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Abstract

Introduction—This study examined the reliability of high angular resolution diffusion tensor
imaging (HARDI) data collected on a single individual across several sessions using the same
scanner.

Methods—HARDI data was acquired for one healthy adult male at the same time of day on ten
separate days across a one-month period. Environmental factors (e.g. temperature) were controlled
across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-
session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD).
To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an
ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on
connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices.
Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc
connections and, as comparison regions, connections between left and right rostral and caudal
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anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area
and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans,
expecting that scan-to-scan reliability would yield low CoVs.

Results—TBSS revealed no significant variation in FA or MD across scanning sessions.
Probabilistic tractography successfully reproduced histologically-verified adjacent medial
temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner
variability. Connections involving HC displayed greater variability than metrics of connection
between other investigated regions.

Conclusions—BYy confirming the test retest reliability of HARDI data acquisition, support for
the validity of significant results derived from diffusion data can be obtained.

Keywords

Diffusion weighted imaging; MRI Data Acquisition Reliability; Streamline Tractography;
Probabilistic Tractography; Tract Based Spatial Statistics; Structural Neuroimaging

INTRODUCTION

In the last decade, Magnetic Resonance Imaging (MRI) has emerged as the most widely
used diagnostic neuroimaging tool for a variety of neurologic conditions and for the study of
normal and disordered brain function. As a result of recent advancements in diffusion
weighted image collection and diffusion tensor data analysis techniques, white matter tracts
in the brain can now be visualized and quantified.

One key question is how reliable such methods are in detecting normal and abnormal
structural brain integrity. Fractional anisotropy (FA) has been shown to vary with increasing
signal-to-noise and is more reliably reproducible in white matter than in grey (Farrell et al,
2007). A multi-center study analyzed the variation of diffusion weighted imaging (DWI)
results across 14 imaging centers (Teipel et al, 2011). FA values derived from DW!I data
collected across eight imaging sites using different scanner platforms and acquisition
parameters were found to display similar variance to that shown across three identical
scanners with identical acquisition parameters (standard deviations ranged 0.033-0.053).
Although this study demonstrated a clinically significant range of variability in diffusion
metrics across scanner platforms varying in field strength and acquisition protocol (primarily
number of diffusion gradients), it confirmed acceptable ranges of variability when diffusion
data were collected on scanners with identical field strengths and similar acquisition
parameters. Test-retest reliability of segmented ROI volumes has been shown to be similar
within and across scanner platforms and acquisition parameters (Jovicich et al, 2009).
Additionally, associations between volumetric data and cognitive performance have been
shown to be reliable across scanner platforms (Dickerson et al, 2008). However, DWI
metrics (e.g. FA, apparent diffusion coefficient) are less susceptible to variation due to
alterations in ROI boundaries, and therefore are more reliable and reproducible than
volumetric results (Rana et al, 2003).

TBSS has been shown to be a reliable method of analyzing FA data acquired on separate
scanner platforms (Pfefferbaum et al, 2003, Teipel et al, 2011). While FA and mean
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diffusivity (MD) provide a method for quantifying the structural integrity of white matter,
these metrics do not speak to the strength of white matter connectivity between grey matter
regions of interest (ROI). Several metrics transposed from graph theory have been applied to
EEG (e.g. Boersma et al, 2011), MEG (e.g. Stam et al, 2009; Douw et al, 2010), and fMRI
data (e.g. Hayasaka et al, 2010; Richiardi et al, 2011) to quantify the strength of white
matter connectivity. Recently, these metrics (e.g. node connection strength, edge weight,
edge length) have been applied to quantify the white matter connectivity of structural
diffusion MR data (Sporns, 2007). Edge weight and node connection strength are both
measures of white matter connection strength. Here, these relatively nascent white matter
connectivity metrics were used along with TBSS and probabilistic tractography techniques
to assess the reliability of High Angular Resolution Diffusion Imaging (HARDI) acquired
data, primarily within the temporal lobes.

Recent studies investigating the relationship between disease processes and changes in white
matter connectivity have exploited advanced neuroimaging methods, primarily HARDI, to
enhance imaging sensitivity. During HARDI imaging, 64 uniformly distributed acquisition
directions are generated across the sphere. This high resolution sampling scheme has been
shown to provide the data necessary to more successfully differentiate kissing and crossing
fibers in regions with multiple fiber orientations (Yeh et al., 2009; Tuch et al., 2003). This is
achieved through reconstruction of mathematically rich models of white matter pathways
(Jian et al, 2007) via pathway orientation distribution functions (ODF) using deconvolution
methods (Tournier, 2004). Thus, HARDI data acquisition lends itself to the investigation of
smaller white matter connections (such as those articulating interconnectivity among
temporal lobe structures) and of other complex tissue.

