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Abstract: Introduction: Diffusion weighted imaging (DWI) methods can noninvasively ascertain cerebral
microstructure by examining pattern and directions of water diffusion in the brain. We calculated her-
itability for DWI parameters in cerebral white (WM) and gray matter (GM) to study the genetic contri-
bution to the diffusion signals across tissue boundaries. Methods: Using Old Order Amish (OOA)
population isolate with large family pedigrees and high environmental homogeneity, we compared the
heritability of measures derived from three representative DWI methods targeting the corpus callosum
WM and cingulate gyrus GM: diffusion tensor imaging (DTI), the permeability-diffusivity (PD) model,
and the neurite orientation dispersion and density imaging (NODDI) model. These successively more
complex models represent the diffusion signal modeling using one, two, and three diffusion compart-
ments, respectively. Results: We replicated the high heritability of the DTI-based fractional anisotropy
(h2 5 0.67) and radial diffusivity (h2 5 0.72) in WM. High heritability in both WM and GM tissues were
observed for the permeability-diffusivity index from the PD model (h2 5 0.64 and 0.84), and the neurite
density from the NODDI model (h2 5 0.70 and 0.55). The orientation dispersion index from the NODDI
model was only significantly heritable in GM (h2 5 0.68). Conclusion: DWI measures from multicom-
partmental models were significantly heritable in WM and GM. DWI can offer valuable phenotypes
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for genetic research; and genes thus identified may reveal mechanisms contributing to mental and neu-
rological disorders in which diffusion imaging anomalies are consistently found. Hum Brain Mapp
37:525–535, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Brain white matter (WM) is composed of primarily
myelinated axonal fibers and their supportive cellular and
extracellular structures. By restricting water and ion
exchange, myelinated WM facilitates rapid electrical signal
conductance among neural cells. Assuming that this func-
tion is evolutionarily selected and thus genetically influ-
enced, identification of specific genes that affect WM
structure and function may facilitate discovery of molecu-
lar mechanisms involved in brain disorders that impact
WM. To this end, diffusion weighted imaging (DWI) offers
a noninvasive way to assess WM properties and to poten-
tially develop relevant phenotypes for genetic research.
DWI uses one or more diffusion sensitization contrasts
(b-values) to characterize myelinated tissue by measuring
how it restricts diffusion of water throughout the brain,
probing a core property of the myelinated structures.
However, there are many DWI approaches that give rise
to numerous diffusion phenotypes. Establishing genetic
influences on these will improve our understanding of
WM genetics.

Researchers have shown that diffusion tensor imaging
(DTI) can yield heritable measures from the WM [Braskie
et al., 2011; Brouwer et al., 2010; Chiang et al., 2011; Glahn
et al., 2007; Hasler and Northoff, 2011; Jahanshad et al.,
2013; Kochunov et al., 2011b, 2015], supporting the use of
diffusion signals for genetic research. The DTI is the sim-
plest of DWI models developed to explain behavior of
water diffusion in biological tissues. It assumes a single
biological compartment with a monoexponential decay of
the diffusion signal (Fig. 1) [Basser and Pierpaoli, 1996].
DTI protocols use a single diffusion weighting b-value,
which is a setting on the scanner used to sensitize the scan
to water diffusion. Due to its relatively modest imaging
requirements and simple analysis, it became the most pop-
ular DWI technique in neuroimaging research [Basser and
Pierpaoli, 2011].

The monocompartmental, 3D-Gausian, approximation of
diffusion decay used by DTI is arguably only valid at the
low diffusion weighting (b-values �1,000 s/mm2). At
higher b-values the diffusion signal behavior in brain tis-
sue deviates from the mono exponential behavior (Fig. 1).
In fact, the 3D-Gaussian, monoexponential decay of diffu-
sion signal can only be observed in CSF [Assaf and Cohen,
1998; Clark et al., 2002; Kochunov et al., 2013; Wu et al.,
2011a,b]. DWI methods that assume more than one diffu-
sion compartment were developed to better approximate

the behavior of diffusion signal at higher b-values and to
capture richer information on the molecular propagation
mechanisms in brain tissues. Measurements derived by
these methods show stronger effect size and provide more
information in neuropsychiatric research than these meas-
ured from the standard DTI model [Baumann et al., 2012;
Kochunov et al., 2013, 2014a; Zhu et al., 2014]. We aimed
to assess additional complex DWI measures that might be
under genetic control. Many DWI modeling approaches
have emerged, making testing all models overwhelming.
We chose to test genetic influences on measures derived
from the two and three diffusion compartment modeling
approaches that are used to quantify diffusion signal
behavior at higher b-values.

