe-
cifically, based on locally Euclidean hypothesis, we first select the neighbors belonging to the
same categories according to the Euclidean distance in observations space. Then, through the
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encode-decode process of autoencoder, we synthesize a same size vector with input vector as
output to approximate the bag of words representation of input and neighbors. Finally, we
extract hidden layer value of autoencoder as low-dimensional latent representations. The
major difference is that the autoencoder is trained via the joint minimization of self-recon-
struction error defined as the Bernoulli cross-entropy error between input and output (Empiri-
cal cost), as well as the sum of square error (SSE) between neighbors of input and output
(Regularizer).

In contrast to LapPLSI, LTM and DTM, our method can provide an explicit parametrized
embedding mapping y = fo(x) for extracting the latent semantic representation of new test doc-
uments via the estimated parameters of an encoder. In addition, because selected neighbors
must have the same class label as the input data, class information is used in our method
implicitly, thus enabling LEAE to capture the discriminative structure simultaneously. Finally,
we view the activating features, including the connected weights of the hidden neural, as a syn-
thetic document and investigate those words with the strongest activating connections. Some
understandable combination of words is detected, which can improve semantic comprehen-
sion of latent representation. We provide empirical evidence on two different lengths using a
widely used dataset (20 newsgroups and Web-snippets) and demonstrate the superiority of
LEAE compared to comparative techniques.

Related Work

Laplacian eigenmaps (LEs) have demonstrated that manifold property can be a discrete
approximation by the nearest neighbor graph of scattered observation points[21]. Conse-
quently, based on PLSA, LapPLSI, LTM, and DTM use manifold structure information by
incorporating graph regularization on the original objective function of PLSA. As a result, the
topic distribution P(zx|d;) can assign more similar latent representation to documents that are
located closely on the manifold. The graph regularization can be defined as follows:

Z,-,j W, Dist(y,.y,), (1)

where y is latent representation and Dist(.) is a function used to measure distance in the latent
representation space. Wj; is the edge weight of the nearest neighbor graph between instances i
and j [25].

The major difference between these models is the definition of Dist(.). LTM adopts the Kull-
back-Leibler (KL) divergence as the distance in the latent representation space, whereas DTM
and LapPLSA define Dist(.) as the Euclidean distance. Additionally, to inherit the full discrimi-
nating power from the global manifold structure, DTM goes further to consider negative rela-
tionships over documents[25]. Such models address out-of-sample data optimally through an
inclusive approach, which must reconstruct the nearest neighbor graph of new data and fit the
model again. This requirement is necessary because LEs cannot provide a specific mapping
relationship from the input space to the latent space for out-of-sample data. Repeating the
entire modeling process is inefficient and limits the usefulness of these methods in practical
usage.

The basic autoencoder, also called autoassociators[29], is a one-hidden-layer multi-layer
perceptron (MLP) aiming to reconstruct the original input as correctly as possible. Therefore,
the expected output of the autoencoder is the input itself. It consists of an encoder fp, which
encodes an input vector x€R? to a latent representation y = fy(x)€R¥, as well as a decoder gy,
which decodes y back to the input space x = g, (y) as the reconstruction of x. The parameters
0, 0' are learned via a back-propagation algorithm to minimize reconstruction error (RE) over
a dataset. Based on the basic autoencoder, the DAE[26], CAE[27] have been proposed by
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adding an additional regularization term, which aims to obtain a better latent representation
of observation data concentrated in the vicinity of a smooth lower-dimensional manifold.
DAE corrupt the input stochastically and learn to recover the uncorrupted input from the cor-
rupted data[30]. During denoising training, DAE may capture the manifold structure of the
input distribution. CAE adds the Frobenius norm of the encoder’s Jacobian to the objective
function of the basic autoencoder, and thus, the results are less sensitive to the input despite
being sensitive to variations along the high-density manifold[8]. However, DAE and CAE
focus purely on self-reconstruction without explicitly modeling the data relationship. To
address this issue, Generalized Autoencoder (GAE)[31] first model the data relationship by
computing relational weights between each instance of x; and other data {xj, x. . .} and then
use the encoded latent representation to reconstruct other relational instances with relational
weights while ignoring self-reconstruction. The DAE, CAE and GAE disregard valuable class

label information.