Previous studies have sought to demonstrate the ability of diffusion tractography to
accurately reproduce neural fiber structure. Such studies have employed physical phantoms
(Lin et al., 2003), computer simulations (Dyrby et al., 2007; Conturo et al., 1999), and
comparisons between ex vivo DTI data and histology (Flint et al, 2010; Catini et al., 2002).
Additionally, previous /n vivo work demonstrated variability in connectivity metrics due to
user determined analytic variables including FA-threshold, tractography type and
algorthythm, probabilistic percentile ((Bastiani, et al, 2012) as well as by rater region of
interest (Heiervang et al, 2006; Colon-Perez et al, submitted). Other work has assessed the
impact of acquisition variables on test-retest reliability of graph theory metrics including
node strength, path length, clustering coefficient (Dennis et al, 2012, Buchanan et al, 2014,
Zhao et al, 2015), node degree (Buchanan, 2014), local efficiency, global efficiency, small
worldness, and modularity (Dennis et al, 2012, Zhao et al, 2015). These studies found spatial
and angular resolution, as well as tractography method (deterministic vs probabilistic),
yielded differing degrees of reliability. Further, these authors report sufficient reliability of
global network measures generated from diffusion data. However, reliability was lower for
measures of regional connectivity, variation which was attributed to scanner noise/
inhomogeneity as well as variation in processing. Zhao et al (2015) called for future work to
use measures such as Coefficient of Variation (CoV) to determine reliability of network
measures across scanner sessions. The current study sought to measure the test-reliability of
scanner noise/inhomogeneity across scanning sessions, particularly in regional (temporal
lobe) connections, while controlling for variation in processing across data sets.
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For the current study, HARDI data were applied to determine our ability to reliably
reproduce diffusion-based metrics assessed within the temporal lobes using TBSS,
probabilistic and streamline tractography analyses. Given ongoing investigations by the
current authors using HARDI for tractography purposes within medial temporal lobe
regions, we sought to examine the reliability of these methods for this NIH study. Temporal
lobe white matter circuits are particularly susceptible to MR acquisition artefacts and, given
the relatively short length of these tracts, are more likely than longer tracts to yield
unreliable tractography results (Gigandet et al, 2008). Therefore, determining the reliability
of signal acquisition from these regions is necessary for validating results from these regions
reported in current and future literature.

This project used a single subject design to attempt to validate the test-retest reliability of in
vivo, human HARDI data acquired using 64-diffusion directions. Single subjects designs
have been used previously in the literature (Armitage et al, 2001; Farrell et al, 2007). Here,
the single subject design allowed for rigorous control over interindividual variation in grey
matter morphometry, white matter integrity and white matter connectivity. We attempted to
demonstrate the reliability of HARDI acquisitions across scanner sessions as assessed via
FA and MD (TBSS). We also used connectivity maps derived from probabilistic
tractography and novel, graph theory-derived white matter connectivity metrics, edge weight
and node connection strength, computed using deterministic, streamline tractography. These
tractography-derived metrics were chosen to investigate test-rest reliability differences
between probabilistic and deterministic tractography. Further, studies using connectivity-
defined regions (CDR) are often reported in the literature (Behrens et al, 2003; Bach et al,
2011; Sagyin et al, 2011; Cerliani et al 2012) but to the best of our knowledge no extant
study has employed CDR to the investigation of the entorhinal cortex (as done here).
Additionally, current literature has demonstrated test-retest reliability of graph theory-based
white matter connectivity metrics (Owen et al, 2013; Buchanan et al, 2014). However, the
edge weight and node connection strength used herein were mathematical measures
established by our collaborator (THM) and the reliability of these measures has not yet been
reported in the literature. Prior to investigating diffusion tractography, particularly in regions
inherently difficulty to perform tractography (e.g. medial temporal lobe), it is important to
verify the reliability of diffusion data acquisition as well as tractography metrics (Ciccarelli
et al, 2003).

METHODS

Imaging Data Acquisition

Repeated measures HARDI imaging were collected for one healthy, adult Caucasian male,
age 38, ten times within one month using identical scanning parameters across sessions.
These data were collected in accordance with IRB guidelines and are reported in another
publication (Colon-Perez, submitted). T1-weighted and DWI data were collected using a 12-
channel head coil on Siemens Verio 3T scanner (Siemens Medical Solution, Erlangen,
Germany) at the University of Florida. Structural MP-RAGE T1-weighted scans were
acquired with 120 — 1.0mm sagittal slices, FOV = 256mm (A-P) x 192 mm (FH), matrix =
256 — 192, TR = 450.0 ms, TE = 10.0 ms, Flip Angle = 8, voxel size = 1.0mm x 0.94 mm x
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0.94 mm. Diffusion weighted images were acquired using single shot spin-echo planar
imaging (EPI) with 60 x 2.0 mm axial slices (no gap), FOV = 256 mm (AP) x 256 mm (RL),
matrix = 128 x 128, TR = 15200 ms, TE = 81 ms, Flip Angle = 30, voxel size = 2.0 x 2.0 x
2.0 mm, and time of acquisition was 7 min 16 s.