Two-compartment DWI models have been developed to
account for the non-Gaussian behavior of diffusion signal.
There are several models that use a two-compartment ter-
minology; one of which is the permeability diffusivity
(PD) model [Kochunov et al., 2013, 2014a]. In general, the
two-compartment models calculate: the compartment frac-
tion for the unrestricted, freely diffusing (Mu) and
restricted (1 2 Mu) compartments and their corresponding
diffusivities. Some two-compartment models ascribe
restricted and unrestricted fractions to two physical com-
partments, typically to extra- and intracellular compart-
ments [Clark et al., 2002; Wu et al., 2011a,b]. However,
experiments in animals and extruded liposomes show that
population fractions for the unrestricted and restricted
“pools” may not coincide with the known volume frac-
tions of extra- and intracellular spaces [Hwang et al., 2003;
Schwarcz et al., 2004; Stokes et al., 2012; Yablonskiy et al.,
2003]. The PD model is based on theoretical work by Suk-
stanskii et al. that explains the biexponential behavior of
the diffusion signal by the presence of a permeable cellular
membrane, leading to an inhomogeneous distribution of
local transverse magnetization (Fig. 1) [Sukstanskii et al.,
2003, 2004]. It calculates the permeability-diffusivity index
(PDI), which is the ratio of the diffusivity of the unre-
stricted versus the restricted compartments. This ratio
depends on the water exchange between two compart-
ments (see Methods). The PD-model was previously eval-
uated in schizophrenia, where the PDI deficit showed
improved ability to discriminate between patients versus
controls compared with DTI, and correlated closely to
white matter aging in schizophrenia [Kochunov et al.,
2013, 2014a].

Other DWI models assume three diffusion compart-
ments: glial cells, axons, and extra-cellular spaces [Assaf
et al., 2002; Behrens et al., 2003; Stanisz et al., 1997; Zhang
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et al., 2012]. One example is the Neurite Orientation Dis-
persion and Density Imaging (NODDI) model [Zhang
et al., 2012]. NODDI assumes that the diffusion signals
from each imaging “voxel” are originated from intra-
axonal, extra-axonal, and isotropic or “free-diffusing
water” diffusion spaces. This model aims to link diffusion-
weighted signals to cellular tissue properties such as intra-
vs. extra-axonal diffusivity, axon diameter, and neurite ori-
entation. NODDI calculates the orientation dispersion

index (ODI) that reflects the angular variation of the
modeled axonal orientation within a diffusion imaging
voxel. Two other parameters are the fractions of the intra-
axonal space (Mic), which is intended to represent the neu-
rite density, and the fraction of the voxel that is modeled
by isotropic water diffusion (Miso). Applications of the
NODDI model reveal that ODI and Miso capture age-
related brain changes better than DTI [Billiet et al., 2015;
Jelescu et al., 2014; Nazeri et al., 2014]. Despite the

Figure 1.

Upper panel: (A) Corpus callosum (CC) white matter (WM)

region-of-interest was identified by thresholding the FA image at

FA 5 0.20. The skeleton of the midsagittal colossal WM meas-

ured using the ENIGMA-DTI pipeline is shown as colored line

with the magnitude of FA values represented by colors and

overlaid on the fractional anisotropy map at midline. (B) The

region of interest for cingulate gray matter (GM) was identified

using radial diffusivity maps that show excellent contrast

between GM, WM, and CSF. Lower panel: schematic compari-

son of the DTI model (C), permeability-diffusivity (PD) model

(D), and Neurite orientation dispersion and density imaging

(NODDI) model (E). The DTI model assumes that the signal is

produced by a single pool of anisotropically diffusing water and

characterizes this anisotropy using fractional anisotropy (FA).

The PD-model, developed by Sukstanskii et al. (2004), assumes

that the signal is produced by two quasi-pools of isotropically

diffusing water. Unrestricted pool (Mu) is produced by water

molecules that are sufficiently away from the cellular membranes

to be unaffected by them. The water near the membrane forms

the restricted compartment (1 2 Mu) whose diffusivity depends

on both the passive diffusivity of water through the cellular/mye-

lin membrane and the active (thick arrow) permeability via the

ionic channels and water pores that use water as a substrate for

compartment exchange. The NODDI model, developed by

Zhang et al. (2012) assumes contribution from three compart-

ments: the unrestricted diffusion compartment (Miso), intracellu-

lar (Mic), and extra cellular (1 2 Mic). Neurites (neurons or

axons) are expected to have a given angular distribution about

the principle axis that is characterized by the orientation disper-

sion index (ODI). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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intriguing modeling claims, these increasingly sophisti-
cated techniques face the question about their validity for
indexing genetically (and environmentally) regulated WM
neurobiology. The presumed higher accuracy of DWI
models should theoretically lead to new and/or more her-
itable brain measures and present a better target for
genome-wide studies to identify genetic variants affecting
WM.

