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Abstract

Protein function prediction is an active area of research in computational biology. Function 

prediction can help biologists make hypotheses for characterization of genes and help interpret 

biological assays, and thus is a productive area for collaboration between experimental and 

computational biologists. Among various function prediction methods, predicting binding ligand 

molecules for a target protein is an important class because ligand binding events for a protein are 

usually closely intertwined with the proteins’ biological function, and also because predicted 

binding ligands can often be directly tested by biochemical assays. Binding ligand prediction 

methods can be classified into two types: those which are based on protein-protein (or pocket-

pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our 

group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a 

pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand 

molecules. The two programs apply surface patch-based descriptions to calculate similarity or 

complementarity between molecules. A surface patch is characterized by physicochemical 

properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the 

surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a 

series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical 

properties has two main advantages: 1) rotational invariance and 2) fast comparison. Here, we 

introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more 

recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand 

prediction as well as virtual drug screening are also provided.
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1. Introduction

Understanding protein function is one of the central problems in modern biology, including 

molecular biology, genetics, biochemistry, and bioinformatics. Bioinformatics can make 

substantial contributions in elucidating function of proteins. Using various types of 

biological databases now available, computational methods can quickly make function 

prediction to a large number of query proteins. To date, a number of bioinformatics tools for 

function prediction have been proposed [1–3]. These existing approaches can be categorized 

based on types of information they use, which include sequence-based, genome-based, 

proteomics-based, pathway-based, and structure-based [2].

Sequence-based methods compare a query protein sequence to sequences of known function 

in a database. This is the most classical strategy of function prediction. Conventional 

methods, which are often called homology search methods [4–6], use the well-accepted 

concept of homology and transfer function from highly similar (and thus considered as 

homologous) sequences. The sensitivity of a search can be improved by employing a 

statistical algorithm, hidden Markov models [7,8]. Identifying short sequence patterns that 

are conserved at known functional sites supplements homology search and help in 

annotating protein sequences [9–11]. Recent sequence-based methods try to improve the 

prediction performance in terms of the accuracy and the coverage by using more elaborated 

algorithms [12–16].

Genome-based methods predict functional relationship of protein genes from conservation 

of gene orders in different genomes [17], domain fusion events [18], and the similarity of 

phylogenetic profile [19]. STRING [20] is a database that contains pre-computed predicted 

functional relationship of proteins from genome information.

Proteomics-based methods predict protein function in the context of protein-protein 

interaction (PPI) or gene expression. Proteins exhibit their functions by interacting with their 

partner molecules. Therefore, their functions can be inferred from an interaction graph 

drawn by PPI network data [21,22]. Gene expression data can also be a source for protein 

function annotation, because functionally related proteins are expected to have correlated 

expression patterns [23,24].

Pathway-based methods find missing genes in pathways of an organism, which make holes 

in pathway assignment of genes. Examples of holes in pathways can be observed, for 

example, at the KEGG pathway database [25], which maps genes or an organism to known 

pathways by homology search. Candidates of missing genes are unannotated genes in a 

genome. PathoLogic [26] employs Bayesian approach to match the gaps of pathways and 

uncharacterized proteins, while Chen and Vitkup [27] fill holes in the pathway by 

integrating phylogenetic profile and local structures of metabolic networks.

In this article, we introduce two of our methods, Patch-Surfer [28,29] and PL-PatchSurfer 

[30,31], which predict biological function, more precisely, the binding ligand for a query 

protein structure. These methods belong to structure-based function prediction methods. In 

general, structure-based methods are further classified into global structure-based methods 

and local structure-based methods. The former type compares the global fold of proteins as a 
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strategy for finding distantly related proteins, using the observation that structures are more 

conserved than sequences [32,33]. Predicted structures of query proteins can be also used in 

global-structure based function assignment to achieve larger coverage in a genome-scale 

function assignment [34]. FINDSITE [35] and GalaxySite [36] predict active sites in a query 

protein structure by global structure matching. The latter, local-structure-based methods, 

search known functional sites in the global structure of a query protein [37–39] or compare a 

potential ligand binding site in a query structure to known ligand binding pockets [28–

31,40–44]. Ligand binding sites in a protein structure can be predicted by considering 

geometric or energetic features of known binding pockets, which usually are cavities in 

protein surface [45–50]. Predicting binding ligands for a protein forms an important and 

interesting class of protein function predictions because it can often be directly tested by 

biochemical assays, and because it can provide useful information for drug design [51] and 

polypharmacology [52–54]. Therefore, conversely, ligand screening methods used for drug 

development, often called virtual screening methods, such as AutoDock [55], DOCK [56], 

and GLIDE [57], or pharmacophore search, e.g. LigandScout [58–60], can be applied for 

binding ligand prediction.