Using the HARDI data acquisition method (Tuch et al, 1999), diffusion gradients were
uniformly distributed over a sphere in 64-acquisition directions with 4= 1000 s/mmZ. In
order to ensure that signal attenuation did not include signal from blood perfusion, six low &-
value (6= 100 ss/mm?2) volumes were also collected (Le Bihan et al., 2002). Additionally, by
merging each participant’s 6- and 64-direction diffusion-weighted images we were able to
improve tensor fit. One volume with no diffusion weighting (6= 0) was also acquired during
the low and high angular acquisition sequences, respectively. These volumes were used
during eddy current correction and brain extraction.

All imaging data were pre-processed using FSL software package FMRIB software Library
(www.fmrib.ox.ac.uk.fsl) (Jenkinson and Smith, 2001; Smith, 2002). The 6- and 64-
direction DWI volumes were merged to create a single DWI data file for each participant.
This DWI data was eddy current corrected (Smith, 2002), skull stripped (Smith, 2002b), and
then diffusion tensors were fit to the data (Smith, 2002; Basser 1994; Pierpaoli, 1996).

In order to demonstrate the reliability of our diffusion methods, Tract-Based Spatial
Statistics (TBSS, [Smith 2006]), part of FSL [Smith 2004]), a widely used method for group
wise analysis of white matter integrity was applied to the reliability data set. Following the
completion of basic data pre-processing, the FA map data for all ten repeated acquisition
data points were compiled into three independent libraries. Each library differed in the
organization of datasets. For the first library, the datasets were ordered temporally, from
Session 1 to Session 10. The data from Session 1-5 were used as control data and sessions/
scans 6-10 were used as comparison data. In the other two libraries, scans were randomly
assigned to either the control or comparison group (e.g., 1,5,6,8,10 vs. 2,3,4,7,9). TBSS was
conducted comparing FA and MD metrics within varying white matter masks (as described
below), uniformly across all three data libraries.

Separate whole brain voxelwise analyses using two contrasts (Controls > Comparison;
Comparison > Controls) were conducted to compare FA and MD, respectively, between
control and comparison scanning sessions (Figure 1). In detail, TBSS conducted 5000
permutation two-tailed t-tests of each voxel within the mask of interest. Given the multitude
of voxels within such an analysis, a correction for multiple comparisons is included in TBSS
in order to minimize the effect of Type 1 error.

Temporal Lobe FA and MD Analyses

In additional to whole brain white matter analyses, TBSS analyses were restricted to the
temporal lobes using unilateral temporal lobe masks as part of a separate ongoing
investigation. These individual masks of the right and left temporal lobe (Figure 2) were
created using the John Hopkins University White Matter Tractography Atlas incorporated in
FSL (Hua et al, 2008; Mori et al, 2005). These masks were then overlaid onto the mean FA
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skeleton and mean MD skeleton, respectively, restricting subsequent TBSS analyses to
voxels within the each temporal lobe region. Therefore, three independent TBSS analyses
were conducted for each organization of datasets: whole brain, left temporal lobe and right
temporal lobe.

Hemispheric FA Asymmetry Analysis

Further, we conducted comparisons of FA and MD in the left versus right hemisphere. In
order to perform voxelwise comparison between hemispheres, a novel, symmetric mean FA
skeleton was generated (Figure 3). This was achieved by using the TBSS symmetry pipeline
which assured that structures that showed significant hemisphere-to-hemisphere differences
were not compared. Thus, only those bilateral structures already close to symmetric were
used in this between-hemisphere analysis.

FA Analysis of Regions with Complex Fiber Orientation

In order to assess the potential impact of kissing and crossing fibers on TBSS results, the ten
acquisition datasets were processed using beapostX (Bayesian Estimation of Diffusion
Parameters Obtained using Sampling Techniques for Modeling Crossing Fibers; Behrens et
al, 2007). This method uses Bayesian techniques to estimate probability density functions
given two primary diffusion directions within each seed voxel. Markov Chain Monte Carlo
sampling was then used to automatically compute the solution of these Bayesian models to
determine the number of crossing fibers within each voxel. The fiber per voxel maximum
threshold was set at two (the maximum allowed by TBSS). Voxels containing fewer fibers
than this threshold were restricted to the number of fibers present in that voxel’s data (e.g. 1)
using automatic relevance determination (ARD; MacKay, 1995). The results of bedpostX
were then organized into three separate libraries, as described above in the initial TBSS
analyses (one temporally organized library, two libraries identical to the randomly assigned
libraries).

