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Abstract

Both type 1 and type 2 diabetes are associated with cardiac fibrosis that may reduce myocardial 

compliance, contribute to the pathogenesis of heart failure, and trigger arrhythmic events. 

Diabetes-associated fibrosis is mediated by activated cardiac fibroblasts, but may also involve 

fibrogenic actions of macrophages, cardiomyocytes and vascular cells. The molecular basis 

responsible for cardiac fibrosis in diabetes remains poorly understood. Hyperglycemia directly 

activates a fibrogenic program, leading to accumulation of advanced glycation end-products 

(AGEs) that crosslink extracellular matrix proteins, and transduce fibrogenic signals through 

reactive oxygen species generation, or through activation of Receptor for AGEs (RAGE)-mediated 

pathways. Pro-inflammatory cytokines and chemokines may recruit fibrogenic leukocyte subsets 

in the cardiac interstitium. Activation of transforming growth factor-β/Smad signaling may 

activate fibroblasts inducing deposition of structural extracellular matrix proteins and matricellular 

macromolecules. Adipokines, endothelin-1 and the renin-angiotensin-aldosterone system have 

also been implicated in the diabetic myocardium. This manuscript reviews our current 

understanding of the cellular effectors and molecular pathways that mediate fibrosis in diabetes. 

Based on the pathophysiologic mechanism, we propose therapeutic interventions that may 

attenuate the diabetes-associated fibrotic response and discuss the challenges that may hamper 

clinical translation.

1. INTRODUCTION

Epidemiologic studies have documented a strong association between diabetes and heart 

failure [1]. Data from the Framingham study demonstrated a 2-fold higher risk of heart 

failure in male diabetics and a 5-fold increase in risk in female patients with diabetes [2]. In 

the Reduction of Atherothrombosis for Continued Health (REACH) registry, an 

international study of patients with established atherothrombotic disease, or at high risk for 

of atherothrombosis, diabetics exhibited a 33% higher risk of hospitalization due to heart 
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failure [3]. Moreover, diabetes adversely affects prognosis in patients with heart failure. In 

the Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity 

(CHARM) program, diabetes was an independent predictor of morbidity and mortality in 

patients with heart failure, in both groups with systolic dysfunction and with preserved 

ejection fraction [4].

Despite its high clinical significance and important contribution to morbidity and mortality, 

diabetes-associated heart failure remains understudied [5]. From a pathophysiologic 

perspective, the increased incidence of heart failure in diabetics can be attributed to several 

factors. First, patients with diabetes have an increased incidence of coronary artery disease 

and develop atherosclerotic lesions at a younger age, often exhibiting multivessel disease 

and involvement of distal coronary segments. Second, hypertension is commonly found in 

both type 1 and type 2 diabetics [6] and may also be involved in the pathogenesis of 

diabetes-associated heart failure. Third, diabetes can cause distinct pathologic alterations in 

the myocardium, independent of its effects on blood pressure and coronary atherosclerosis. 

Histopathologic studies in myocardial samples from patients with diabetes [7] suggested a 

distinct entity, termed “diabetic cardiomyopathy” that may occur in the absence of coronary 

disease or other concomitant conditions and may contribute to the development of heart 

failure. In both human patients and in animal models of diabetes, interstitial and perivascular 

fibrosis are prominent characteristics of diabetic cardiomyopathy. Deposition of 

extracellular matrix proteins in the cardiac interstitium, and cross-linking of the matrix 

increase myocardial stiffness and may mediate diastolic dysfunction in the diabetic 

myocardium. Considering the high prevalence of heart failure with preserved ejection 

fraction (HFpEF) in diabetics, fibrotic myocardial remodeling may be critically implicated 

in the pathogenesis of diabetes-associated heart failure. The current manuscript reviews our 

understanding of the pathophysiology of diabetic cardiac fibrosis. We identify the cellular 

effectors mediating fibrosis in the diabetic heart, and discuss the molecular signals that may 

activate the fibrogenic response. Finally, we propose therapeutic interventions that may 

attenuate myocardial fibrosis, targeting heart failure in diabetic patients.