Methods

The block diagram of our approach is shown in Fig 1, and the main idea is as follows: moti-
vated by manifold hypothesis that assume natural observations in high-dimensional spaces are
likely to generate from a low-dimensional manifold [32], we assume that document representa-
tion in the observation space is generated from a smooth, low-dimensional manifold and wish
to recover document representation in the latent low-dimensional space based on observation
data via an explicit embedding mapping. Specifically, supposing that such latent document
representation is strongly dependent on its neighbors, from the view of bag of words model, we
first represent each document in the forms of a count vector, and select the discriminative
neighbors set with Euclidean distance in the observation space. Then, the autoencoder is
trained by jointly minimizing the Bernoulli cross-entropy error between the input and output
(Empirical cost), as well as the SSE between the neighbors of the input and output (Regularizer).
Finally, the encoder y = f (x) can play the role of an explicit parametrized embedding mapping

function in extracting the latent representation of new test documents.

Discriminative
neighbors

|

Discriminative
neighbors selection

A\ 4

—
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Fig 1. Block diagram of the locally embedding autoencoder.

doi:10.1371/journal.pone.0146672.g001
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Discriminative neighbor selection

In mathematics, manifold is interpreted as a topological space that resembles Euclidean space
near each point, this can be referred as locally Euclidean or local consistency. From the view of
manifold, manifold is locally Euclidean in that every point has a neighborhood, called a chart,
homeomorphic to an open subset of R". The coordinates on a chart allow one to carry out com-
putations as though in a Euclidean space[33]. Therefore, we first find the nearest neighbors
with the Euclidean distance and then select the nearest neighbors with the same category label
as those discriminative neighbors, which provide a local discriminative geometrical structure.
Given a training document-word matrix{X(l), X9 .X(m)}, let X© = [xp, .. .} . . .x4] De the
document vector, a d-dimensional vector in the word space R?, where d is the size of vocabu-
lary, and x; is a measurement of term frequency (tf) of the word j. Specifically, to prevent a bias
towards longer documents, we adopt a ratio of a term’s occurrences in a document and the
sum of term frequency of any word within the same document. Let C” be the class label of X
and S = (X, X®K)} be a set of discriminative neighbors. This relationship is illustrated in
Fig 2, where “+”and “-” denote documents with different labels. For document XP1ocated on a
manifold M, the area surrounded by the dotted line contains its discriminative neighbors.
Table 1 is the procedure used to determine the set of neighbors in our method.

Locally embedding the autoencoder

To find an explicit parametrized embedding mapping for recovering document representation
in the latent space based on observation data, we employ the autoencoder to extract the latent
representation by the encoder and then reconstruct the document representation in the obser-
vation space by a decoder. For a document XV =[x,,. .., x4],let YV = [¥1>- - > yn] be the latent
representation of X, which is a h-dimensional vector in latent space R”, where h is a quantity
of dimensions, and d > h. Let ZV = [z,.. . ., z4]denote the reconstruction representation of x®,
where z; denotes the occurrence probability of the dth word in the vocabulary.

Boolean matrix transformation. For a document X = [x;,. . ., x4], we only focus on
whether one word occurs, ignoring frequency, because high-frequency words may not always
reflect their importance to the document. Here, we suppose that the occurrence of a word is
related to binary random variables, transforming the document-matrix into a Boolean matrix.
Specifically, for ith word in the vocabulary, we have

i

1, if x;, > 0, or word i occur
= (2)

0, otherwise

Discriminative
neighbors set of X

X7
Fig 2. Geometrical representation of discriminative neighbors for X,

doi:10.1371/journal.pone.0146672.9002
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Table 1. Pseudo-code of Algorithm 1.

Algorithm 1 Select the discriminative neighbor set

Input: K is the nearest neighbor numbers, and D = {(X”, C"), .. .(x?, C%), .. (x™, C™)}.

Output: discriminative neighbor set S

For each instances (X?, C?)
Compute its Euclidean distance to some other document vector d(X?, X?), subject to C? = C? and (i # j);
Rank d(X?, X?) and select the Kth nearest instances to X @

End for

doi:10.1371/journal.pone.0146672.1001

Therefore, we obtain a binary vector to represent each document and use the LEAE to carry
out the reconstruction process. It should be emphasized that the Boolean matrix transforma-
tion is performed only when a document vector weighted by tfis the input, and the discrimina-
tive neighbors of the input will not be transformed.