The three new libraries composed of two dyads per voxel (Figure 4) were then subjected to
the same processing stream described above. Complete TBSS processing was conducted and
whole brain voxelwise statistical analyses were run. Following whole brain analyses, the left
and right temporal lobe masks were applied, one at a time, to the two dyad per voxel whole
brain data, resulting in restricted FA and MD skeletons on which voxelwise statistics were
then applied.

Using the FSL-provided John Hopkins University White Matter Tractography Atlas (Hua et
al, 2008; Mori et al, 2005), two additional unilateral masks were created in order to test the
boundaries of reliability in this dataset. The region where the arcuate fasciculus is most
proximal to the superior longitudinal fasciculus and corpus callosum, known to contain
complex tissue organization/multiple fiber orientations, was selected. Masks for this region
were created and then overlaid onto the whole brain FA skeleton. As these regions are
characterized by multiple fiber orientations, it was thought that they would yield a high
likelihood for bedpostX-based TBSS analyses to yield significant results. After overlaying
these masks onto the FA skeleton (Figure 5), voxelwise two-tailed t-tests were conducted.
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Significant results were determined using Threshold-Free Cluster Enhancement and p<0.05
following multiple comparison correction.

Probabilistic Tractography Analysis

The FA tensor fit data for each acquisition session (1 — 10) was compiled into a single
library. Then, probabilistic diffusion tractography was conducted using previously defined
methods (Behrens et al, 2003b; for full details please see Supplemental methods online).
Given the prevalence of kissing and crossing fibers in the MTL, and the enhanced ability to
differentiate these fibers using HARDI, each voxel was seeded assuming up to two separate
fiber orientations. Markov Chain Monte Carlo sampling was then used to compute the
solution of these Bayesian models to determine the number of crossing fibers within each
voxel (bedpostX).

Next, manually segmented “majority rules” masks of the ERc and an automatically
segmented and manually “cleaned” HC mask were generated for scan one. These masks
were generated after three raters achieved intra-rater reliability of = 0.90 and a Dice
similarity coefficient of reliability = 0.80 (voxelwise overlap) for manual segmentation of
each ROI. Using the T1-weighted anatomical image, three raters manually segmented each
temporal lobe ROI using segmentation protocols derived for structural MRI from histology
data (ERc: Insausti et al., 1998 and Franko et al., 2012; PRc: Insausti et al., 1998; PHc:
Rogalski et al., 2009 and Burgmans et al., 2011) on the first reliability acquisition scan.
Then, using the FSL Utils module (Smith, 2002), the three rater’s ERc masks were blended
to yield a final “majority rule” (Colon-Perez, submitted) mask composed only of voxels
contained in the ROI’s generated by all three raters. This process was repeated for the PRc
and PHc masks. FSL FIRST module (Patenaude, 2011) was used to automatically segment
the HC. Using histologically derived guidelines, the automatically segmented HC mask was
manually cleaned by all three raters. Again, these three HC masks were blended to yield an
HC “majority rule” mask. Finally, an exclusion mask was created to ensure that streamlines
connecting ROIs originated in the MTL. This was done for both right and left hemisphere
yielding ten temporal lobe masks for use in subsequent analyses.

The whole brain T1-weighted data for scan one was then registered to scans two through ten.
Then the blended ROI “majority rules” masks from scan one were registered to scans two
through ten using FSL FLIRT program (Jenkinson and Smith, 2001) with nearest neighbor
interpolation. In this way, variability due to creation of the masks was eliminated, leaving
only variability attributed to differences between scanner acquisition episodes.

During probabilistic tractography, the “majority rules” ERc mask was used as the seed mask
and “majority rules” PRc, PHc and HC masks were used as target masks. Probability
distributions of connectivity between the target masks and the ERc were then created. By
iteratively sampling the connected pathway of the ERc seed mask with the target masks
through the probability density field, we were able to build probability distributions
determining the connection from each ERc seed voxel to the target mask with the highest
probability of connectivity. Then, from each seed voxel, we recorded the number of samples
from the connectivity distribution that passed through the target mask. Given the use of
multiple fiber orientations, each streamline tract was drawn from one voxel to the next by
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choosing a direction most collinear with tract’s preceding orientation. This maintained the
orientation of the original tract, enhancing our ability to follow tracts through kissing or
crossing pathways.