2. CARDIAC FIBROSIS IN DIABETICS

Extensive evidence has documented the presence of myocardial fibrosis in patients with 

diabetes. Cardiac magnetic resonance imaging often identifies myocardial scars 

(replacement fibrosis) in diabetics without a history of myocardial infarction; these findings 

likely reflect silent coronary events [8],[9]. Numerous histopathologic studies have 

demonstrated that cardiac fibrosis in diabetic patients occurs independently of coronary 

atherosclerosis or hypertension. Regan and co-workers showed that patients with adult-onset 

diabetes may exhibit extensive perivascular, interstitial, and even replacement fibrosis, in 

the absence of hypertension or coronary artery disease [10]. Myocardial fibrosis in diabetics 

is often accompanied by cardiomyocyte hypertrophy and by evidence of microvascular 

abnormalities, such as thickening of the capillary basement membrane [11]. Diabetes-

associated interstitial fibrosis is associated with accumulation of type I and III collagen, 

involves both left [12],[13] and right ventricle [14], and has been described in both type 1 

and type 2 diabetes [15],[16]. Relations between diabetes-associated fibrosis and cardiac 

function have not been systematically investigated. However, in a study examining biopsies 
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from patients with heart failure in the absence of coronary disease, diabetes was associated 

with increased collagen levels only in patients with reduced ejection fraction [17]. Diabetes 

is also associated with accentuation of fibrotic changes in patients with other cardiac 

conditions. In patients with aortic stenosis, diabetes was associated with worse myocardial 

stiffness and increased myocardial collagen content [18].

3. FIBROSIS IN ANIMAL MODELS OF DIABETES

Animal models of diabetes provide strong support to the association between diabetes and 

myocardial fibrosis. The severity of cardiac fibrosis and left ventricular dysfunction in 

experimental models of diabetes is dependent on the species, genetic background, gender 

and age of the animals studied, the etiology of diabetes and the presence of concomitant 

pathophysiologic conditions (such as hypertension, dyslipidemias, etc.) [19].

Streptozotocin-induced diabetes models have been extensively used to investigate the 

complications of type 1 diabetes. In rodent models, steptozotocin induces β cell toxicity and 

death, and triggers a T cell-mediated immune response, simulating human insulin-dependent 

diabetes [20]. In both mice and rats, streptozotocin-induced diabetes is associated with 

interstitial myocardial fibrosis, accompanied by cardiomyocyte hypertrophy, induction of 

pro-fibrotic and hypertrophy-associated genes, and microvascular rarefaction [21],[22],[23],

[24],[25]. In contrast, in a genetic model of insulin-dependent type 1 diabetes, the 

Ins2WT/C96Y Akita mouse, diastolic dysfunction was associated with a lipotoxic 

cardiomyopathy, in the absence of significant cardiac fibrosis and cardiomyocyte 

hypertrophy [26].

Pro-fibrotic effects of type 1 diabetes on the myocardium have also been demonstrated in 

large animal models. Mongrel dogs rendered diabetic through administration of alloxan 

developed significant myocardial fibrosis [27]. Alloxan-induced insulin-dependent diabetes 

had similar effects on rhesus monkeys, causing a 2-fold increase in left ventricular collagen 

content, in the absence of hypertrophy [28].

Cardiac fibrosis has also been documented in experimental models of type 2 diabetes 

(Figure 1). db/db mice express a truncated leptin receptor and are resistant to the central 

effects of leptin. These animals develop severe obesity at 1–2 months of age, associated with 

overt diabetes. Both histochemical staining techniques and biochemical assays have 

consistently documented cardiac fibrosis in db/db mice at 4–6 months of age [29],[30],[31], 

accompanied by cardiomyocyte hypertrophy and diastolic dysfunction [32],[31]. Leptin-

deficient ob/ob animals also develop severe obesity, insulin resistance and cardiac 

hypertrophy at a young age [33]. However, evidence demonstrating fibrotic remodeling in 

ob/ob hearts has been inconsistent. 20-week old ob/ob in a C57BL/6J background exhibited 

significant perivascular cardiac fibrosis associated with elevated expression of Transforming 

Growth Factor (TGF)-β1 and Plasminogen activator inhibitor (PAI)-1, indicating activation 

of matrix-preserving pathways [34]. In contrast, another study demonstrated that 36-week-

old ob/ob mice exhibited cardiac hypertrophy and diastolic dysfunction, but had comparable 

collagen content with lean WT animals [35]. Gender-specific effects, the relative sensitivity 

of various techniques used to assess fibrosis, and differences in the diets fed to the animals 
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may explain the conflicting findings. Genetic models of type diabetes in the rat also exhibit 

cardiac fibrosis. Zucker rats have a leptin receptor missense mutation and develop severe 

obesity and insulin resistance. These animals have perivascular myocardial fibrosis, 

associated with cardiomyocyte hypertrophy [36] and diastolic dysfunction [37].