Locally embedding reconstruction. As illustrated in Fig 3(a), the reconstruction process
of input document X®can be defined as follows:

« Firstly, latent representation can be generated via encoder Y = f; (X)) = o(Y | X¥, W, b);

« Next, the decoder Z® = gy (Y?) = 0(Z | Y¥, W, ¢) is responsible for the allocation of word
occurrence under Y;

Consequently, the parametric form of Z9 is
7Y = g,(f(X?")) = a(W'a(WX" +b) + ¢). (3)

where o is the element-wise logistic sigmoid o(a) = (1+exp{a})™’, Wis the weight matrix of the
encoder, which connects the input layer and hidden layer, and W is the weight matrix of the

decoder, which is shared with the encoder (tied weights); b is bias of the hidden layer; and c is

the bias of the output layer.

In contrast to the basic autoencoder, we suppose that latent representation depends on the
input as well as the discriminative neighbors of the input. That is, a good latent representation
should be a likely encoding of the data permitting approximation of word occurrence in each
document and its neighbors with high probability. Therefore, we define the reconstruction
error with the Bernoulli cross-entropy error between the input and output (Empirical cost) and
the SSE between neighbors of the input and output (Regularizer). The reconstruction error is
expressed as follows:

d
(i) (). _ | (1) (1) oy () - (i) _ ()2
J(x¥,89:0) = jEZl (X;"log(Z") + (1 — X;")log(1 — Z;")) +2K E . (|IX¥) — Z9||". (4)

K is the size of the discriminative neighbors set, and X refers to an element of the discrim-
inative neighbors set in relation to X*. d indicates the size of X and Z'”, and 1 is a non-nega-
tive hyper-parameter that has control over the trade-off between Empirical cost and
Regularizer.

The LEAE defines an artificial document as the target output by incorporating the distinc-
tive word co-occurrence patterns within discriminative neighbors. Through minimizing the
joint error over Empirical cost and Regularizer, the autoencoder can yield an output close to the
geometrical centroid of discriminative neighbors and the input (see Fig 3(b)). In other words,
our method finds an explicit parametrized embedding mapping that varies smoothly along
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J(X(z)) X(z',s), 700 ) Back- observations space
propagation
= Z(l) y Z(l)
1 @)
, g
Decoder < g(@)
Latent space
> v Y’
A '
Encoder < o)

(a)

observations space

X7

(b)

Fig 3. (a) shows the architecture of the autoencoder, whose input and output layers have the same size despite having smaller hidden layers. The bottom
network performs the role of an encoder, whereas the top network performs the role of a decoder; (b) geometrical representation of the LEAE.

doi:10.1371/journal.pone.0146672.g003

with neighbors of the input data and tends to generate similar representation to nearby points.
Therefore, LEAE can better capture semantic structure in the document manifold.
Parameter learning. To constitute an explicit parametrized embedding mapping, we must

find the value of parameter vectors 8 (W, b, and ¢) to minimize J(6; X, §D). The parameter
learning problem can be solved by training this regularized neural network with a mini-batch
stochastic gradient descent (SGD). The partial derivatives computation with respect to the
input X” is the key step of parameter learning. We first provide the following notation for the
partial derivative computation in Table 2:

Table 2. Some notations for the partial derivative computation.

d

h

X, I€{1,2, 5
aj

X,w

zj, IE{1,2, 50
d}

Yi, i€{1,2,..
h}

w;

3 > o 0O T

J(6; X, s

&)

size of the input and output
size of the hidden units
value of the /th input

value of the /th j nearest neighbors of input
value of the /th output

value of the jth hidden unit

connecting weight between the ith hidden unit and jth input and connecting weight between
the ith hidden unit and jth output

bias of the hidden layer

bias of the output layer

any parameters to be estimated
non-negative regularization hyper-parameter
size of each batch training

reconstruction error for given input X

doi:10.1371/journal.pone.0146672.t002
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The J(6; X, S7) can be expressed as follows:
: " d ) K d
J(0; X9, 89) = | =Y (xlog(z) + (1 — x)log(1 — z))| + = z, —xV
( ) ;( log(z) + ( )log( ) 2K 2 ;H ] 1
Therefore, we have

oz —x Oz, 4
Z +2

z(1—2)00 K

=1

X i 821

k=1 I=1

According to the decoder and the logistic sigmoid function, we have

Z = (1 + exp{bl + Z; Wilyi})il'

(Wilyi(]' - yi)xj + ]'Z:jyi)(]' - Zl)zr

0z
B_Iﬂl. =Wy(1-y)(1-2)z.