Probability of connection from seed voxel to target mask was calculated as the proportion of
the total number of samples from that voxel reaching any target mask. Hard segmentation of
the ERc into connectivity-defined regions (CDRs) was completed by classifying seed voxels
based on their highest connection probability to the ERc, PRc or PHc. Quantitative metrics
were then derived from each CDR across the ten scans for use in subsequent reliability
analyses. Using FSL software, surface area and volume were derived for each CDR of the
hard segmented ERc. These values were converted to proportion of the total ERc surface
area and volume, respectively, in order to yield relative proportion of the entire ERc
connecting to each target mask.

A coefficient of variation (CoV; Abdi, 2010) was derived for each CDR volume and surface
area. CoV, often expressed as a percentage, measures the variability of a set of numbers
irrespective of units of measure. CoV was calculated as the standard deviation of the set
divided by the mean of the set (Eqn 1). Therefore, CoV

o
CV—;J;IOO )

was used to determine the diffusion variability across scan sessions as measured via ERc
CDR surface area and volume.

Streamline Tractography Analysis

In order to evaluate the variance in edge weight (EW) across HARDI acquisition, we ran all
ten scans through the streamline tractography process. All streamline tractography analysis
was conducted using in house software (TrackTools, part of MRI Analysis Software) written
by collaborator’s lab (Mareci). For each reliability data set, every voxel throughout the brain
was seeded with 64 equidistant points distributed in order to create a uniform field of seed
points consistent across the entire brain. Then, streamlines were launched bidirectionally
from each seed point and progressed incrementally in 0.25mm steps using Euler integration.
This was achieved by estimating, at each voxel, the fiber direction that was most consistent
with the current orientation of the streamline. These estimations were made using the
Mixture of Wisharts (MOW; Jian et al., 2007) model. Thus, MOW was used to further the
streamline across voxels until either the streamline terminated at an ROI mask or it
attempted to turn at an angle greater than sixty-five degrees. As FA is ambiguous in regions
of complex tissue fiber structure (e.g. kissing and crossing fibers), FA was not used as a
stopping criteria for streamlines.

Initially, whole brain streamlines were created (Figure 6). Then, whole brain streamlines
were filtered using “majority rule” MTL ROI masks (ERc, PRc, PHc, HC, exclusion,
described above) to render only MTL network connectivity pathways (Figure 7). Again,
after these ten temporal lobe masks were generated, the T1-weighted, skull stripped brain
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image of acquisition scan one was coregistered to acquisition scans two through ten. Then
the blended ROl masks from scan one were registered to scans two through ten using FSL
FLIRT module (Jenkinson and Smith, 2001) and nearest neighbor interpolation. By
registering these “majority rule” masks to the nine subsequent repeated measures scans,
variance due to creation of the ROI masks was eliminated. Variability in EW was
subsequently attributable only to variance in the diffusion data across scanning sessions.
Streamline tractography filtering then allowed for voxel-by-voxel tracking of streamlines
between ROIs and was used to yield a network edge weight (EW) value.

Edge Weight and Node Connection Strength

EW is a dimensionless, scale invariant measure which represents the strength of connectivity
between two ROIs and was computed by calculating the volume of the fiber bundles
between the two ROI’s and weighing that volume by the surface area of the ROI’s. As a
measure of tract connectivity strength, EW is derived from graph theory (Hagmann et al,
2008, Ford et al, 2013). In graph theory terms, each ROI represents an information
processing node (n;and 7)) and streamline tracts connecting nodes represent network edges
(ej)- Network EW takes into account number of seeds per voxel (P), the voxel volume (V),
number of voxels constituting the edge [M], the location of the voxels constituting the edge
[X(#po,m)], the cross-sectional surface area of the two nodes (A;and A) and the inverse sum
of the edge length [/, )] (Colon-Perez et al, 2012). By incorporating the inverse sum of
the edge length, the EW metric is not dependent on the distance between nodes. This allows
for direct comparison between edges connecting different nodes, regardless of disparities in
edge length (Egn. 2).

‘/VOXB PV(XE] ]\/[ f) m
’w(eij):< l) (Az ) DD X(f;m)

P, voxel p=1 m=1

O]

Further, a weighted node connection strength, s(77;), — the summation of all edges, nj,
connected to a particular node, n7;— was derived for the ERc. Therefore, all ERc-related edge
weights (PRc — ERc, PHc — ERc, ERc — HC) were summed in order to calculate the ERc
connection strength.

s(ni):Zw(eij)
i#]j 3)

s(ERc)sz(ERC — nj)
@

Secondary analyses were conducted to determine the variability of EW and ERc connection
strength across the ten reliability acquisition scans. Again, CoV was used to quantify the
variability of diffusion values within our ROIs, as assessed using streamline tractography, by
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quantifying the variability of EW and ERc connection strength across the ten repeated
measures scans.