Recently, our group proposed two binding ligand prediction methods, one that performs 

pocket-pocket comparison, named Patch-Surfer [28,29] and the other one that compares a 

pocket against ligand molecules, named PL-PatchSurfer [30,31]. Patch-Surfer was designed 

specifically for binding ligand prediction as a way of predicting protein function while PL-

PatchSurfer was developed for structure-based drug virtual screening. The two methods 

represent molecular surface and physicochemical properties of the surface using three-

dimensional Zernike descriptors (3DZD) [61,62], a descriptor that is based on a 

mathematical series expansion of a three dimensional (3D) function. 3DZD compactly 

represents molecular surface as a vector of coefficients of a series expansion in a rotationally 

invariant fashion, which makes it a faster program than others in the field. Here, we 

introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is 

more recently developed. Illustrative examples of PL-PatchSurfer performance on binding 

ligand prediction as well as virtual drug screening are provided.

2. Methods

2.1 Three-dimensional Zernike Descriptors (3DZD)

In this section, a brief introduction of 3DZD will be given. Details of 3DZD can be found on 

two papers [61,62]. 3DZD is a representation of three-dimensional function of Euclidean 

space using 3D Zernike polynomials [61,62]. 3D Zernike polynomials are shown in (1).

(1)

n, l, m are called as order, degree, and repetition, respectively. The three indices are integers 

that are subjected to –l < m < l, 0 ≤ l ≤ n, and (n – l) is even. Rnl(r) is a radial function while 

 is a spherical harmonics.

To compute 3DZD of any properties, the values should be mapped on three-dimensional 

grid points. For example, shape of a molecule is represented as a binary function, which 
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gives 1 for surface region and 0 otherwise. For representing the surface electrostatic 

potential, the electrostatic values are first mapped on the surface and 3DZD is computed 

separately for regions with positive values and those with negative values [63]. The grid 

points with values that are assigned are considered a three-dimensional function of 

Euclidean space, f(x), where x = {x, y, z}. The function is expanded as a series of terms of 

Zernike basis as (2).

(2)

Calculating Zernike moments, , taking the norm of the moments as (3), and collecting 

them yields (2l + 1) dimensional vector, a roationally invariant representation of three-

dimensional functions.

(3)

The dimension of a 3DZD vector is determined by order n, which is related to the resolution 

of the representation. In Patch-Surfer and PL-PatchSurfer, introduced in following sections, 

n = 15 is used, yielding 72 invariants.

2.2 Patch-Surfer: A Binding Ligand Prediction by Patch-based Pocket-Pocket Comparison

Patch-Surfer predicts a binding ligand of a given query protein by comparing a query pocket 

of the protein with known pockets in a pre-constructed pocket database. It was developed for 

structure-based protein function prediction by pocket comparison to characterize protein 

structures with unknown function. Pockets are segmented to a set of surface patches. Each 

patch is represented with 3DZD. The advantages of 3DZD and local patch are: 1) 3DZD 

comparison is fast and rotationally invariant and 2) local patch matching captures the local 

similarity of pockets, which is good for predicting docking of flexible molecules [28,29]. 

Below we outline the algorithm as illustrated in the left half of Figure 1.

First, given a query protein with a potential ligand binding pocket, the surface of the pocket 

is generated using APBS [64], which constructs a molecular surface on a 3D grid and 

computes the electrostatic potential on the surface by solving the Poisson-Boltzmann 

equation. The pocket region of a query protein is defined by the atoms of the protein that are 

interacting with atoms of the ligand, if a ligand bound structure of the query protein is 

available. If the query structure is in apo form (without ligand) and binding sites are not 

known, a pocket can be predicted using various software [35–50]. After the surface is 

generated, hydrophobicity and concavity are also calculated and assigned on the surface. 

Then, the surface of the pocket is segmented into a number of overlapping patches. The 

segmentation is done as follows: 1) identifying the center of the ligand binding pocket; 2) 

casting rays from the center of the pocket to the protein surface to identify the boundary of 

the pocket; 3) distributing seed points on the pocket surface so that they are 3.0 Å away 

from each other; 4) generating a sphere with 5.0 Å radius centered at each seed point to 
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define a patch; and 5) computing 3DZD for the four properties that characterize a patch: the 

shape, electrostatic potential, hydrophobicity, and the concavity.

To compute the similarity between a query pocket and a pocket in the database, a modified 

Auction algorithm [65] is implemented, which optimizes a target scoring function that 

consists of three parts: 1) Similarity of matched patches taken from the two pockets, which 

is quantified by the Euclidean distance of 3DZDs; 2) the geodesic distance difference of 

matched patch pairs in the two pockets, to make sure that corresponding patches in each 

pocket locate in similar relative locations within each pocket; and 3) difference of 

approximate position of corresponding patches in the two pockets, which is represented as a 

histogram of geodesic distance between the patch and other patches of the pocket.

Once the scores for a query pocket to all pockets in the database are computed and ranked 

by the score, prediction of binding ligands for the pocket is made using the following 

Pocket_Score (Equation 4). The score of a ligand type F is calculated as:

(4)

where n is the number of pockets in rank list, k is the number of top matches of similar 

ligands of F found by k-nearest neighbor classifier, i is the rank of the ligand, and wl(i),F is a 

two-dimensional similarity calculated by SIMCOMP [66].

The current pocket database used by Patch-Surfer contains 6547 pockets that bind to 2444 

different ligand types. This database was constructed from protein-small-molecule database 

(PSMDB) [67,68]. Patch-Surfer is available as a webserver at http://kiharalab.org/

patchsurfer2.0/.