9z, [(L-z)z ifl=]
% |0 ifl1#]

Finally, from these equations and Eq 6,

a] ;L K d
aiwl_j = E;Xj (1 =y)(z— xl<k)) + xjyi(l - )’f)Z(l —2z)z(z — xz(k))sz

=1

M&

+(Zj _xj)yi+yi( yz)'x] ( _xl)Wil'
=1
] 4 P& d
b yi(1 _yi)Z(Zl —x)W, "’E 1=y Z (1-2)z(z — x“)W,.
i =1 k=1 =1
o] &
9 (zy— %) + % (1-2z)z(z - xz(k))~
j k=1

The pseudo-code of the parameter learning algorithm is shown in Table 3.

Experiments

(10)

Here, we first investigate two common applications of DR (i.e., document clustering and classi-

fication) to assess the discriminative performance of the LEAE. We compare the LEAE with
several unsupervised and supervised state-of-the-art approaches using two widely used text

corpora (20 newsgroups and Web-snippets).
« Latent semantic indexing (LSI, unsupervised)[9];
« Supervise latent Dirichlet allocation (SLDA, supervised)[14];

o Locally consistent topic modeling (LTM, supervised)[24];

PLOS ONE | DOI:10.1371/journal.pone.0146672 January 19, 2016
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Table 3. Pseudo-code of Algorithm 2.

Algorithm 2 Parameter learning for LEAE

Input: The training set {X®}",.

Output: the parameter of embedding mapping W, b, c;
Randomly shuffle the training set. Randomly initialized W, b, ¢

For each epoch

For each batch instances {X¢

n
Yima

Select the discriminative neighbors set of X?;

Calculate the activations for the hidden layer and output layer via a feedforward pass;
Compute the partial derivatives in regard to the input as Eqs 11, 12 and 13

oJ oJ
Compute: AW = ZW_J_ 3_W,-,-’Ab = ZW_ 8_b,’AC = ana_c,

oJ

Update: W =W — (' /,AW);b = b — a(*/,Ab);c = ¢ — a('/,AC)

End for
End for

doi:10.1371/journal.pone.0146672.t003

« Discriminative topic model (DTM, supervised)[25];

o Denoising autoencoder (DAE, unsupervised)[26];

Contractive autoencoder (CAE, unsupervised)[27];

o Discriminative LDA (DLDA, supervised)[34];

« Latent Dirichlet allocation with belief propagation (LDA-bp, unsupervised)[35];

o The approach using raw word histograms (VSM, unsupervised)

In addition, we also assess whether the LEAE can obtain discriminative representations of
documents without considering the class labels in Algorithm 1(LEAE with unsupervised,
denote LEAE-us). For example, we assume all document belonging to the same class.

Datasets

The 20 newsgroups corpus is a widely used corpus belonging to 20 related categories. Here, we

use the preprocessed version, which does not include cross-posts (duplicates) and newsgroup-
identifying headers (Xref, Newsgroups, Path, etc). It includes 18,821 documents and 8,156 dis-
tinct words. Web-snippets is a set of search snippets belonging to 8 domains/categories, which
are available online [36]. It has 12,340 snippets with 30,338 distinct words. Search snippets are
short, sparse and less topic-focused, thus resulting in difficulties related to topic modeling.
Table 4 shows some statistical information for those datasets, where D is the amount of docu-

ments, W is the vocabulary size, D is the average length of documents, St.Dev is the standard
deviation in document length, D;,,;,, is the size of the training set, and D, is the size of the test

set.

Table 4. Statistical information of the 2 corpora.

