Skip to main content
. 2016 Jan 19;11(1):e0146672. doi: 10.1371/journal.pone.0146672

Table 2. Some notations for the partial derivative computation.

d size of the input and output
h size of the hidden units
xl, l∈{1,2,,d} value of the lth input
xl(j) value of the lth j nearest neighbors of input
zl, l∈{1,2,,d} value of the lth output
yi, i∈{1,2,,h} value of the jth hidden unit
Wij connecting weight between the ith hidden unit and jth input and connecting weight between the ith hidden unit and jth output
b bias of the hidden layer
c bias of the output layer
θ any parameters to be estimated
λ non-negative regularization hyper-parameter
n size of each batch training
J(θ; X(i), S(i)) reconstruction error for given input X(i)