2.2.1 Previous benchmark studies of Patch-Surfer—The performance of Patch-

Surfer has been extensively tested since its initial development [28,29,69]. Firstly, it was 

compared with Pocket-Surfer [70], which uses 3DZD for describing the global shape of a 

pocket, and with four other similar mathematical series expansion, i.e. spherical harmonics, 

Legendre moments, 2DZD, and pseudo 2D Zernike descriptors [28]. Thus, the purpose of 

this benchmark was to evaluate the effect of using patch-representation over the global 

pocket representation by 3DZD (Pocket-Surfer) as well as evaluation of 3DZD relative to 

the similar choices of mathematical representations of a pocket. Patch-Surfer showed the 

highest performance among six programs when they were benchmarked on a dataset of 100 

receptor pockets with nine ligand types [71]. Area Under Curve (AUC) values of Patch-

Surfer, Pocket-Surfer, Legendre polynomial, pseudo Zernike, 2DZD, spherical harmonics 

are 0.81, 0.66, 0.53, 0.66, 0.66, 0.64, respectively when only pocket shape information was 

considered.

In addition, Patch-Surfer was further compared with four existing binding site comparison 

methods; eF-seek (which use graph matching) [72], SitesBase (geometric hashing) [73], 

PROSURFER (fingerprinting) [74], and XBSite2F (fingerprinting) [75]. These five methods 
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were tested to 118 proteins bind with 18 different ligands [69]. The AUC value of Patch-

Surfer is 0.86 while the other four methods show 0.49, 0.60, 0.57, and 0.55, respectively.

The latest systematic benchmark was done to compare the performance between Patch-

Surfer2.0 [29] and APoc [40]. APoc searches similar binding pocket by structural alignment 

between query pocket and pockets in database. The benchmark set is composed of 348 

binding sites with 15 different ligands. The average AUC values are 0.77 and 0.65 for Patch-

Surfer and APoc, respectively.

To summarize, 3DZD, the mathematical base of the surface representation used in Patch-

Surfer, performed better than the other similar moments, and moreover, the local patch 

representation was better than a global pocket shape representation employed in Pocket-

Surfer. Moreover, Patch-Surfer showed best performance among other related binding site 

comparison methods.

2.3 PL-PatchSurfer: Virtual Screening and Binding Ligand Prediction by Patch-based 
Pocket-Ligand Complementarity Calculation

Recently, we have proposed a new protein-ligand screening method, called PL (Protein-

Ligand)-PatchSurfer [30,31]. Instead of comparing a query pocket to known ligand binding 

pockets as Patch-Surfer performs, PL-PatchSurfer compares a pocket to ligand molecules 

and identifies the molecules that have high complementarity to the query pocket. Unlike 

Patch-Surfer, PL-PatchSurfer is originally designed for investigating ligand-protein 

interaction with an application of virtual screening of drug molecules. The flow of PL-

PatchSurfer is illustrated on the right side in Figure 1.

The algorithm of PL-Patchsurfer is similar to that of Patch-Surfer, except that ‘ alternative 

conformations of a ligand molecule (usually up to 50 conformations) are explicitly 

generated with OMEGA [76] to fully incorporate the ligand flexibility. In the case of Patch-

Surfer, we thought representing a pocket with a combination of local patches is sufficient to 

consider flexibility of proteins [77], but in the case of ligands, a small bond rotation in a 

molecule can cause a large conformational change relative to the overall conformation of the 

molecule. After generating multiple conformations for a ligand, surfaces of all the generated 

ligand conformations are computed by APBS and physicochemical properties are assigned 

on the surfaces. Physicochemical properties represented with 3DZDs in PL-PatchSurfer are 

shape, electrostatic potential, hydrophobicity, and hydrogen bonding acceptors and donors. 

To measure complementarity between protein and ligand, the properties on ligand surface 

assigned opposite sign of its original value so that the complementarity of the properties can 

be computed as the similarity of 3DZDs. For example, if an electrostatic potential on a 

ligand surface point is −0.1, then it is converted to +0.1 while the sign is kept the same as 

the original value on the protein surface.

The scoring function of PL-PatchSurfer is composed of four parts. Three of which are the 

same as Patch-Surfer. The fourth term compares the size of a ligand and pocket, which is 

quantified as the number of patches that cover the ligand and the pocket. Since multiple 

conformations are generated for a ligand, a query pocket is matched to each conformation 
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and the best score among them is taken as the final score between the pocket and ligand. 

Finally, ligands in a library are ranked by their scores.

2.3.1 Previous benchmark studies of PL-PatchSurfer—Since PL-PatchSurfer was 

originally developed for virtual screening of ligand molecules for a query binding pocket, it 

was originally tested [30] for its ability of finding active drugs among decoy molecules 

using the directory of useful decoys (DUD) dataset [78], a commonly used dataset in this 

field. The DUD dataset is composed of 40 traditional drug target proteins (e.g. kinase, 

nuclear receptors, and metalloenzymes) and their active compounds that are known to bind 

to the target, and decoy compounds that have similar chemical properties with active 

compounds. We used 25 targets out of 40, excluding 15 targets that have cofactors or metal 

ions because these additional molecules cannot be easily handled by APBS to compute 

electrostatic potential. In this benchmark, the initial version of PL-PatchSurfer [30], which 

only considers the shape and electrostatic potential to represent local patches, was tested. 