Corpus D w D St.Dev Dy ain Diest
20 newsgroups 18,821 8,165 65.29 75.31 12,000 6,821
Web-snippets 12,340 30,338 12.99 3.60 9,000 3,340
doi:10.1371/journal.pone.0146672.1004
PLOS ONE | DOI:10.1371/journal.pone.0146672 January 19, 2016 9/20
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Experimental procedure

To obtain a fair experimental performance, we conducted 5 runs for the 2 datasets. First, we
randomly shuffled both corpora 5 times and divided each corpus into 2 parts. In the 20 news-
groups corpus, we saved 6,821 documents for test purposes and trained LEAE and other com-
parative models on the remaining 12,000 documents. In the Web-snippets corpus, we saved
3,340 snippets for a test and trained different models on the remaining 9,000 documents. Next,
in the first run, the training set was used for the training model by 5-fold cross validation (CV).
The optimal parameters of all approaches were obtained based on performance. Finally,
another 4 runs were conducted on the remaining 4 shuffled datasets with the same chosen
parameters. Fig 4 is the flow diagram representing this experimental procedure.

For the LEAE and LEAE-us, we adopted the mini-batch SGD to minimize Eq 4 with the
optimal hyper-parameters obtained after 5-CV (n = 100, a = 1.2, epoch = 30, K =7, A = 100).
Finally, we utilized the explicit parametrized embedding mapping to extract the latent repre-
sentation. In particular, for LEAE, we treat the domains of Web-snippets as categories to select
the discriminative neighbors set.

For the LTM and DTM, we fixed 20 neighbors for the construction of neighborhood graphs,
and selected A = 1,000, indicating that graph regularization plays a more important role when
learning topic distribution. In addition, we used class label information to compute the similar-
ity matrix by adding an edge between two documents related to the same class and removing
an edge between documents related to different classes[24]. In contrast, for the construction of
the dissimilarity matrix W, an edge should be added for documents related to different classes
and removed for documents related to the same class. To address the limitation on handling a
previously unseen document, we employ inclusive approaches that rebuild similarity and dis-
similarity matrices with out-sample documents, retraining the model based on these matrices
[25]. Since the graph regularization of the LTM and DTM is based on LE algorithms, which
cannot provide a specific mapping function from the manifold to the output embedding[37].
This step gives both models an unfair advantage over other models.

We trained LDA with belief propagation under the same hyper-parameters setting[35] o, 8
= le — 2, and max iterations = 500. We also carried out a comparison with LSI using a Matlab
toolbox. For SLDA, we trained the topic model under the following setting: var max iter = 100;
var convergence = le-3; em max iter = 300; em convergence = le-4; L2 penalty = le-2;

5-CV with

training 1
__:— I'—__ \—> Docurnpnt Clustering A,C? ior S
Training 5 modeling uns
T
ETETE shuffle —
Test 1 . . F for 5
20 &Web v Classification > uns
neWSgroup = & E Extract Latent
Sippets = FF representation
=F

Test 5
Fig 4. Flow diagram of the experimental procedure.

doi:10.1371/journal.pone.0146672.9g004
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20 newsgroup
0.9 T T T

alpha = 1e-2; initialization is "random". For DLDA, we obtained the parameters using a Matlab
toolbox with random initialization.

Experimental results

Discriminative performance evaluation of clustering. We employed K-means to group
test documents formalized in the latent representation space. As a common technique for sta-
tistical data analysis, K-means automatically groups instances according to their distances in
the representation space, which can reveal the intrinsic structure of a corpus. We fixed the
number of clusters at 20 and explored several numbers of topics (50, 100, 150, 200, 250 and
300). The clustering results for the 5 shuffled datasets were evaluated for clustering accuracy
(CA). Given document X?, let C; be the assigned cluster id and S; be the original label. The
computation of CA is as follows[24]:

CA = (14)

N
Zi:l o(S;, map(C,))
N .
where N indicates the size of the test documents and map(C;) matches C; to equivalent docu-
ment labels. The determination of optimal mapping can refer to the Kuhn-Munkres algorithm
[38]. d(x, y) is delta function defined as follows:

1, ifx=
d(x,y) = { fr=y (15)

0, otherwise '

Fig 5 demonstrates the average performance of several methods over 5 runs. As shown in
the results, several methods that extract latent representation outperform VSM. Moreover,
compared with approaches that suppose that the document is located in the Euclidean space
(i.e., LS, LDA-bp, SLDA, and DLDA), LEAE, DTM and LTM can still achieve better perfor-
mance, whereas CAE and DAE show slight improvements over LSI and LDA-bp but lag behind

Web-snippets
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Fig 5. CA of different models on both the 20
as standard deviations.