We set out to identify DWI models with the highest her-
itability using a family study design. The Old Order
Amish (OOA) are of European Caucasian ancestry. They
are known for their very large family sizes and accurate
genealogical record keeping, making OOA population a
powerful resource for heritability analyses even in modest
sample sizes. In addition, the OOA share similar rural
upbringing, all individuals receive the same level of basic
school education, and few use illicit substances. The
greatly improved environmental homogeneity as com-
pared with a general population sample is advantageous
for comparing heritability of different diffusion traits as it
reduces between-subject variations in uncontrolled devel-
opmental and environmental factors that may nonuni-
formly confound the different traits, yielding more precise
estimates of the genetic contributions.

We chose three models, DTI, PD, and NODDI, to repre-
sent the one, two, and three compartment modeling
approaches, respectively. Our experiment was performed
in the midsagittal band of the brain that encompassed the
corpus callosum. We focused our study on this region
because the midsagittal band of corpus callosum is the
best location to assess homogeneous WM. The corpus cal-
losum has a simple parallel fiber orientation that contains
no crossing fibers [Aboitiz et al., 1992]. The comparison of
the DTI, PD, and NODDI models should be more straight-
forward in this region because the impact of intravoxel
crossing fibers may be difficult to assess. Furthermore, the
PD and NODDI models can be applied across cerebral tis-
sue boundaries [Kochunov et al., 2013; Zhang et al., 2012].
Therefore, we also assessed the heritability of PD and
NODDI parameters measured from the gray matter (GM)
of the cingulate gyrus overlaying the corpus callosum.
This presented an opportunity to evaluate the additive
genetic influences on DWI parameters in both WM and
GM tissues.

METHODS

Subjects

Our study included 137 members (59M/78F,
age 5 51.2 6 15.1; 18–80 years) of OOA families from
Lancaster County, PA. The participants were from seven-
teen nuclear families, and belonged to a pedigree that con-
nected them within eight generations based on
genealogical records that are meticulously maintained by
the OOA community and recorded in the NIH Anabaptist

Genealogy Database (AGDB) which traces back to the
founders [Agarwala et al., 1998; Lee et al., 2010; Mitchell
et al., 2012]. The genealogical data extracted from this
database was converted to the pedigree format used by
the SOLAR-Eclipse software package (http://www.nitrc.
org/projects/se_linux). Exclusion criteria included major
medical and neurological conditions that may affect gross
brain structures such as developmental disability, head
trauma, seizure, stroke, or transient ischemic attack. Psy-
chiatric conditions without gross structural abnormalities
were not excluded: the sample included 29 individuals
with a lifetime diagnosis of psychiatric disorders, includ-
ing mood disorders (n 5 8), anxiety disorders (n 5 12),
psychosis (n 5 3), and other psychiatric disorders (n 5 6)
based on Schedule for Clinical Interview for DSM-IV
(SCID). This represented a 21.5% rate of psychiatric illness
in this sample of the OOA isolate, which is comparable to
the 22.4% prevalence rate of psychiatric illnesses in the
general U.S. population [Kessler et al., 2005]. The psychiat-
ric subgroup was not excluded in part because including
them preserved the familial structure. All subjects with
psychiatric disorders were taking psychotropic medica-
tions for their conditions. This included six subjects who
were taking anti-psychotic, thirteen subjects taking anti-
depressant, eleven subjects taking mood-stabilizers and
four subjects taking other psychotropic medications. Herit-
ability analyses were performed by adding medication sta-
tus as a binary covariate.

Imaging and Data Analysis Protocols

Amish study subjects were brought to the University of
Maryland Center for Brain Imaging Research where they
were imaged using a Siemens 3 T TRIO (Erlangen, Ger-
many) system and a 32-channel head coil. Two imaging
protocols were applied: (1) high-angular resolution diffu-
sion imaging (HARDI) for DTI measures and (2) multi-b-
value diffusion imaging (MBI) for PD and NODDI.

HARDI protocol

The full protocol is described in detail elsewhere
[Kochunov et al., 2011a]. Briefly, it consists of a single-
shot, echo-planar, single refocusing spin-echo, T2-weighted
sequence with a spatial resolution of 1.7 3 1.7 3 3.0 mm.
The sequence parameters were: TE/TR 5 87/8,000 ms,
FOV 5 200 mm, axial slice orientation with 50 slices and
no gaps, 64 isotropically distributed diffusion weighted
directions, two diffusion weighting values (b 5 0 and
700 s/mm2) and five b 5 0 images, calculated using an
optimization technique that maximizes the contrast to
noise ratio for FA measurements [Jones et al., 1999]. The
total scan time was about 9 min. The HARDI data were
corrected for eddy-current distortions and a tensor was fit-
ted at each voxel to extract DTI measures including FA,
axial (DA) and radial (DR) diffusivity. Multisubject analysis
of FA values was performed using ENIGMA-DTI pipeline
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(http://enigma.ini.usc.edu/ongoing/dti-working-group/)
[Jahanshad et al., 2013] along the spatial course of the cor-
pus callosum.