The performance of screening was compared with PharmDock [79], a protein 

pharmacophore-based docking program that has been compared with six state-of-the-art 

programs, DOCK [56], FlexX [80], Glide [57], ICM [81], Surflex [82], and PhDock [83], 

and shown to have a comparable performance with ICM and FlexX, and better performance 

than DOCK and PhDock [79]. Using the average Enrichment Factor (EF) at 1%, 10%, and 

20% as the evaluation metrics, PL-PatchSurfer performed better than PharmDock at EF of 

1% (8.6 and 6.9, respectively) and at 10% (2.5 and 2.2, respectively), while at 20% the two 

programs showed the same value (1.7).

PL-PatchSurfer was also applied to compute the similarity between ligands (ligand-to-ligand 

comparison) [31]. From the Jain set [84], which is composed of 22 proteins and their active 

and decoy compounds, up to 22 active compounds and 845 decoy compounds for each target 

protein were selected as a benchmark set. The performance of the program was compared 

with Global 3DZD [85], USR [86], and ROCS [87]. Although ROCS performs best, PL-

PatchSurfer showed a unique feature to find diverse active compounds from a ligand library, 

which was different from the other global similarity search methods [31].

3. Benchmark Setting

In this work we benchmarked PL-PatchSurfer in two settings. The first test was to evaluate 

its binding ligand prediction using datasets of ligand binding pockets. Next, we evaluated 

PL-PatchSurfer for virtual drug screening ability with an interest on its performance on apo 

form of target proteins. In what follows, first we explain the setting of the benchmark study 

and then report the results.

3.1 Datasets for binding ligand prediction

The binding ligand prediction was performed on two datasets. The first dataset is a 

compilation of 100 X-ray structures that bind either of nine ligand types. This dataset is 

called the Kahraman set [71]. The list of the PDB entries and the ligand structures are shown 

in Table 1A and Figure 2 (a). This set was manually curated using the following five 

criteria: 1) Structures should be determined with X-ray crystallography. 2) Binding sites of 

each ligand are not evolutionary related with each other and belong to different H-levels 
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(homology-levels) in the CATH database [88]. 3) Modified, partial, or incorrectly labeled 

ligands are discarded. 4) Binding sites are only occupied by their cognate ligands. 5) Each 

ligand set has at least five members.

The second dataset was 36 protein structures that bind with either of 12 ligands (the Chikhi 

dataset) [70]. Three proteins are selected for each ligand type. The PDB entries are listed in 

Table 1B and the 2D structure of ligands is shown in Figure 2 (b). These two benchmark 

sets were chosen because they have been used in our earlier studies so that we can compare 

PL-PatchSurfer’s performance with them [28,70].

The files of the datasets were prepared as follows: 1) Protein structure files were 

downloaded from the PDB database [89]. 2) Multiple conformations of each ligand were 

generated from its SMILES string using OMEGA [76]. The maximum number of 

conformations was set to 50. The ‘ewindow’ option, which sets the condition for maximum 

energy of conformation, was set to 15 kcal/mol. The RMSD cutoffs between conformations 

were set to 0.5 Å, 0.8 Å, and 1.0 Å for ligands with zero to five, six to ten, and more than ten 

free torsion angles, respectively. The other options of OMEGA were kept same as default 

values.

3.2 Dataset for virtual screening

The performance of PL-PatchSurfer on virtual screening was evaluated on ten targets in the 

DUD set [78]. One of the foci of this benchmark is to investigate how well PL-PatchSurfer 

performs on apo structures of the targets. The list of the apo structures were found in a paper 

by Fan et al. [90]. We selected ten targets that have crystallized holo and apo structures; 

three from nuclear receptors (PPARγ, ERα (agonist), RXRa), three from kinases (CDK2, 

SRC, P38 MAP), one from serine proteases (thrombin), and three from other enzymes 

(AChE, NA, HIVPR). The receptor PDB ID is listed in Table 1C.

The binding site of a target was defined as a set of residues that have any heavy atom that is 

closer or equal to 5.0 Å to ligand heavy atoms. Cα-RMSD between an apo and a holo form 

of a binding pocket of a target was computed after aligning them with TM-align [91]. Three 

targets, RXRα, HIVPR, and SRC, have Cα-RMSD higher than 2.0 Å.

Holo receptor structures and the ligand library were kept as the same as the original DUD 

dataset, except that ratio of the number of active compounds and decoys was changed to 

1:29 from 1:36 in order to make the computation time shorter. To do so, if the target has 

more than 3000 decoy molecules, all the actives and decoys were selected randomly so that 

the ratio of actives and decoys to achieve the 1:29 ratio. If not, only decoys were randomly 

removed. The holo structures were included in the DUD dataset while the apo structures 

were obtained from PDB. The multiple conformations of ligands were generated by 

OMEGA with the same parameter as described in Section 3.1. These datasets are made 

available at http://www.kiharalab.org/ps_ligandset/.