In order to determine acceptable CoV limits, EWs were derived from large, robust fiber
tracts. Bilateral rostral and caudal anterior cingulate cortex (ACC) were masked and EWs
were calculated for both ACC tracts across all ten reliability scans. Then, CoVs were
calculated for the rostral and caudal ACC EWs, respectively, and used as a frame of
reference for the variability in diffusion values inherent across large ROIs within these
reliability scans.

TBSS Reliability

TBSS tested the null hypothesis that there were no significant differences in data acquired
between the 10 scanning sessions. No TBSS analyses yielded significant results. Therefore,
we were unable to reject the null hypothesis, indicating that HARDI data acquired across
scanning sessions was not significantly different in structure or value. Three separate
iterations of all TBSS analyses were conducted using three unique configurations of the ten
datasets into two groups of five (control and comparison scans). Therefore, all p-values were
reported as ranges: smallest and largest from the three analyses (Table 1).

The TBSS analyses investigating voxels throughout the whole brain were unable to find any
TBSS measure that rejected the null hypothesis, including FA (p: 0.404 — 0.901), MD (p:
0.107 - 0.762) or FA assuming two fibers per voxel [p(partial volume 1): 0.337 — 0.551;
p(partial volume 2): 0.885 — 0.948]. When voxelwise permutation analysis was restricted to
a unilateral temporal lobe, we again could not reject the null hypothesis. In the left temporal
lobe, neither FA (p: 0.670 — 0.881), MD (0.230 — 0.793), or FA assuming two fibers per
voxel [p(partial volume 1): 0.298 — 0.738; p(partial volume 2): 0.746 — 0.888] were
significant. The same was true of the right hemisphere: single fiber FA (p: 0.392 — 0.698),
dual fiber FA [p(partial volume 1): 0.424 — 0.881; p(partial volume 2): 0.766 — 0.960], MD
(p: 0.060 — 0.960). Further, no hemispheric asymmetries were found in FA or MD (p: 0.508
—-0.714).

In order to further investigate the reliability of our data as assessed using TBSS, dual fiber
FA data was subjected to voxelwise permutation statistics isolated to an area known for
complex tissue organization (e.g. multiple fiber orientations). The results of this analysis,
using a unilateral mask composed of the arcuate fasciculus where it was most proximal to
the superior longitudinal fasciculus and the corpus callosum, were not statistically
significant: left complex white matter mask [p(partial volume 1): 0.393 — 0.952; p(partial
volume 2): 0.603 — 0.956]; right complex white matter mask [p(partial volume 1): 0.270 —
0.742; p(partial volume 2): 0.612 — 0.892]. Therefore, the null hypothesis could not be
rejected indicating that even in regions of high fiber orientation, HARDI data did not differ
(i.e. was reliable across) between acquisition session.
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Probabilistic Tractography Reliability

Probabilistic tractography was used to hard segment the ERc from each reliability dataset
into connectivity-defined regions (CDRs) using the highest probability of connection
between each ERc voxel and the PRc, PHc and HC (Figure 8). This methodology allowed us
to successfully visualize adjacent MTL circuits. Visual analysis of the ERc CDRs revealed
the PRc CDR occupied the lateral portion of the ERc. The PHc CDR occupied the medial
portion of the ERc CDR. The HC CDR composed the middle aspect of the ERc and often
separated the PRc and PHc CDRs. Further, the HC CDR was located primarily on the most
posterior portion of the ERc. These results supported the morphology of our hypothesized
adjacent MTL circuits in a healthy adult. As predicted and in line with histology literature,
the PRc projected primarily to the lateral ERc and the PHc projected to the medial ERc.
Interestingly, efferent projections from the ERc to the HC tended to be centrally located
between the PRc and PHc CDRs.

Coefficients of variation (CoVs) were calculated for the bilateral ERc connectivity-defined
region (CDRs) surface area and volume generated across ten repeated measures HARDI
scans of the same healthy adult male (Table 2). Across the ten HARDI datasets, the
variability of the surface area of the left ERc receiving efferent connections from the left
PRc was 13.25%. The variability of the surface area of the left ERc receiving efferent
connections from the left PHc CDR was 9.69%. The variability of the surface area of the left
ERCc projecting afferent connections to the left HC was 38.23%.

For the right hemisphere, the variability of the ERc surface area receiving efferent
connections from the right PRc was 10.45% and the variability of the surface area of the
right ERc receiving efferent connections from the right PHc CoV: 7.09%. The variability of
the surface area of the right ERc producing afferent connections to the right HC was
31.97%.

Regarding CDR volume, the coefficient of variation for volume of the left ERc occupied by
the left PRc connectivity-defined region (CDR) was 7.74%. The variability of the volume of
the left ERc occupied by the left PHc CDR was CoV: 5.24%. The variability of the volume
of the left ERc occupied by left HC CDR was large CoV: 51.31%.