The effects of diet-induced type 2 diabetes and metabolic syndrome on the myocardial 

interstitium are more subtle. Male C57/BL6J mice fed a high-fat/high-carbohydrate diet 

developed diabetes associated with ventricular hypertrophy, interstitial fibrosis and diastolic 

dysfunction after 6–8 months of feeding [38],[39]. Feeding of male C57/BL6J mice with a 

high-fat diet required 16 months for development of significant cardiac hypertrophy and 

myocardial fibrosis [40].

Animal model experiments support the clinical evidence suggesting that diabetes 

accentuates fibrosis induced by other pathophysiologic conditions. Streptozotocin-induced 

insulin-dependent diabetes increased hypertensive myocardial fibrosis in rats [41]. 

Moreover, non-insulin dependent diabetes in mice increased myocardial susceptibility to 

hypertensive hypertrophy and fibrosis [42].

4. THE CELL BIOLOGY OF DIABETES-ASSOCIATED CARDIAC FIBROSIS

The adult mammalian myocardium contains large populations of non-cardiomyocytes, 

enmeshed into the interstitial matrix network, including fibroblasts, pericytes vascular 

smooth muscle cells, endothelial cells, mast cells, macrophages and dendritic cells. 

Although fibroblasts, as the main matrix-producing cells, are considered critical cellular 

effectors of fibrosis, other populations of myocardial cells may also contribute to the fibrotic 

process by modulating fibroblast phenotype and function (Figure 2). Although the cell 

biological basis of cardiac fibrosis has been extensively investigated in models of 

myocardial infarction and cardiac pressure overload [43], much less is known regarding the 

cells responsible for diabetes-associated fibrotic cardiac remodeling.

The fibroblasts

As the main matrix-producing cells in the cardiac interstitium, fibroblasts are critically 

involved in all cardiac fibrotic conditions [44],[45]. In the infarcted and remodeling 

myocardium, fibroblasts undergo myofibroblast transdifferentiation, expressing contractile 

proteins, such as α-smooth muscle actin (α-SMA), and synthesizing large amounts of 

extracellular matrix proteins [46],[47],[48],[49]. Although diabetes-associated cardiac 

fibrosis likely involves expansion and activation of the resident fibroblast population, 

whether fibroblasts in diabetic hearts undergo a similar process of myofibroblast conversion 

remains unknown. In vitro studies characterizing fibroblasts isolated from diabetic hearts 

provide robust evidence of activation. Cardiac fibroblasts harvested from obese diabetic 

Zucker rat hearts exhibited greater ability to contract gels, increased proliferative activity, 

and elevated α-SMA expression, consistent with a myofibroblast phenotype [50]. Cardiac 

fibroblasts isolated from db/db mice exhibited a matrix-preserving phenotype, associated 

with increased expression of collagen and protease inhibitors [51]. Atrial fibroblasts derived 

from patients with type 2 diabetes also showed evidence of activation, exhibiting high 

collagen synthesis [52]. Hyperglycemia, activation of the Renin-angiotensin-aldosterone 
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(RAAS) system and fibrogenic growth factors induced by metabolic dysregulation may be 

involved in activation of cardiac fibroblasts in diabetic hearts.

Monocytes and macrophages

The myocardium contains a resident macrophage population [53],[54] that is enriched 

following cardiac injury through recruitment of monocytes [55],[56]. Macrophages are 

highly plastic cells, capable of acquiring a fibrogenic phenotype that may activate fibroblasts 

following myocardial injury, or pressure overload [57],[58],[59]. Infiltration of the diabetic 

myocardium with monocytes and macrophages has been demonstrated in models of type 1 

and type 2 diabetes [60],[61],[62]; these cells may contribute to fibrotic remodeling of the 

ventricle by secreting a wide range of fibrogenic mediators. Whether recruitment or 

activation of fibrogenic subsets of monocytes/macrophages mediates fibrosis in diabetic 

hearts has not been directly tested.

Lymphocytes

A growing body of evidence suggests that lymphocyte subpopulations modulate fibroblast 

phenotype [63], and may mediate fibrotic responses in the remodeling myocardium [64],

[65]. Whether alterations in lymphocyte phenotype are implicated in the pathogenesis of 

diabetes-associated cardiac fibrosis remains unknown.

Endothelial cells and pericytes

In the infarcted and in the pressure overloaded heart, endothelial to mesenchymal transition 

(EndMT) contributes to cardiac fibrosis, by providing an additional pool of activated 

fibroblasts [66],[67]. In models of type 1 diabetes, associative evidence supports the 

involvement of EndMT in the expansion of fibroblasts in the cardiac interstitium [68]. 