3.3. Performance metric used in the virtual screening benchmark

The performances of the methods were evaluated with Enrichment Factor (EF) and Area-

Under Receiver Operating Characteristics Curve (AUC). These two values can be computed 
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after compounds in the dataset, both actives and decoys, are ranked according to the score of 

a method to be evaluated. The perfect performance of selecting actives from decoys is 

achieved when all the actives are ranked higher than any decoys. EF at top x% subset is 

calculated as follows:

(5)

where Activesx% is the number of actives found in the top x% subset of compounds ranked 

by the score of the method, and Compoundsx% represents the number of all the compounds 

within the top x% subset. In the similar way, ActivesLibrary and CompoundsLibrary are the 

number of actives and compounds that are contained in the whole library, respectively. 

EFx% = 1 means that the retrieval of actives by a program is in the same level as a random 

selection. In this benchmark we examined EFs at 1%, 2%, and 5%.

Receiver operating characteristic (ROC) curve shows the performance of a virtual screening 

program by plotting actives found rate (true positive rate) against decoys found rate (false 

positive rate). As a program performs better, the curve approaches the upper-left corner. 

AUC is the area under the ROC curve. If a program successfully finds active compounds 

without finding any decoy compounds, AUC value becomes one, while the program totally 

fails to find active compounds then the value becomes zero, and a value close to 0.5 

indicates that the retrieval is random.

4. Result and Discussion

4.1 Binding ligand prediction

First, we tested PL-PatchSurfer for its performance on binding ligand prediction using the 

Kahraman set, which contains 100 binding pockets. Each pocket was considered as a query. 

The complementarities between a query pocket and ten ligands (nine ligand types, because 

prasterone and estradiol were considered as steroid) with multiple conformations are 

calculated. The ligand conformations were sorted according to PL-PatchSurfer score. The 

performance of a retrieval was evaluated by examining whether the top hit was the correct 

ligand type for the query pocket (top 1 accuracy) and also if the correct ligand was ranked 

within top three (top 3 accuracy). We used these metrics so that we can compare the 

performance of PL-PatchSurfer with our previous studies on Patch-Surfer [28] and Pocket-

Surfer [70].

The summary of the results are given in Table 2. Overall, PL-PatchSurfer showed the best 

Top 1 prediction accuracy of 48.2% while Patch-Surfer performed better than PL-

PatchSurfer when the best top 3 accuracy was considered. Examining results of each ligand 

type in Table 3, it is apparent that the larger overall average Top 1 accuracy by PL-

PatchSurfer over Patch-Surfer comes mainly from better accuracy for ATP and NAD. For 

ATP, PL-PatchSurfer showed 78.6% and 100.0% for Top 1 and Top 3 accuracy, 

respectively, for which Patch-Surfer’s accuracy showed 28.6% and 85.7%, respectively. For 

NAD, PL-PatchSurfer’s Top 1 and Top 3 accuracy were 66.7% and 80.0%, while the 

corresponding values for Patch-Surfer were 6.7% and 80.0%, respectively. These 

Shin et al. Page 9

Methods. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences might come from consideration of hydrogen bonding in PL-PatchSurfer. As 

mentioned in the previous section, PL-PatchSurfer additionally considers hydrogen-bonding 

acceptors and donors as one of the features of protein and ligand surfaces, which is not 

coded in Patch-Surfer. ATP has seven hydrogen bond donors and 18 hydrogen bond 

acceptors. Likewise, NAD has eight hydrogen bond donors and 19 hydrogen bond acceptors. 

Except for NAD and ATP, the eight ligands have 3.8 hydrogen bond donors and 8.3 

hydrogen bond acceptors on average. To further examine the effect of considering hydrogen 

bonding, we ran PL-PatchSurfer without the hydrogen bonding scoring term. The result is 

shown in the second row of Table 2 and Table 3. Without considering hydrogen bonds, the 

Top 1 accuracy of PL-PatchSurfer dropped from 78.6% to 42.8% for ATP and 66.7% to 

13.3% for NAD (Table 3), which reflected to the overall better accuracy of PL-PatchSurfer 

with the hydrogen term over the method without hydrogen bond term (weights for features 

of patches were trained without hydrogen bond term) (Table 2). However, Table 3 also 

shows that the accuracy of some other ligands decreased by adding the hydrogen bond 

feature, which implies that different ligands may have a different optimal setting of 

parameters.

In the second half of Table 2, we compared PL-PatchSurfer with two other existing 

programs, eF-Seek [72] and SitesBase [73]. PL-PatchSurfer showed the highest success 

rates in both Top 1 and Top 3 predictions among them.

To summarize, PL-PatchSurfer performed comparably if not better than Patch-Surfer in 

binding ligand prediction, although its original purpose is different, virtual screening. It also 

performed better than two other approaches for structure-based binding ligand comparison. 

Considering the complementary nature of PL-PatchSurfer and Patch-Surfer, in that they 

compare a query pocket to different types of structural data, it would be beneficial to use 

either one of them or combine their results depending on the situation of scenarios users 

have. This is discussed further in Conclusions.