doi:10.1371/journal.pone.0146672.9g005

newsgroup (left) and web-snippet (right) datasets, with each point consisting of a mean value as well
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LEAE-us

Fig 6. 2D embeddings of the latent representations on the 20 newsgroups.

doi:10.1371/journal.pone.0146672.9g006

DLDA and SLDA. Among all of these methods, LEAE improves the CA by up to 15% com-
pared to the other methods, and the average performance is also steadier for both corpora
when compared with other manifold-based methods. In particular, for the web-snippets, our
method still achieves satisfactory results even when the dimension number is 50. In addition,
the LEAE-us show the superiority to other unsupervised approaches, furthermore, LEAE-us is
even better than some supervised approaches, such as LTM and SLDA. This evidence demon-
strate LEAE with unsupervised setting is also able to enhance clustering performance to some
extent.

Moreover, to analyze discriminative performance, t-Distributed Stochastic Neighbor
Embedding (t-SNE)[39] was adopted to visualize the 2D embeddings of latent representations
generated from different approaches.

Figs 6 and 7 present scatter diagrams of the 2D embeddings of latent representations over
the 2 corpora. Each dot indicates a document and each marker denotes a class. The evidence
shows that our method provides more separable representation in the 2D embedding space
than the other methods.

Discriminative performance evaluation of classification. In this section, we further com-
pare the influence of discriminative power provided by several models in a supervised setting.
We obtained latent representation of the 5 shuffled test sets and randomly divided it into 2
equal parts. One is applied for test purposes, and the other is used to train the classification
model of 1-nearest neighbor (1-NN) and the support vector machine (SVM), respectively. We
implemented the classification framework based on WEKA, which provided several popular
classification algorithms. In this paper, we used “lazy.IB1” for 1-NN, but for SVM, we employ

PLOS ONE | DOI:10.1371/journal.pone.0146672 January 19, 2016 12/20
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Fig 7. 2D embeddings of the latent representations of web-snippets.

doi:10.1371/journal.pone.0146672.g007

publicly available java code “LIBSVM?”, which could be easily executed by WEKA. In particular,
we achieved the classification model by incremental training by testing 50% and training 10%,
30%, and 50%. Because the two corpora contain multiple categories, we used the weighted F-
measure F to estimate the accuracy of the classification model, which is calculated as follows:

F= —Zg"F" . (16)

where ¢; is the proportion of instances in test set categories i and C is the size of the test set. F; is
the F-measure of categories i, which can be calculated based on the precision P; and recall R;.
The P, R; and F; are defined as follows:

_ {relevant documents}| N |{retrieved documents}|

; ; (17)

|{retrieved documents}|

_ |{relevant documents}| N |{retrieved documents}|

; (18)

' |{relevant documents}|
P.-R
F=2. -1 (19)
P, +R

F represents a weighted average of the classes’ F-measure, where a higher score indicates
better classification performance. Fig 8 is the average F and standard deviations after 5 runs on
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Fig 8. Average classification performance of several models on 20 newsgroups with 1-NN (top) and the SVM (bottom).

doi:10.1371/journal.pone.0146672.g008

20 newsgroups with 1-NN (top) and the SVM (bottom). The figure provides the classification
performance when training size is 10%, 30% and 50% of the testing size (from left to right).

Fig 8 illustrates that such manifold-based methods (i.e., LEAE, DTM, LTM, CAE and DAE)
achieve better F. Around all methods, LEAE shows more significant improvement of classifica-
tion performance. Specifically, when the number of training instances equal the number of test
instances (right figures), the LEAE increases the average F by up to 80.09% (1-NN) and 82.09%
(SVM). However, when the ratio of training instances and test instances is 1:5 (left figures), the
contribution of our approach is larger than the other remaining methods, at 77.83% (1-NN)
and 80.17% (SVM). Another significant advantage of the LEAE is that its performance is con-
sistently the most stable.

Fig 9 provides the average F and standard deviations of 5 runs on web-snippets. The figure
shows the classification performance when the training size is 10%, 30% and 50% of the testing
size (from left to right). The similar evidence shown in Fig 8 demonstrates that the average F
achieves close to 90%, superior to other models. The performance of the LEAE is the most sta-
ble consistently with different training instances. In particular, semi-supervised manifold-
based approaches (DTM and LTM) fail to promote average performance, as expected, although
they achieve better results than LDA-bp and LSI. Besides, as shown in Figs 8 and 9, LEAE-us
achieves satisfactory results and almost beat other methods in some cases.