Pericytes are also capable of myofibroblast conversion and may acquire a fibroblast-like 

phenotype in diabetic states [69]. Moreover, vascular cells may participate in cardiac 

fibrosis by secreting mediators that activate fibroblasts. Hard documenting the involvement 

of vascular cells in diabetes-associated fibrosis is lacking.

Mast cells

Mast cells are capable of producing fibrogenic growth factors and proteases and have been 

implicated in the pathogenesis of cardiac fibrosis in models of myocardial infarction, cardiac 

pressure overload and cytokine overexpression [70],[71],[72]. In a mouse model of type 1 

diabetes, delayed accumulation of mast cells has been implicated in defective healing [73]. 

Whether mast cells are involved in diabetes-associated cardiac fibrosis remains unknown.

Cardiomyocytes

Cardiomyocytes may play a critical role in diabetes-associated cardiac fibrosis through 

several distinct mechanisms. First, diabetes and metabolic dysfunction may exert toxic 

effects on the cardiomyocytes, eventually leading to irreversible injury and cell death [74],

[75]. Fibrosis in diabetics may reflect replacement of dead cardiomyocytes with fibrous 

tissue, rather than direct activation of fibroblasts or immune cells. Second, hyperglycemia 

may promote a fibrogenic phenotype in cardiomyocytes, inducing synthesis and release of 
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growth factors and cytokines that induce fibroblast proliferation and activation. Third, 

cardiomyocytes in diabetic hearts may express pro-inflammatory mediators that trigger 

fibrosis through activation of immune cells. Robust experimental data supporting these 

cellular mechanisms are lacking.

5. MOLECULAR SIGNALS IMPLICATED IN DIABETES-ASSOCIATED 

CARDIAC FIBROSIS

Experimental evidence suggests that diabetes-associated cardiac fibrosis may involve 

activation of several distinct, but overlapping, fibrogenic pathways, including neurohumoral 

signals, inflammatory cytokines and growth factors, endothelin-1, adipokines, reactive 

oxygen species (ROS) and deposition of matricellular proteins in the cardiac interstitium. It 

is likely that the significance of each one of these pathways may be dependent on the 

severity and pathophysiologic basis of diabetes and on the presence of concommittant 

conditions, such as dyslipidemia and hypertension.

Hyperglycemia activates a pro-fibrotic program

In vitro, high glucose stimulates fibroblast proliferation, promotes myofibroblast 

transdifferentiation, and activates transcription and secretion of extracellular matrix proteins 

[76],[77],[78]. The stimulatory effects of glucose have been attributed to activation of 

angiotensin II and TGF-β signaling [79],[76], ROS generation [80] and subsequent 

stimulation of Erk [81] pathways. However, the significance of these findings in vivo is 

unclear, as robust evidence demonstrating that diabetes-associated myocardial fibrosis is due 

to hyperglycemia is lacking. Although clinical data examining relations between serum 

glucose and cardiac fibrosis are lacking, randomized controlled trials do not support the 

notion that intensive glycemic control reduces the incidence of heart failure in diabetics [1]. 

Moreover, correction of hyperglycemia does not consistently attenuate diabetes-associated 

fibrosis in extracardiac tissues. In rats with streptozotocin-induced type 1 diabetes, tight 

glycemic control did not affect the development of renal fibrosis [82]. Thus, the role of 

hyperglycemia in mediating fibrotic remodeling of the diabetic heart remains unclear.

Neurohumoral activation

Diabetes activates the myocardial RAAS; increased activity of local RAAS in diabetic 

hearts may induce a pro-fibrotic program in cardiac fibroblasts, while promoting functional 

abnormalities in cardiomyocytes [83]. In vivo studies have documented increased 

myocardial levels of angiotensin II and augmented density of angiotensin II type 1 (AT1) 

receptors in experimental models of type 1 and type 2 diabetes [84],[85]. Most of the 

evidence on the role of angiotensin signaling in diabetes-associated cardiac fibrosis is 

derived from pharmacologic inhibition studies. In three different models of type 2 diabetes 

(Zucker rats, db/db and ob/ob mice) ACE inhibition decreased collagen deposition, and 

reduced perivascular coronary fibrosis, attenuating TGF-β levels [86],[32]. Experiments 

using AT1 blockers suggested that the profibrotic effects of angiotensin II in diabetes are 

mediated through AT1 signaling [34], [87]. The protective effects of ACE inhibition and 