Multi-b-value imaging protocol

The protocol was developed based on q-space in vivo
mapping of water diffusion [Clark et al., 2002; Wu et al.,
2011b]. This protocol consisted of 15 shells of b-values
(b 5 250, 500, 600, 700, 800, 900, 1,000, 1,250, 1,500, 1,750,
2,000, 2,500, 3,000, 3,500, and 3,800 s/mm2; diffusion gradi-
ent duration 5 47 ms, separation 5 54 ms). Thirty iso-
tropically distributed diffusion weighted directions were
collected per shell, including sixteen b 5 0 images. The
highest b-value (b 5 3,800 s/mm2) was chosen because the
SNR for the corpus callosum (SNR 5 6.1 6 0.7) measured
in five healthy volunteers (ages 25–50 years) during proto-
col development met the empirical requirement of
SNR 5 5.0. The b-values and the number of directions per
shell were chosen for improved fit of the biexponential
model [Jones et al., 1999]. The data were collected using a
single-shot, echo-planar, single refocusing spin-echo, T2-
weighted sequence (TE/TR 5 120/1,500 ms with the
FOV 5 200 mm) with a spatial resolution of 1.7 3 1.7 3

4.6 mm and seven slices prescribed in sagittal orientation
to sample the corpus callosum and cingulate gyrus
(Fig. 1). The scan time was about 10 min.

Segmentation of corpus callosum and cingulate gyrus

The corpus callosum mask was derived per subject
based on the contrast in FA between corpus callosum and
the nearby GM and CSF. Voxel-wise FA, DA, and DR

images were created using Camino software (http://cmic.
cs.ucl.ac.uk/camino) [Alexander et al., 2011]. Segmenta-
tion was semiautomatic, using an intensity histogram-
approach and manual editing in the Mango software
(http://ric.uthscsa.edu/mango). Next, the DR map was
used to derive the cingulate gyrus mask using intensity-
histogram and manual editing. DR maps provide good
contrast between GM (moderate radial diffusivity), WM
(low radial diffusivity) and CSF (high radial diffusivity)
(Fig. 1).

PD model calculations

The PD model was presented elsewhere [Kochunov et al.,
2013], using parameters derived from the following bi-
exponential two-compartment diffusion model fit [Eq. (1)]:

SðbÞ
S0

5Mu � e2b�Du 1ð12MuÞ � e2b�Dr (1)

PDI5
Dr

Du
(2)

Here S(b) is the average diffusion weighted signal for a
given b value, averaged across all directions. Mu is the
compartmental fraction of the signal that comes from

unrestricted diffusion, and (1 2 Mu) is the signal from the
compartment with restricted diffusion. This model
assumes that the diffusion signal is produced by two
quasi-pools of anisotropically diffusing water. Du is the
mean unrestricted diffusivity of the water molecules that
are away from the axonal membranes. Dr is the mean
restricted diffusivity of the water molecules that are within
the restricted ion channels or close to axonal membranes.
The parameters are the compartmental fraction Mu and
the permeability-diffusivity index (PDI), which is the ratio
of Dr and Du [Eq. (2)]. An increase in membrane perme-
ability via activated ion channels should increase water
exchange and thus Dr, resulting in higher PDI. Conversely,
reduced active permeability should reduce PDI. The diffu-
sion weighted images were calculated for corpus callosum
and cingulate gyrus (Fig. 1).

NODDI model calculations

NODDI was fitted using the default model parameters
in the NODDI toolbox [Eq. (3)] by assuming that normal-
ized diffusion signal S(b)/So is a combination of signals
from intercellular (Sic), extracellular (Sec), and isotropic
(Siso) compartments [Zhang et al., 2012]. The model calcu-
lates the orientation dispersion index (ODI) and the size
for the intracellular (Mic) and isotropic (Miso) compart-
ments. ODI is an index of spatial dispersion [Eq. (4)] that
is obtained by normalizing the “concentration” parameter
k, produced by fitting an orientation distribution function
to the intra-axonal space [Zhang et al., 2011].

SðbÞ
S0

5Miso � SðbÞiso1ð12MisoÞðMic � SðbÞic1ð12MicÞ � SðbÞecÞ (3)

ODI5
2

p
tan21ð1=kÞ (4)

ODI takes values from 0 to 1, with 0 values indicating a
strictly parallel orientation of fibers and 1 indicating
isotropically-dispersed orientation [Zhang et al., 2011].