4.2 Results of the virtual screening experiments

Next, we tested the performance of PL-PatchSurfer on holo and apo structures of ten targets 

in the DUD dataset in comparison with two state-of-the-art protein-ligand docking 

programs, AutoDockVina [55] and DOCK6 [56]. These two programs were run with their 

default parameters. The center coordinates of the binding pocket box for both programs 

were set to the geometric center of the bound ligand in the crystal structure of target 

proteins. Protonation states and atomic charges of all targets and ligands were kept as same 

as given in the DUD dataset. The results are summarized in Table 3.

For the holo structure (ligand bound structure) set (the upper half of Table 4), PL-

PatchSurfer showed overall highest EF1% and EF2% values among three programs (the left 

columns). For EF5%, DOCK6 showed a slightly higher value of 5.5 over 5.3 by PL-

PatchSurfer. In terms of AUC, AutoDockVina showed the highest performance. These 

results imply that PL-PatchSurfer finds active compounds in earlier ranks than the other two 

programs.
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For the apo structure (ligand unbound structure) set (the bottom half in Table 4), overall PL-

PatchSurfer gave the highest performance except for AUC (the left columns). All the values 

of all programs decreased from the holo set results as expected, because the apo structures 

are different from the ligand binding form. It is interesting that for the two conventional 

docking programs, EF values decreased about 50% or more for EF1% and EF2% for EF, 

whereas PL-PatchSurfer EF values did not deteriorate significantly. To investigate the effect 

of the receptor structure change between holo and apo forms, we classified the targets based 

on the pocket Cα-RMSD. For targets with Cα-RMSD > 2.0 Å (the right columns), the 

performances of AutoDockVina and DOCK6 decreased drastically. Their EF1% and EF2% 

values decreased by about 90% when compared with the holo form results. In contrast, PL-

PatchSurfer results retained ~70% of those of the holo forms. The reason why PL-

PatchSurfer was not severely affected by pocket structure change is probably because it uses 

the molecular surface description of local patches. This positive effect of the patch 

representation was also observed for Patch-Surfer in the previous works [28,29], where it 

was able to identify pockets of the same ligands that have largely different global shape.

The changes of enrichment factors of the individual targets are shown in Figure 3. Figure 3A 

shows the difference of enrichment factors (ΔEF = EFapo -EFholo). As binding site Cα-

RMSD becomes larger, ΔEF tends to largely decrease for AutoDockVina and DOCK6. 

However, PL-PatchSurfer seems not to be greatly affected by the structural change of the 

receptors, as the decrement of PL-PatchSurfer is lower than 10 in all the cases. In Figure 3B, 

the ratio of the ΔEF relative to the enrichment factor of the holo forms (i.e. ΔEF/EFholo) 

were plotted. It is obvious also from this plot that PL-PatchSurfer is more tolerant to the 

structure change. Enrichment factors of PL-PatchSurfer did not decrease more than 70%, 

while those of the other two programs decreased by 100% in one or two targets. When the 

RMSD was smaller than 2.0 Å, PL-PatchSurfer somehow performed even better for the apo 

forms for a number of cases.

The largest structure variation occurs in RXRα, with a Cα-RMSD of 3.8 Å. Similar to other 

nuclear receptors, AF2-helix of RXRα changes its position by the state of the protein; apo 

form, agonist binding, and antagonist binding form [92]. The superimposition of the holo 

and the apo forms is shown in Figure 4A. When the holo form was used as a target structure, 

EF1% of PL-PatchSurfer, AutoDockVina, and DOCK6 were 10.0, 25.0, and 30.0, 

respectively. For the apo form, EF1% of PL-PatchSurfer decreased to 5.0 while that of the 

other two programs deteriorated to 0.0, which means that actives were not retrieved within 

1.0% at all. To find the reason for this performance difference between PL-PatchSurfer and 

the other two programs, the highest ranked active compounds in the holo form were 

examined. When the holo structure was used as a target, both AutoDockVina (Figure 4C, 

left panel) and DOCK6 (Figure 4D, left panel) found the correct docked conformation of the 

ligand that were well-aligned with the cognate ligand. However, when the apo structure was 

used, the active ligands were located outside of the binding pocket due to the change of the 

pocket shape caused by the move of the AF-2 helix. These docked conformations cannot 

make hydrophobic contact with phenylalanines, which is important for ligand binding in the 

nucleus [93]. In comparison, in Figure 4B we show the docking poses of the top scoring 

active compound of PL-PatchSurfer (ZINC03834071). It is shown that the identified 
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interacting local regions between the receptor and the ligand shown in the same colors are 

almost the same between the holo (upper panel) and the apo form (lower panel). These 

interacting residues to the ligand are composed of aromatic residues and hydrophobic 

residues. Thus, unlike the other two docking programs, PL-PatchSurfer could find the 

similar corresponding docking poses of the ligand in the binding pocket.

Similar to RXRα, the performance of the two conventional docking programs significantly 

dropped for CDK2 when the apo form was used as the query. The binding site Cα-RMSD 

between the holo and apo form is only 0.3 Å; however, two lysines change their rotameric 

state when the ligand binds (Figure 5A). When the holo form was used as a query, EF at 1% 

of PL-PatchSurfer, AutoDockVina, and DOCK6 were 24.0, 8.0, and 22.0, respectively. 