AT1 blockade in diabetes-associated cardiac fibrosis are also observed in models of type 1 

diabetes [88].
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Several molecular cascades may transduce pro-fibrotic angiotensin II signaling in the 

diabetic heart. First, angiotensin-mediated AT1 signaling may increase TGF-β expression 

and activation [89], stimulating Smad-dependent and Smad-independent signaling. Second, 

angiotensin II may accentuate TGF-β responses by inducing expression of the pro-fibrotic 

TGF-β co-receptor endoglin [90]. Third, AT1 activation may generate ROS in the diabetic 

myocardium promoting fibroblast activation [32],[91].

Aldosterone may also be an important downstream effector of angiotensin-mediated 

fibrogenic actions on the myocardium [92]. Experimental evidence suggests that aldosterone 

antagonism attenuates fibrosis in a rat model of type 1 diabetes [93] and in a mouse model 

of diet-induced obesity [94]. Clinical studies support an important role for aldosterone 

signaling in myocardial fibrosis associated with diabetes and obesity. In a prospective 

randomized controlled clinical study, a 6-month course of the aldosterone antagonist 

spironolactone in patients with obesity, but without other comorbidities, reduced levels of 

serological markers of collagen synthesis and improved myocardial compliance and 

diastolic function [95].

Pro-inflammatory cytokines and chemokines

Activation of immune pathways and induction of pro-inflammatory signaling are associated 

with fibrosis [96]. Pro-inflammatory cytokines (such as Tumor Necrosis Factor (TNF)-α, 

and Interleukin (IL)-1β) modulate fibroblast phenotype and have been implicated in the 

pathogenesis of heart failure. In cardiac fibroblasts, TNF-α stimulation induces proliferation 

and enhances collagen synthesis [97]. IL-1β on the other hand, delays myofibroblast 

conversion, promoting α matrix-degrading pro-inflammatory fibroblast phenotype [98]. In a 

model of streptozotocin-induced type 1 diabetes TNF-α and IL-1β were upregulated in the 

myocardium [99],[100]. However, experiments examining the effects of cytokine inhibition 

in rodent models of diabetes have produced conflicting results [101],[102] that may be 

explained by differences in experimental models, the specific anti-cytokine strategy used, 

and different methodologies for assessment of cardiac remodeling. The cellular targets of 

TNF-α and the molecular signals responsible for activation of a pro-fibrotic program in the 

diabetic heart remain unknown.

Chemokines may also be implicated in cardiac fibrosis through recruitment of fibrogenic 

monocyte subsets, or through direct actions on fibroblasts [103]. The CC chemokine 

Monocyte Chemoattractant Protein (MCP)-1/CCL2 mediates ischemic cardiac fibrosis, 

predominantly through effects on macrophages [104],[55]. Moreover, the CXC chemokine 

Stromal cell-Derived Factor (SDF)-1/CXCL12 may promote fibrosis by mediating 

recruitment of bone marrow-derived cells [105]. Evidence suggesting a role for chemokine-

mediated pathways in diabetes-associated cardiac fibrosis is limited. Although myocardial 

MCP-1 expression was increased in a rat model of type 2 diabetes [106], whether induction 

of the chemokine plays a critical role in fibrosis of the diabetic heart has not been 

investigated. SDF-1 blockade through inhibition of its receptor CXCR4 attenuated cardiac 

fibrosis in rodent models of type 1 and type 2 diabetes [107].
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TGF-β

TGF-βs are highly pleiotropic mediators that have been extensively implicated in the 

pathogenesis of tissue fibrosis [108],[109]. TGF-β1 mediates myofibroblast 

transdifferentiation, stimulates matrix transcription, and promotes a matrix-preserving 

phenotype in fibroblasts by inducing synthesis of protease inhibitors [108]. Increased 

myocardial expression of TGF-β has been consistently reported in models of type 1 and type 

2 diabetes and is associated with cardiac fibrosis [100],[110],[111],[86]. TGF-β induction in 

diabetic hearts may be mediated through angiotensin II activation [86], or may involve 

direct actions of high glucose and leptin on TGF-β transcription, secretion, and activation 

[112],[113].