Statistical Analysis

The variance components method, as implemented in
the SOLAR-Eclipse software package (http://www.nitrc.
org/projects/se_linux) was used to calculate heritability
(h2), which is defined as the proportion of the total pheno-
typic variance (r2

p) that is explained by additive genetic
factors (r2

g) in related individuals. Briefly, SOLAR-Eclipse
employs maximum likelihood variance decomposition
methods [Amos, 1994]. The covariance matrix, X, for a
pedigree of individuals is given by Eq. (5):

X52 � U � r2
g1I � r2

e (5)

where rg
2 is the portion of the variance that is due to addi-

tive genetic factors, U is the kinship matrix, re
2 is the var-

iance due to unique environmental effects and measurement
error, and I is an identity matrix. The variance parameters
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are estimated by comparing the observed phenotypic covari-
ance matrix with the covariance matrix predicted by kinship.
Significance of the heritability is tested by comparing the
likelihood of the model in which rg

2 is constrained to zero
with that of a model in which rg

2 is estimated. Twice the dif-
ference between the loge likelihoods of these models yields a
test statistic, which is asymptotically distributed as a 1/2:1/2
mixture of a v2 variable.

We also performed a correlation analysis to quantify the
magnitude of shared phenotypic variance among traits.
The statistical significance for all heritability and correla-
tion analyses was based on the Bonferroni correction for
multiple comparisons.

RESULTS

Additive Genetic Effect of DWI

Measurements in WM and GM

The corpus callosum showed significant heritability
in FA (h2 5 0.67 6 0.22) and radial diffusivity DR

(h2 5 0.72 6 0.22) of DTI, PDI of the PD model
(h2 5 0.64 6 0.24), and the neurite density (fraction of intra-
cellular space Mic) of the NODDI model (h2 5 0.70 6 0.21)
(Table I and Fig. 2).

The cingulate gyrus showed significant heritability for
PDI (h2 5 0.84 6 0.27) from the PD and ODI and Mic from
the NODDI model GM (h2 5 0.68 6 0.30 and 0.55 6 0.24,
respectively) (Table I). Therefore, PDI was significantly
heritable in WM and GM. The neurite density (Mic) from

the NODDI model was also significantly heritable in both
WM and GM. Linear age was the only significant covariate
for twelve out of thirteen measurements. Sex and its inter-
action with age were not significant (all P > 0.2). Medica-
tion status was a robustly non-significant covariate (all
P > 0.5).

Phenotypic Correlations Between DTI

and Other DWI in WM

FA was inversely and significantly correlated with the
compartment fraction of the PDI model (Mu) (Table II).
Radial diffusivity (DR) was positively associated with Mu

(r 5 0.65; P 5 8.3 3 10216), which appeared to match theo-
retical assumptions: the larger unrestricted intra-axonal
diffusion pool should be associated with higher DR. In
comparison, axial diffusivity (DA) was strongly and posi-
tively correlated with PDI and inversely correlated with
ODI.

Phenotypic Correlations Between PD and

NODDI in WM and GM

Correlations are shown in Table III. The correlations in
GM followed the same pattern as in WM. PDI was inver-
sely related to all NODDI measures in both types of tis-
sues, but more strongly in corpus callosum. The
correlations between ODI, PDI, and Mu were significant in
WM, but not in GM.

TABLE I. The average value and the results of the heritability analysis for the

parameters of the diffusion models are shown

White matter:
corpus callosum Variable Symbol

Average 6

std. dev. h2 SE P

Significant
covariates
(P < 0.05)

DTI Fractional Anisotropy FA 0.69 6 0.03 0.67 0.25 0.001 Age
Axial Diffusivity DA 1.43 6 0.09 3 1023 0.41 0.35 0.10 none
Radial Diffusivity DR 0.50 6 0.04 3 1023 0.72 0.22 0.001 Age

PD Model Permeability-diffusivity Index PDI 0.04 6 0.01 0.64 0.24 0.001 Age
Compartmental Fraction Mu 0.56 6 0.04 0.33 0.31 0.16 Age

NODDI Model Orientation Dispersion Index ODI 0.08 6 0.01 0.42 0.31 0.08 Age
Neurite Density Mic 0.59 6 0.07 0.70 0.21 0.005 Age
Isotropic Water Volume Miso 0.36 6 0.12 0.41 0.45 0.25 Age

Gray Matter: Cingulate
PD Model Permeability-Diffusivity Index PDI 0.08 6 0.02 0.84 0.27 0.0007 Age

Compartmental Fraction Mu 0.67 6 0.05 0.53 0.37 0.09 Age
NODDI Model Orientation Dispersion Index ODI 0.40 6 0.13 0.68 0.30 0.01 Age

Neurite Density Mic 0.42 6 0.09 0.55 0.24 0.01 Age
Isotropic Water Volume Miso 0.27 6 0.08 0.44 0.25 0.06 Age