Similar variability was observed in the volume of the right ERc occupied by the PRc 6.55%
and PHc 10.38% CDR, respectively. As was the case with all HC CDR variability, gross
variability was observed in the volume of the right ERc occupied by HC CDR (32.44%).

To assess whether we achieved high reliability for probabilistic tractography metrics,
Levene’s test for homogeneity of coefficient of variation was conducted to compare each
CoV to zero. Levene’s test revealed that the CoVs for each CDR were significantly different
from zero (p<0.05). Therefore, the null hypothesis that there was no variance between data
acquired across session was rejected. Subsequent Levene’s test for homogeneity of
coefficient of variation were conducted to compare CoV between hemisphere (e.g. left vs.
right PRc-ERc EW, left vs. right PRc CDR). None of these Levene’s tests yielded
statistically significant results. Thus, the null hypothesis that across scanner variance is not
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different between hemispheres could not be rejected. These results indicated that the
variability of each CDR metric was uniform across hemispheres.

Streamline Tractography Reliability

After running these ten repeated measures HARDI data sets through the streamline
tractography processing stream, between-scan variance in EW was assessed using CoV.
Network edge weights were calculated for each anatomically plausible pairs of MTL ROIls
across ten repeated measures HARDI scans of the same healthy adult male (Table 3). CoV,
often expressed as a percentage, measures the variability, in relationship to the mean, of a set
of numbers irrespective of units of measure. CoVs were derived for the rostral and caudal
ACC EWs and used as comparison values for the CoVs of smaller, MTL ROI EW CoVs.
The rostral ACC EWSs (mean: 0.092, standard deviation: 0.011) resulted in a CoV of
15.25%. The caudal ACC EWSs (mean: 0.056, standard deviation: 0.009) resulted in a CoV
of 12.40%.

CoV results for the left and right hemisphere are displayed in Table 3. CoV computed for
left hemisphere EWs were similar to ACC EWs with the exception of EWs involving the
HC. For the left hemisphere, the EW CoVs ranged from 10.40% (PRc — ERc EW) — 41.52%
(ERc — HC EW). Right hemisphere EW CoV were also comparable to ACC EWSs unless the
EW involved the HC. For the right hemisphere, the EW CoVs ranged from 15.64% (PHc —
ERc EW) - 37.35% (ERc — HC EW). Bilateral PRc — ERc and PHc ~ERc EW CoVs were
minimal and within acceptable limits. Bilateral ERc — HC EW CoVs were large and raised
methodological concern. After performing ERc EW summation to generate ERc connection
strength, the CoV for the ERc connection strength was determined to be 8.60% for the left
hemisphere and 5.57% for the right hemisphere.

To assess whether we achieved high reliability for streamline tractography metrics, Levene’s
adjusted test for homogeneity of coefficient of variation was conducted to compared each
CoV to zero. Levene’s test for the CoV for every EW and connection strength were
significantly different from zero (p<0.05). Therefore, the null hypothesis that there was no
variance between data acquired across session was rejected. We then conducted Levene’s
test for homogeneity of coefficient of variation to compare CoV between hemispheres (e.g.
left vs. right PRc-ERc EW, left vs. right PRc CDR). This analysis tested the null hypothesis
that there is no difference between HARDI data within the right and left hemisphere
acquired across scans. None of these Levene’s tests yielded statistically significant results.
Failure to reject this null hypothesis indicated that the variability of each EW metric was
uniform across hemispheres.

To assess differences in reliability regarding derivation of EWs for large, robust white matter
tracts (e.g. rostral and caudal ACC) and smaller temporal lobe white matter tracts (e.g. those
under investigation in this study), Levene’s test for homogeneity of coefficient of variation
was performed to test the null hypothesis that the variance of each medial temporal lobe EW
was not different from the variance of the ACC EWs. First, Levene’s test revealed that there
was no statistical difference between the CoV for the rostral and caudal ACC EW (F(1,19) =
2.125, p>0.05) demonstrating that there is no significant difference in variance between the
rostral and caudal ACC HARDI data as assessed via EW. Then, Levene’s tests were
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conducted comparing CoVs for left and right hemisphere EWs (PRc-ERc, PHc-ERc, ERc-
HC) to CoVs for rostral and caudal ACC EWSs. Results revealed significantly greater
variance in the right hemisphere ERc-HC EW CoV than the in the rostral [F(1,19) = 5.712,
p<0.05] and caudal [F(1,19) = 8.928, p<0.05] ACC EW CoVs. Given that the null
hypothesis was not rejected, this analysis determined that the variance of all other medial
temporal lobe EWs was comparable to the variance in the rostral and causal EWs.