Because TGF-β exerts a wide range of actions on all cell types involved in cardiac 

remodeling, dissecting its biological actions on the diabetic heart is challenging. Pro-fibrotic 

actions of TGF-β may involve both Smad-dependent and Smad-independent pathways 

[114],[115]. Experiments using a mouse model of type 2 diabetes demonstrated that global 

loss of Smad3 reduces cardiac fibrosis and improves myocardial compliance, attenuating 

myocardial oxidative stress [31]. Whether the pro-fibrotic actions of Smad3 in the diabetic 

heart reflect direct actions on cardiac fibroblasts, or effects on cardiomyocytes, immune and 

vascular cells remains unknown.

Endothelin (ET)-1

ET-1, is a potent vasoconstrictor and pro-fibrotic peptide, produced by vascular endothelial 

cells in response to stimulation with cytokines, angiotensin II, or hypoxia. Experimental 

evidence suggests that ET-1 expression is induced in experimental models of type 1 and 

type 2 diabetes [68],[116]. In streptozotocin-induced diabetic mice, endothelial cell-specific 

loss of ET-1 attenuated myocardial fibrosis, reducing endothelial to mesenchymal 

transdifferentiation [68]

Oxidative stress

ROS generation is has been extensively implicated in the pathogenesis of cardiac fibrosis 

Fibrogenic actions of angiotensin II, cytokines and growth factors are, at least in part, 

dependent on ROS. Extensive evidence demonstrates accentuated oxidative stress in 

experimental models of type 1 and type 2 diabetes [117]. Streptozotocin-induced diabetic 

rats exhibited increased glutathione oxidation and augmented lipid hydroperoxide levels in 

the myocardium [118]. In db/db hearts, mitochondrial generation of ROS is markedly 

increased and is associated with peroxidation of lipids and proteins [119]. Hyperglycemia 

and insulin resistance may increase myocardial ROS generation in diabetic animals. 

Moreover, diabetes is associated with attenuated myocardial activation of antioxidant 

enzymes, such as manganese superoxide dismutase and glutathione peroxidase 1 [120],

[121], suggesting that defective free radical scavenging may also contribute to the 

accentuated oxidative stress.

The role of oxidative stress in diabetes-associated cardiac fibrosis is supported 

predominantly by pharmacologic interventions. In models of type 1 or type 2 diabetes, 

various pharmacological approaches that inhibit oxidative stress, or reduce the level of 
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oxidative modification attenuated cardiac interstitial fibrosis [122], reduced cardiomyocyte 

hypertrophy, and decreased diastolic dysfunction [39],[32].

The advanced glycation end-products (AGE)/Receptor for AGE (RAGE) axis

After prolonged exposure to aldose sugars, proteins and lipids undergo non-enzymatic 

glycation and oxidation, leading to formation of AGEs [123]. In diabetic tissues, accelerated 

accumulation of AGEs may mediate inflammation and fibrosis. AGEs accumulate in both 

intracellular and extracellular space and may play a key role in diabetes-associated cardiac 

fibrosis through several distinct mechanisms. First, AGEs crosslink collagens and laminins 

in the extracellular matrix and may reduce cardiac compliance, causing diastolic 

dysfunction. Second, AGEs may bind to RAGEs, cell surface receptors that when activated 

modulate cellular phenotype. In fibroblasts, AGE/RAGE signaling stimulates inflammatory 

gene synthesis, accentuates expression of matrix proteins, and stimulates proliferation [124]. 

The pro-fibrotic effects of RAGE may be mediated, at least in part, through TGF-β [125] 

and AT-1 cascades [126]. Third, AGEs generate ROS and may promote fibrosis by 

increasing oxidative stress. Fourth, AGEs may modulate macrophage phenotype inducing a 

pro-fibrotic program. The in vivo role of these potential mechanisms in mediating diabetes-

associated cardiac fibrosis has not been systematically studied. In db/db mice, RAGE 

blockade protected from the development of diastolic dysfunction, attenuating myocardial 

collagen expression [127]. However, the cellular basis and molecular mechanisms for these 

effects remain unknown.

Adipokines—Adipose tissue does not serve only as a depot for stored fat, but also secretes 

large amounts of bioactive mediators, termed adipokines. Of these pleiotropic molecules, 

leptin and adiponectin have been implicated in the pathogenesis of tissue fibrosis.

Leptin is involved in the pathogenesis of cardiac remodeling in type 2 diabetes, obesity and 

metabolic dysfunction through effects on both cardiomyocytes and cardiac fibroblasts. In 

patients with uncomplicated obesity, elevated circulating leptin is associated with increased 

left ventricular mass [128]. Conflicting data are available on the effects of leptin on 

cardiomyocytes, suggesting both hypertrophic and anti-hypertrophic actions [129],[130]. 