DTI: diffusion tensor imaging model. PD: permeability-diffusivity model. Mu is the compartmental fraction of the signal that comes
from the compartment with unrestricted diffusion. NODDI: the Neurite Orientation Dispersion and Density Imaging model. ODI: the
orientation dispersion index. Mic: the fraction for the intracellular compartment, thought to represent neurite density in the voxel space.
Miso: the fraction for the isotropic diffusion compartment, thought to represent free standing water in the voxel space, e.g., cerebrospinal
fluid. Bolded statistics were significant after Bonferroni correction for eight tests in the WM (P < 0.00625) and five tests in the GM (P <

0.01).
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Phenotypic Correlations of DWI Parameters

Measured in WM Versus GM

Overall, the DWI parameters measured in GM showed
good correlations with the same parameter in WM
(r 5 0.47–0.72) (Table IV). The highest correlation between
the WM and GM was observed for the PDI and Mic coeffi-
cients (both r 5 0.72).

DISCUSSION

In the first study of genetic attributes across different
DWI techniques, several important findings emerged. First,
we replicated the significant heritability of the DTI-based
measurements in Old Order Amish (OOA) participants.
Heritability of the FA values for the corpus callosum
(h2 5 0.67 6 0.25) in OOA participants was in line with the
range of heritability estimates observed in other cohorts
(h2 5 0.42–0.89) [Jahanshad et al., 2013; Kochunov et al.,
2014b, 2015]. Likewise, we confirmed high heritability for
DR compared with a more modest genetic control over
DA [Kochunov et al., 2010]. Novel findings are that PD

and NODDI models can also yield significant heritability
estimates in both WM and GM. PDI, the permeability-
diffusivity index, showed the highest heritability
(h2 5 0.64 6 0.24) for the PD model, while Mic, thought to
represent neurite density, had the highest heritability
(h2 5 0.70 6 0.21) for the NODDI model. Age was the only
significant covariate. This was expected as the DTI and
DWI measurements are sensitive indices of WM aging
[Kochunov et al., 2012, 2014a]. We replicated previously
reported significant cross-tissue correlation of PD and
NODDI parameters in WM and GM [Chang et al., 2015;
Kochunov et al., 2013]. Significant shared variance
between DWI parameters measured in WM and GM sug-
gests that these techniques may capture the similar biolog-
ical properties shared in WM and GW. This may help
with studying genetic effects of diffusion properties in
both tissues. In that sense, this finding was encouraging,
and suggesting that, unlike DTI that is restricted to WM,
the PD and NODDI models can be used to study micro-
structural integrity of cerebral GM in addition to WM.

The neurobiology of these DWI measures remains some-
what obscure, limiting the mechanistic interpretation of
our findings. Meanwhile, their high heritability increases

TABLE II. Corpus callosum white matter phenotypic correlation (P value) between

DTI vs. PD and DTI vs. NODDI

PD model NODDI model

PDIwm Mu_wm ODIwm Mic_wm Miso_wm

DTI FAwm 0.05 (0.6) 20.48 (2.8 3 1028) 20.05 (0.5) 0.02 (0.8) 0.27 (0.003)
DA_wm 0.61 (4 3 10213) 0.11 (0.35) 20.60 (8.3 3 10216) 0.04 (0.7) 20.24 (0.008)
DR_wm 20.12 (0.24) 0.65 (8.3 3 10216) 0.36 (5.3 3 1025) 20.09 (0.36) 0.43 (9.3 3 1027)

Bolded values are significant after corrected for 52 comparisons across Tables (II and IV) to IV (P < 9.6 3 1024). DTI: diffusion tensor
imaging; PD: permeability-diffusivity model; NODDI: neurite orientation dispersion and density imaging model; FA: fractional anisot-
ropy; DA and DR: axial and radial diffusivities; PDI: permeability-diffusivity index; Mu: fraction of the unrestricted freely diffusing com-
partment; ODI: orientation dispersion index; Mic and Miso: size for the intracellular and isotropic compartments.

Figure 2.

Heritability values for DWI parameters measured in white matter (WM) and gray matter (GM),

the bars represent standard error of the mean. *Significant heritability estimate (P < 0.05).
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the potential that one may use these diffusion measures as
phenotypes to identify contributing genetic variants, which
in turn should facilitate research on the neurobiological
basis of DWI.

An advantage of DWI techniques, such as PD and
NODDI, is that their derived measures are meaningful in
both GM and WM. Heritability analysis showed that the
degree of genetic contribution was similar among tissue
types, but not uniform across parameters. Two DWI
parameters, PDI and Mic, were robustly heritable in both
corpus callosum and cingulate gyrus (Table I). In particu-
lar, the main parameter, PDI, in the PD model showed sig-
nificant heritability in both GM (h2 5 0.84 6 0.27) and WM
(h2 5 0.64 6 0.24) and the difference in the heritability of
PDI in GM versus WM was not significant (P 5 0.11). PDI
was postulated to be sensitive to the active membrane per-
meability [Sukstanskii et al., 2004], which may be under
strong genetic control. The clinical potentials of these data
are further corroborated with earlier findings that PDI pro-
vided a better separation of schizophrenia from controls
than DTI and showed significant patient control differen-
ces in both GM and WM [Kochunov et al., 2013; Sukstan-
skii et al., 2004].