Comprehension of latent representations. To give each dimension of the latent represen-
tations a reasonable interpretation, we consider in particular the value of each dimension of
latent representation Y? for given document X®. In our method, Y* consists of the hidden
layer output, whose dimension is the sigrmoid activation. In detail, the output of unit j, denoted
as Yj(u , depends strongly on the dot product of the input X and its synaptic weights, denoted

PLOS ONE | DOI:10.1371/journal.pone.0146672 January 19, 2016 14/20
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Fig 9. Average classification performance of several models on web-snippets.

doi:10.1371/journal.pone.0146672.9g009

as W; (ignoring the bias term). That is, the synaptic weights associated with that neuron
uncover an activating pattern, hence, we denote W; as activating features. As a synthetic vector
or point of latent space, W; provides the weight of each word, indicating the activating connec-
tions between the word space and latent space. Therefore, we treat each row vector of the
encoder parameters matrix as a synthetic document and select words with the top 5 activating
connections to investigate the meaning of each dimension in latent representations. Table 5
shows partial results and entire results can be found in S1 and S2 Tables under Supporting
Information section.

Table 5 illustrates for 20 newsgroups, the top 5 words from the hidden units 13(h13), 32
(h32), 30(h30) and 25(h25) can be understood as topics related to guns, sports, cars and the
Middle East. In web-snippets, h1, h31, h46 and h7 refer to health, education, sports and com-
puters. The results show that the activation of features is comprehensible and can efficiently

Table 5. Top 5 words to topic document of 20 newsgroups and web-snippets (dimension number = 50).

h13

gun

weapon

firearm

arm

control

doi:10.1371/journal.pone.0146672.1005

20 newsgroups

h25

Israel
isra
hate

kill
armenia

h30

car
bmw
driver
auto
speed

web-snippets

h32 h1 h7 h31 h46

player health programming graduate sports
game healthy language college football
season calorie java research match

bike food cache students golf

playoff prevention memory harvard tournament
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Table 6. Top 5 word to topic document of web-snippets (dimension number = 50).

Given word LEAE DTM

god jesu bibl christ christian satan christ satan belief atheist religion

doctor patient disease surgery diet physician patient medic disease cancer health
gun firearm batf handgun weapon nra weapon arm control nra clinton

team season score player sport playoff player season year sport fun

rocket spacecraft payload burster proton aurora spacecraft payload burster proton aurora
homosexu gay clayton heterosexual optilink molest men heterosexual gay sex cramer

bmw honda wheel steer ride biker Car wheel speed honda biker

graphic viewer imag tiff siggraph fractal display color imag fractal viewer

doi:10.1371/journal.pone.0146672.t006

capture some meaningful combinations of words, proving that the semantic structure is not
damaged. Consequently, our approach provides a feasible way for latent representation inter-
pretation via such activating features.

In addition, the LEAE can also provide word representation, using the column vectors of
the encoder parameter matrix, whose dimension is the weight connections to each hidden unit.
Table 6 shows the 5-nearest neighbors of a given wordfor 20 newsgroup, indicating that the
LEAE provides meaningful word representations. In particular, batf is abbreviation of Bureau
of Alcohol Tobacco and Firearms, and nra indicates National Rifle Association. Table 7 shows
the 5-nearest neighbors of a given wordfor web-snippets. We also provide the corresponding
result of DTM.

Discussion. The clustering results demonstrate that our method preserves the inherent
manifold structures in a corpus more successfully than other methods. Thus, this method can
easily discover more discriminative representation among unseen test documents that are
located on manifold. In particular, the experimental results show that unsupervised manifold-
inspired methods (i.e., LEAE-us, CAE and DAE) outperform LDA-bp and LSI, confirming that
the manifold hypothesis is reasonable. Fig 5 illustrates that our method outperforms other
supervised approaches(i.e., DTM, LTM DLDA and SLDA), in that the LEAE utilizes class
labels to find determining neighbors. Moreover, among all methods, the LEAE achieves the
best result and increases the CA by at least 15%, indicating that the LEAE can measure inherent
similarity between documents precisely and help to reveal the intrinsic discriminative geomet-
ric structure of a corpus. Similar conclusions can be found intuitively in Figs 6 and 7; the LEAE
not only preserves inner-class intrinsic structure but also reduces possible overlap and widens
inter-class margins. The reason we interpret this conclusion is that the assumption that the
latent representation of each document is strongly associated with its neighbors results in the
assigning of similar representation to nearby documents.