When the apo structure was used, the values were reduced to 22.0, 0.0, and 12.0 

respectively. Although the conformational change between the holo and the apo form was 

small, EF1% values of AutoDockVina and Dock6 dropped substantially while PL-

PatchSurfer almost maintained performance. To understand this different performance of the 

programs for the apo form, we examined docking poses of ZINC03814433, the ligand that 

ranked within top 30 (which corresponds to the top 2% rank) for the holo form by all the 

three programs. PL-PatchSurfer found corresponding patch pairs in the binding pocket for 

ligand patches in similar positions for the both holo and apo structures (Figure 5B). Purple 

and orange patches in the receptor structures are composed of hydrophobic residues, while 

blue patches correspond to polar residues (ASN for the holo form, ASP for the apo form). 

The other two programs (Figure 5C, D) found a correct position of the ligand, where half of 

the ligand is overlapped with the cognate ligand binding position, for the holo form. 

However, when the apo structure was used, the two programs could not find the correct 

docking position of the ligand, but rather located the ligand outside of the binding pocket. 

The ROC curves of CDK2 for the three programs are shown in Figure 6. In Figure 6, solid 

lines represent the holo structure virtual screening results, while dashed lines show apo 

structure results. It is shown that the performance of AutoDockVina and DOCK6 were 

substantially lowered for early recognition for the apo form.

4.3. Computational Time of PL-PatchSurfer

The average computational times to screen the library of each target are 2.7, 51.7, and 54.4 

hours for PL-PatchSurfer, DOCK6, and AutoDockVina, respectively. Thus, PL-PatchSurfer 

is ~20 times faster than the other two programs. The computational times were measured on 

a Linux machine with Intel i7–3820 3.60 GHz CPU and 64 GB RAM.

5. Conclusions

We introduced two binding ligand prediction programs, Patch-Surfer and PL-PatchSurfer. 

Both programs use 3DZD to describe the properties of surface patches of molecules. The 

advantage of 3DZD moments is that it allows fast comparison of surfaces, because it is a 

compact and rotationally invariant representation of surfaces. In addition, the programs also 

enjoy advantages from the local patch description, which is insensitive to subtle atomic 

position change of molecular surfaces, such as tautomeric shifts and conformational 

changes. PL-PatchSurfer performed in the similar level if not better to Patch-Surfer for the 
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binding ligand predictions in the Kahraman dataset and performed better than the two state-

of-the-art programs, AutoDockVina and Dock6, in the virtual screening benchmarks. The 

advantage of PL-PatchSurfer was evident over the two programs when apo forms of binding 

pockets were used as queries.

Although the algorithms of the two methods share a common architecture, they are 

fundamentally different in the reference data, against which a query pocket is compared. 

Patch-Surfer compares a query pocket against known ligand binding pockets, while the PL-

PatchSurfer compares a pocket directly against 3D conformations of compounds in a library. 

These two strategies have both advantages and disadvantages: An advantage of the pocket-

pocket comparison performed by Patch-Surfer is that generating conformations of 

compounds, which is known to be difficult and time consuming, is circumvented. Also, 

biological function (ligand binding) of a query protein can be easily inferred by similarity to 

known pockets. On the other hand, the types of ligands that can be predicted by Patch-Surfer 

are limited due to the limited availability of known crystal structures of binding pockets. On 

the other hand, PL-PatchSurfer has a larger coverage in the ligand space that can be 

predicted, because as long as the 2D structure of ligands are known, their 3D conformations 

can be generated and docked to a query pocket. However, a challenge in PL-PatchSurfer is 

the efficient and accurate sampling of conformational space of ligands. Knowing the 

differences and complementary nature of these two methods, they must be properly chosen 

or combined depending on the user’s prediction scenarios.
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• PatchSurfer predicts binding ligands for a query pocket by finding similar 

pockets.

• PL-PatchSurfer finds binding ligands for a pocket by screening ligand library.

• Due to local patch representation, good accuracy is retained for apo structures.
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Figure 1. 
Flowchart of Patch-Surfer and PL-PatchSurfer.
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Figure 2. 
2D structures of ligands in A, the Kahraman benchmark set and B, the Chikhi set. The 

ligands in red box are common compounds of the both sets. Two ligands in blue circle are 

grouped as steroids.

Shin et al. Page 19

Methods. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Differences of enrichment factor for holo and apo forms. A, Enrichment factor differences 

between the holo form and the apo form structure (y-axis, EFapo-EFholo) as a function of 

binding site Ca-RMSD (x-axis). B, the ratio of enrichment factor difference relatvie to the 

enrichment factor fo the holo form (y-axis, (EFapo-EFholo)/EFholo) as a function of Ca-

RMSD (x-axis). PL-PatchSurfer, AutoDockVina, and DOCK6 are colored in blue, red, and 

green, respectively. The circle, square, and triangle represent EF1%, EF2%, and EF5%.
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Figure 4. 
Ligand docking of RXRα. A, Superimposed holo (gold) and apo form (green) of RXRa. The 

cognate ligand is colored in magenta. B, The top scored conformation of ZINC03834071, 

which is ranked 2nd(holo form) and 1st(apo form) by PL-PatchSurfer. Matched patch pairs 

of the pocket and the ligand are shown in the same colors. C, the docked structure of an 

active compound, ZINC01539579, which was ranked the 1st(holo form, left, pink) and the 

8th(apo form, right, white) by AutoDockVina. The bound structrure of the compound is 

shown in magenta. D, the docked structure of ZINC03834076, which was ranked the 

1st(holo form, left, cyan) and the 84th(apo form, right, orange) by DOCK6.
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Figure 5. 
Ligand docking for CDK2. A, superimposition of the holo (gold) and the apo (green) form 

of the binding sites of CDK2. The cognate ligand is colored in magenta. The three key 

residues for the interaction, ASP86, ILE11, and LEU134 [94] (from left to right) are shown. 