The Mic of the NODDI model, defined as the fraction of
the intracellular compartment with restricted diffusivity
and was termed “neurite density” by the originator of the
NODDI model, was also shown to be under a strong
genetic control in the GM and WM regions evaluated here.
Other parameters were also significantly heritable but
appeared more tissue-dependent. The key NODDI param-

eter ODI was significantly heritable in GM but not in WM
(h2 5 0.68 6 0.30 vs. 0.42 6 0.31, respectively). As stated
previously, ODI is an estimate of the spatial coherence,
with zero representing perfect coherence. As WM fibers
are in parallel alignment in the mid-sagittal corpus cal-
losum [Aboitiz, 1992; Aboitiz et al., 1992], it has high spa-
tial coherence and thus low values and minimal variability
across the entire population: ODI for the corpus callosum
was much lower than that for the cingulate gyrus
(0.13 6 0.07 vs. 0.57 6 0.23, respectively). The low variance
and value may have contributed to the lower heritability
for ODI in corpus callosum.

The unrestricted compartmental fraction Mu of the PD
model and isotropic water fraction Miso of the NODDI
model were not significantly heritable in either tissue type.
Both parameters represent the fraction of the water pool
(high diffusivity) in their respective models. The lack of
genetic control implies that their variances may be influ-
enced by environmental factors. This interpretation would
be consistent with the finding that Mu was related to the
volume of the hyperintensive WM lesions [Kochunov
et al., 2014a] that are commonly associated with environ-
mental factors such as brain trauma [McGuire et al.,
2013a,2013b,2014]. However, we should interpret any
insignificant findings in this sample with caution because
the lack of statistical significance in the heritability esti-
mates of some parameters could be due to a modest study
sample size and/or random noise variations.

The phenotypic correlation analyses help to understand
the similarities and differences among the models. The

TABLE III. Phenotypic correlation (P value) among the parameters of the PD model (PDI and Mu) and NODDI

model (ODI, Mic and Miso) in corpus callosum (left panel) and cingulate gyrus (right panel)

Corpus callosum Cingulate gyrus

PDI PDI
NODDI PDI_wm Mu_wm NODDI PDI_gm Mu_gm

ODIwm 20.64 (3.1 3 10215) 0.42 (1.7 3 1026) ODIgm 20.23 (0.01) 0.18 (0.05)
Mic_wm 20.53 (4.5 3 10210) 20.32 (8.6 3 1024) Mic_gm 20.43 (1.2 3 1026) 20.60 (5.3 3 10213)
Miso _wm 20.61 (1.2 3 10213) 0.27 (0.002) Miso_gm 20.31 (0.005) 20.33 (1.9 3 1024)

Bolded values are significant after corrected for 52 comparisons across Tables (II and IV) to IV (P < 9.6 3 1024).

TABLE IV. White matter (WM) and gray matter (GM) phenotypic correlation (P value) among the parameters of

the permeability-diffusivity model (PDI and Mu) and the NODDI model (ODI, Mic and Miso)

WM vs. GM

PD model NODDI model

PDIwm Mu_wm ODIwm Mic_wm Miso_wm

PD Model PDIgm 0.72 (8.3 3 10220) 0.05 (0.6) 20.39 (3.7 3 1025) 20.45 (3.0 3 1027) 20.36 (5.0 3 1025)

Mu_gm 0.02 0.47 (6.0 3 1028) 20.35 (1.0 3 1023) 20.41 (3.5 3 1026) 0.50 (6.1 3 1029)

NODDI

Model

ODIgm 20.48 (9.7 3 1027) 0.35 (6.1 3 1025) 0.70 (6.5 3 10216) .25 (0.005) 0.57 (1.1 3 10213)

Mic_gm 20.35 (7.5 3 1025) 20.43 (1.6 3 1026) 20.03 (0.7) 0.72 (1.0 3 10218) 0.08 (0.5)
Miso_gm 20.60 (5.7 3 10213) 0.02 (0.9) 0.35 (1.2 3 1024) 20.53 (1.6 3 10210) 0.54 (9.5 3 10211)

Bolded values are significant after Bonferroni correction for the 52 comparisons across Tables (II and IV) to IV (P < 9.6 3 1024).
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PDI and ODI measured in the two tissue types were
highly correlated (both r> 0.7). Such high correlation
between the same DWI parameters measured in two tissue
types argues that they are good measures for common dif-
fusion properties shared by GM and WM tissues. The
model parameters that represent the fraction of free water,
Mu and Miso, showed weaker correlations (r 5 0.47 and
0.54) between GM and WM. A limitation of these correla-
tion results is that it is difficult to draw a direct biological
interpretation among the models as they are built on dif-
ferent theoretical assumptions and methodologies.