Moreover, leptin is capable of activating fibroblasts, inducing activation of MMPs [131],

[132]. In vivo, exogenous leptin administration in ob/ob mice significantly increased 

interstitial fibrosis [133]. The relative significance of the cellular actions of leptin on 

cardiomyocytes and fibroblasts in vivo remains unknown.

Adiponectin, an adipokine with anti-inflammatory, cardioprotective and anti-atherogenic 

properties [134],[135] may also regulate cardiac fibrosis. In vitro studies have suggested 

conflicting effects of adiponectin on fibroblast migration [136],[137]. In vivo, adiponectin 

exerted anti-fibrotic effects in a model of angiotensin-induced cardiac remodeling [138]. In 

db/db mice, exogenous adiponectin reduced cardiac hypertrophy activating AMPK signaling 

[139]. The role of adiponectin in diabetic cardiac fibrosis remains unknown.

The role of the matricellular proteins—Following injury, the extracellular matrix is 

enriched through deposition of matricellular proteins, extracellular macromolecules that do 

not play a structural role, but transduce signaling cascades, modulating cell:cell and 
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cell:matrix interactions. Several members of the matricellular family, including the 

thrombospondins (TSPs), tenascins-C and X, periostin, osteonectin, osteopontin, periostin, 

etc. are induced in the remodeling heart and regulate inflammatory, fibrotic and angiogenic 

responses [140]. TSP-1 is induced by high glucose [141] and is consistently upregulated in 

diabetes, obesity and metabolic dysfunction in both animal models and human patients 

[142],[143]. TSP-1 induction in the diabetic heart promotes matrix-preserving actions, while 

causing capillary rarefaction in db/db mice through effects on angiopoietin-2 synthesis [30]. 

Thus, induction of TSP-1 may mediate both fibrosis and vascular loss in the diabetic 

myocardium.

MicroRNAs—MicroRNAs (miRNAs) are short noncoding RNAs that function as 

regulators of gene expression and are involved in virtually all cellular responses. A growing 

body of evidence suggests a critical role for miRNAs in cardiac fibrosis [144]. miRNAs 

have multiple targets, including cytokines and growth factors, extracellular matrix proteins, 

proteases and matricellular macromolecules. Although published investigations suggest 

critical roles for several miRNAs in cardiac fibrosis induced by pressure overload or 

myocardial infarction, evidence indicating involvement of specific miRNAs in diabetes-

associated cardiac fibrosis is limited. Recent studies investigated the myocardial miRNA 

landscape in a mouse model of type 1 diabetes [145],[146]. Diabetic hearts had alterations in 

levels of several miRNAs implicated in the pathogenesis of fibrosis, exhibiting upregulation 

of miR-125b and miR-199a, and downregulation of miR-150, miR-29b and miR-30a. 

Importantly, dysregulated expression of fibrosis-associated miRNAs remained altered in 

animals receiving insulin therapy to achieve intensive glycemic control [146]. Experimental 

studies examining whether these alterations play a causative role in the pathogenesis of 

diabetic cardiac fibrosis have not yet been performed. A recent investigation suggested that 

miR-133 downregulation may be involved in fibrotic remodeling of the diabetic heart. In a 

model of type 1 diabetes, cardiac fibrosis was associated with suppressed myocardial 

miR-133 expression; miR-133 overexpression attenuated the fibrotic response attenuating 

Erk and Smad activation [147].

6. TARGETING DIABETIC CARDIAC FIBROSIS: CHALLENGES AND 

OPPORTUNITIES

Clinical evidence suggests that diabetics with evidence of cardiac fibrosis, assessed through 

cardiac magnetic resonance imaging, have increased mortality and higher incidence of 

hospitalizations due to heart failure [148]. Several mechanisms may contribute to the 

increased risk. First, myocardial fibrosis may reduce ventricular compliance causing HFpEF. 

Second, diabetes-associated atrial fibrosis may induce atrial fibrillation, precipitating heart 

failure, and increasing the incidence of stroke. Third, ventricular fibrosis may be responsible 

for the increased risk of ventricular arrhythmias and sudden death observed in diabetic 

individuals [149]. Fourth, diabetes-related perturbation of the reparative response following 

infarction may result in faulty healing, adverse remodeling and development of post-

infarction heart failure. Thus, on a theoretical basis, attenuation of cardiac fibrosis may 

reduce morbidity and mortality in diabetic patients.
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Which strategies could be used to reduce cardiac fibrosis in diabetics? Considering the 

potentially critical involvement of high glucose in the pathogenesis of fibrosis, it would be 

reasonable to hypothesize that tight glycemic control may be effective in attenuation of 

cardiac fibrosis. Although poor glycemic control is associated with an increased incidence of 

heart failure [150], intensive glucose lowering failed to reduce cardiovascular events [151], 

the risk of heart failure [152] and the incidence of new-onset atrial fibrillation [153]. 