B, the top scoring conformation of an active compound, ZINC03814433, which was ranked 

the 12th(holo form) and the 26th(apo form) by PL-PatchSurfer. Matched patch pairs of the 

pocket and the ligand are shown in the same colors. C, Docked structure of ZINC03814433, 

which was ranked at the 23rd(holo form, left, pink) and the 429th(apo form, right, white) by 

AutoDockVina. The docked confomration of the compound is shown in magenta. D, the 

docked structure of ZINC03814433, which was ranked the 10th(holo form, left, cyan) and 

the 60th(apo form, right, orange) by DOCK6.

Shin et al. Page 22

Methods. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
ROC of CDK2 virtual screening. Blue, red, and green lines are for PL-PatchSurfer, 

AutoDockVina, and DOCK6, respectively. Solid lines are results when the holo structure 

was used while dashed lines are results for the apo structure.
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Table 1

A. PDB ID list of Kahraman data set.

Ligand PDB ID

AMP 12AS, 1AMU, 1C0A, 1CT9, 1JP4, 1KHT, 1QB8, 1TB7, 8GBP

ATP 1A0I, 1A49, 1AYL, 1B8A, 1DV2, 1DY3, 1E2Q, 1E8X, 1ESQ, 1GN8,
1KVK, 1O9T, 1RDQ, 1TID

FAD 1CQX, 1E8G, 1EVI, 1H69, 1HSK, 1JQI, 1JR8, 1K87, 1POX, 3GRS

FMN 1DNL, 1F6V, 1JA1, 1MVL, 1P4C, 1P4M

α-D-glucose 1BDG, 1CQ1, 1K1W, 1NF5, 2GBP

HEME 1D0C, 1D7C, 1DK0, 1EQG, 1EW0, 1GWE, 1IQC, 1NA 1NP4, 1PO5,
1PP9, 1QHU, 1QLA, 1QPA 1SOX, 2CPO

NAD 1EJ2, 1HEX, 1B0, 1JQ5, 1MEW, 1MI3, 1O04, 1OG3, 1QAX, 1RLZ, 1S7B,
1T2D, 1TOX, 2AF5, 2NPX

PO4 1A6Q, 1B8O, 1BRW, 1CQJ, 1D1Q, 1DAK, 1E9G, 1EJD, 1EUC, 1EWC,
1FBT, 1GYP, 1H6L, 1HO5, 1L5W, 1L7M, 1LBY, 1LYV, 1QF5, 1TCO

Steroids 1E3R, 1FDS, 1J99, 1LHU, 1QKT

B. PDB list of Chikhi set

Ligand PDB ID

AMP 1AMU, 1QB8, 8GPB

ATP 1A0I, 1KVK, 1O9T

FAD 1EVI, 1POX, 3GRS

FMN 1DNL, 1JA1, 1P4C

α-D-glucose 1K1W, 1NF5, 2GBP

HEME 1QPA, 1SOX, 2CPO

(NAD) 1IB0, 1TOX, 2NPX

D-fructose-6-phosphate 1UXR, 2BIF, 4PFK

β-D-galactose 1XC6, 1Z45, 2GAL

Guanine 1XE7, 2PUC, 2PUF

α-Methyl-D-mannose 1LOB, 1MSA, 1MVQ

Palmitic acid 1MZM, 1PZ4, 1SZ7

C. PDB list of DUD set

Protein PDB ID

CDK2 1CKP, 1HCL

AChE 1EVE, 1QIH

PPARγ 1FM9, 1PRG

ERα (agonist) 1L2I, 2B23

NA 1A4G, 1NSB

P38 MAP 1KV2, 1P38

RXRα 1MVC, 1G1U

HIVPR 1HPX,3PHV

SRC 2SRC, 1FMK

Thrombin 1BA8, 2AFQ
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a.
Underlined PDB ID is an apo form.
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Table 2

Success rates of binding ligand prediction methods benchmarked on Kahraman set.

Top 1 prediction (%) Top 3 prediction (%)

Kahraman Set

PL-PatchSurfer 48.2 82.7

PL-PatchSurfer (w/o H-bond) 44.7 80.7

PatchSurfera 45.5 87.0

PocketSurferb 36.1 81.5

Chikhi Set

PL-PatchSurfer 44.4 75.0

eF-Seekb 19.4 36.1

SitesBaseb 32.2 60.0

a.
The success rates are taken from [28].

b.
The success rates are taken from [70].
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