Between models, we replicated a previously reported
negative correlation between FA and Mu of the PDI model
(r 5 20.48, P 5 2.8 3 1028; Table II) [Kochunov et al.,
2014a]. Mu was increased by neurodegenerative processes
that increase the extra-cellular water fraction [Kochunov
et al., 2014a], which should be opposite to FA that was
reduced in many neurodegenerative conditions. The same
interpretation may be applied to the negative correlation
between FA and the isotropic diffusion space (Miso) of the
NODDI model. Also consistent with these interpretations
is that both Mu and Miso were positively correlated with
radial diffusivity. In comparison, axial diffusivity was
strongly correlated with PDI (r 5 0.61, P 5 4 3 10213; Table
II), confirming a previously reported finding in an inde-
pendent cohort [Kochunov et al., 2013]. Therefore,
although we currently have limited ability to explain the
correlations neurobiologically, there is a great deal of con-
ceptual and empirical consistency among model
parameters.

The complexity of the interpretation of the shared var-
iance among some DWI parameters is a long-standing
issue [Clark et al., 2002; Wu et al., 2011a,b]. Experiments
in biological tissues [Schwarcz et al., 2004], extruded lipo-
somes [Stokes et al., 2012], and computer simulations
[Hwang et al., 2003; Yablonskiy et al., 2003] indicate that
the proposed physical interpretations for DWI models,
such as the fractions for the extra-and-intracellular spaces
may not agree with the volume fractions that were meas-
ured directly. Therefore, a remaining challenge in the field
is to understand the neurobiology of the underlying micro-
scopic processes contributing to the complex diffusion
decay functions. One way to meet this challenge may be
to first identify those diffusion parameters that are herit-
able in order to affirm a potential genetic and thus biologi-
cal underpinning. This can then be followed by genetic
association studies on these heritable diffusion traits. If
genes associated with some of these heritable diffusion
traits can be identified, it would fundamentally elevate
our ability to identify the biological basis of the DWI diffu-
sion signals including the relationships among DWI mod-
els. Additional biological insight may also be gained by
performing multi-dimensional genetic analysis on DWI
measurements. For instance, diffusion tensors can be con-
sidered as six-dimensional variables [Lee et al., 2009] for
Falconer’s heritability statistics.

A limitation of this study is that its scope maybe limited
because of the unique cohort of OOA individual.
However, heritability for DTI in the OOA is within the
range previously reported; and for a comparative study of
heritability across different phenotypes, the current cohort
should have provided the advantage of reduced con-
founds from differential exposures to environmental var-
iance across traits. The terminology of the DWI measures,
assigned by the original authors to imply specific aspects
of neurobiology, should be interpreted with caution. The
meaning of DWI parameters is model-specific and may
not be comparable across DWI models. For instance, the
fraction of unrestricted water compartment of PD-model
and the fraction of free diffusing water in NODDI model
showed only modest correlation. Finally, each of the mea-
surement was treated as an independent trait despite the
significant shared variance 10 to 50% that was discovered
among them.

The study was performed in the sagittal band of corpus
callosum. This was based on two considerations: homoge-
neity of WM in this region and long-scan time needed to
collect the whole-brain multi-b-value data. The DTI, PD
and NODDI models do not equally account for crossing
fibers and it remains to be determined how crossing fibers
may influence the heritability measurements. Therefore,
using corpus callosum in our first comparison overcame
this since corpus callosum has a simple architecture with
no crossing fibers [Aboitiz et al., 1992]. The second consid-
eration can now be resolved using multiplex DTI sequen-
ces, including these distributed by the Human
Connectome Project [Feinberg et al., 2010; Moeller et al.,
2010]. These sequences can accelerate collection of imaging
data by two to eightfold, making the whole-brain multi-b-
value imaging practical. Additional cross-evaluations of
DWI models can therefore be directed toward clinically-
important regions with crossing fibers.

CONCLUSIONS

We took advantage of a family design to perform
genetic dissections and comparisons of the DWI models.
The multigenerational pedigree structure of the OOA sam-
ple allowed for a good statistical power using only a mod-
est sample size. The relative environmental homogeneity
of the cohort further increased our confidence of the calcu-
lated heritability. The strong additive genetic load thus
identified and observed to be shared between GM and
WM supports the use of advanced DWI models to derive
diffusion-based endophenotypes for genetic studies on the
cerebral microstructure under normal and neuropsychiat-
ric conditions.
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