Unfortunately, relations between outcome and effects on cardiac fibrosis have not been 

studied.

Clearly, additional pharmacologic strategies are needed to inhibit and reverse fibrosis and to 

prevent the development of heart failure in diabetics. Established approaches inhibiting the 

RAAS through the use of ACE inhibitors, angiotensin receptor blockers and aldosterone 

antagonists may be valuable and have an excellent record of safety. Whether these 

approaches exert beneficial actions through attenuation of fibrosis is unclear. Novel 

pharmacologic strategies targeting the ROS system, AGE-mediated crosslinking, ET-1 or 

the TGF-β system hold significant promise. However, such approaches may also carry 

significant risks, due to the need for prolonged therapy and the importance of these 

molecular signals in homeostasis and tissue repair [154].

Attenuation of fibrotic remodeling following myocardial infarction may represent a more 

attractive therapeutic opportunity to reduce the risk of heart failure in diabetics. A brief 

therapeutic intervention may be effective in protecting the infarcted heart from excessive 

fibrosis in diabetic patients surviving an acute myocardial infarction. Clinical evidence 

suggests that diabetics have an increased incidence of post-infarction heart failure 

predominantly due to diastolic dysfunction [155]. Overactive angiotensin or TGF-β/Smad 

signaling may drive the reparative process towards an excessive fibrotic response. 

Dissection of the mechanisms responsible for defective cardiac repair in diabetics, and use 

of biomarkers or imaging studies to identify patients with specific pathophysiologic defects 

are needed to design personalized therapeutic approaches in order to reduce fibrosis and 

prevent the development of post-infarction heart failure [156].

7. CONCLUSIONS

Diabetes-associated cardiac fibrosis may be a major contributor to morbidity and mortality 

by causing heart failure and by increasing the incidence of arrhythmic events. Our 

understanding of the cellular events and molecular pathways involved in the pathogenesis of 

cardiac fibrosis remains limited. As a result, effective therapies targeting the fibrotic 

response in diabetic are lacking. Studies are needed to dissect the diabetes-associated 

molecular signals that activate fibroblasts in the cardiac interstitium, and to understand the 

fundamental basis for the link between metabolic dysfunction and fibrosis.
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Highlights

• Diabetes is associated with cardiac fibrosis.

• Diabetic cardiac fibrosis contributes to diastolic dysfunction and 

arrhythmogenesis.

• Activated fibroblasts are the main effector cells in diabetic fibrosis.

• Neurohumoral and inflammatory pathways may activate diabetic fibroblasts.

• Induction of matricellular proteins in the diabetic myocardium promotes 

fibrosis.
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Figure 1. 
Cardiac fibrosis in experimental models of diabetes. A. db/db mice develop severe obesity 

and diabetes, associated with myocardial fibrosis. B–E. Sirius red staining labels collagen 

(red – arrows) in the cardiac interstitium (B) and in perivascular areas (C) in lean and db/db 

mice (D–E). db/db animals exhibit expansion of the interstitial space (D) and perivascular 

accumulation of collagen (E).
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Figure 2. 
The cell biology of diabetes-associated cardiac fibrosis. Diabetes-associated hyperglycemia, 

generation of advanced glycation end-products (AGEs) and reactive oxygen species (ROS) 

and neurohumoral activation directly activate resident cardiac fibroblasts and may induce a 

proliferative response and a matrix-synthetic phenotype. Induction and activation of 

fibrogenic growth factors (such as TGF-β) may play an important role in fibroblast 

stimulation. Immune cells (monocytes/Mo, macrophages/Mac, lymphocytes/L and mast 

cells/MC) may contribute to the fibrotic response by secreting pro-fibrotic mediators. 

Cardiomyocytes (CM) and endothelial cells (EC) may also secrete growth factors and 

modulate fibroblast phenotype. Endothelial cells and pericytes may transdifferentiate into 

fibroblasts contributing to the expansion of the fibroblast population in diabetic hearts. 
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Deposition of matricellular proteins (such as thrombospondin-1) in the diabetic myocardium 

may promote a pro-fibrotic phenotype in interstitial cells.
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