Table 7. Top 5 word to topic document of web-snippets (dimension number = 50).

Given word LEAE DTM

graduate research graduated edweek sponsorships e-newsletters research harvard e-newsletters college students
weapons nuclear detonated invasion republican elections bombs bomb weapon Irag military

militant militancy military sparta greekculture city-states military weapon Iraq republic political

matlab Mathworks matlabcentral developerworks athlon macintosh server matlabcentral intel operating windows
income consumption consumer gdp revenues investing market trade economic consumer buy

import export debt investor investing sell trade business investor sell global

iliness illnesses patient webmd infections complications patient prevention complications healthy medical
film movies movie artist artists imdb movies artists imdb artist music

doi:10.1371/journal.pone.0146672.t007
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Figs 8 and 9 prove that our representation provides better generalization abilities to deter-
minate the semantic label. The classification task is to learn a target function y = f(x) and to
identify to which categories new observations belong as accurately as possible. Hence, good
results indicate that the generalization relationship establishment between class labels and data
representation is easy. Based on structural risk minimization, the SVM avoids the local mini-
mum and provides better generalization abilities than other classification algorithms[40].
Although 1-NN is highly restricted in terms of the forms of data distribution in the representa-
tion space[41], it is derived from density estimation technology and simply assigns test data to
the same class as the nearest point from the training set. The LEAE achieved similar F values
on 1-NN and the SVM because the procedures that train the autoencoder to reconstruct not
only input data but also its discriminative neighbors can actually be interpreted to define an
artificial document as the target output of the autoencoder by incorporating the distinctive sta-
tistical patterns of word co-occurrence within discriminative neighbors. By minimizing the
reconstruction error, the LEAE will capture a likely latent representation of the document that
permits an approximation of the word occurrence in all related documents with high probabil-
ity. This eventuality will allow such documents belonging to the same category to be expressed
as similarly as possible in the latent space.

Moreover, the results for web-snippets show that the LEAE can achieve better generalization
performance for short documents and that our method is robust in representing documents
with sparse word co-occurrence patterns. This is mainly due to the additional reconstruction of
each document’s discriminative neighbors, which is an extension of the statistical pattern of
words in each text. In contrast, the classification results for web-snippets of the DTM and LTM
fail to improve the average performance, as expected. The reason for this result may be that the
explicit construction of neighborhood graphs is sensitive to short and sparse search snippets. In
addition, LEAE can perform a feedforward pass to extract the latent representation of new docu-
ments efficiently, whereas the DTM and LTM must reconstruct similarity and dissimilarity
matrices with new data and repeat the entire training process, which is clearly inefficient and
also gives this model an unfair advantage. We observe such results because LEs cannot give an
explicit mapping relationship to transfer graph regularization to an unseen test document.

Finally, this exploration of the meaning of our latent representation yields inspirational
results that some interesting and meaningful combinations of words can be found by activating
connections to hidden neural; a process which improves the semantic comprehension of latent
representation. However, we have not analyzed how many words are needed to present the
meaning of each dimension. Additionally, the determination of discriminative neighbors will
be improved by incorporating semantic analysis technology.

Conclusions and Future Work

In this paper, we proposed a semi-supervised manifold-inspired method, namely, the LEAE,
for document representation. In particular, we consider the local discriminative geometric
structure of the observation space and use an explicit parametrized embedding mapping to
extract the latent representation of documents by minimizing the reconstruction error over the
ambient Euclidean space. Consequently, the LEAE can readily assign more discriminative
latent representation to unseen test documents located on the manifold. The LEAE is also likely
to preserve inner-class instinct structure and reduce inter-class overlap. Additionally, the
LEAE can efficiently discover the semantic meaning of activating features that provide under-
standable latent representation.

In the future, we plan to explore further applications of our model, such as topic visualiza-
tion and understanding in the context of topic evolution analysis. In addition, it will be a
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challenge to develop a fast online learning algorithm to estimate parameters in practical
applications.
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