DISCUSSION

This study represents one of the first attempts to assess the test-retest reliability of HARDI
data acquisition /in vivoand is, to our knowledge, the first study to do so using TBSS,
connectivity defined regions (CDR) and edge weight. Using TBSS, this study demonstrated
highly faithful and reliable acquisition of FA and MD values across scanner sessions. No
significant variation in FA or MD was found across scanning sessions even when the
analysis was restricted to regions known to contain high degrees of fiber orientation.

To validate the TBSS findings, a power analysis was conducted to verify that we had
sufficient statistical power to reject the null hypothesis. The difference between two
independent means were calculated using a power of 0.80 and an error probability of 0.05,
two-tailed, and the resulting Effect sizes (Cohen’s d) were as such: Left Temporal lobe
Effect Size = 0.2441 (24.41%); Right Temporal Lobe Effect Size = 0.1475 (14.75%); Left
Multiple Fiber Orientation Region Effect Size = 0.7035 (70%); Right Multiple Fiber
Orientation Region Effect Size = 0.5496 (54.96%).

Using Heiervang (2006) criteria, this indicated that TBSS restricted to the right temporal
lobe was the least powerful, and according to the article (table 6), between 4 and 5 subjects
were needed to yield significant results at that power in this region. The remaining regions
required between two and three subjects to render significant results. Therefore, our sample
size was large enough to generate sufficient power to reject the null hypothesis. This study’s
inability to reject the null hypothesis, then, demonstrates valid test-retest reliability of 64-
direction HARDI FA and MD acquisition.

Both probabilistic and streamline tractography rely not on FA or MD but on the primary
direction of water diffusion (i.e. primary eigenvector). Hard segmentation of the ERc based
on connectivity with the PRc, PHc and HC revealed segregated connectivity defined regions
illustrating that the PRc projects primarily to the medial-ERc, the PHc projects primarily to
the PHc and the portion of the ERc separating the PRc and PHc CDRs connects to the HC.
This finding is supported by histology studies (Chrobak & Amaral, 2007) and is the first
time these pathways have been visualized in a human brain 7n vivo (Kuhn et al, submitted).

Further, the reliable error of ERc — PRc and ERc — PHc CDR reproducibility across scanner
sessions as measured using CoV was less than 10.5% for CRD volume and less than 13.5%
for surface area. The CoV for ERc — HC CDR was significantly larger, indicating lower,
clinically insufficient reliability. A similar pattern was found for reliability of EWs. ERc —
PRc and ERc — PHc EW were reliably reproduced across scanner sessions with CoV ranging
from 10 — 15. However, the reliability of reproducing ERc — HC EW was significantly lower.
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Future studies may attempt to improve reliability be creating composite metrics (e.g. EW or
CDR) of right and left hemisphere connections. For example, the left and right ERc — HC
EW could be summed to create a bihemispheric ERc — HC EW. This method may reduce
variability across session and possibly improve clinical significance of these measures.

Test-retest reliability of ERc — HC connectivity was significantly lower than other ERc
connectivity metrics, potentially due to the inclusion of the entire HC in the analysis.
Histology studies indicate that the ERc projects to the HC primarily through the perforant
pathway to distinct HC subfields, primarily CA1, CA3 and the Dentate Gyrus. Therefore,
inclusion of the entire HC in connectivity-based analyses is not driven by a priori
neuroanatomical understanding and potentially results in connectivity-based analysis tools
attempting to create tracks between regions targeted by fibers that originate elsewhere.
Future studies may wish to consider restricting HC segmentation to HC subfields (e.g.
Winterbaum et al, 2013; Poppenk et al, 2013). Such methodology may improve the
reliability of ERc — HC connectivity metrics by restricting the analysis to neuroanatomically
confirmed fiber tracks.

Importantly, the generalizability of this study is limited by the single subject design, the data
acquisition parameters used and the regions investigated. Data were from one healthy adult
male. Therefore, it is possible that the results are in some way attributable to this person’s
neural architecture and may not apply to other study participants. Given that this single
study participant was healthy, it is also unclear to what extent the reliability results
demonstrated here are applicable to participants with possible neuropathology or to clinical
populations in general. Nevertheless, the repeated measures design used here, incorporating
ten MRI scans across one month, potentially addresses several limitations inherent in single
subject studies. The number of scans acquired was sufficient to provide statistical power and
the timeframe within which they were acquired likely controlled for any cyclic variations
thus yielding stable baseline data. Further, our reliability results do not necessarily represent
the range of reliability inherent in other scanning protocols. For instance, changing magnet
strength or HARDI parameters could alter the fidelity of data acquired across sessions in a
way not investigated in this study. Finally, reliability of FA and MD acquisition was
demonstrated throughout the entire neural network and in regions of multiple fiber
orientation using TBSS. However, the tractography-based analyses were not conducted
within all possible pair-wise white matter connections. Rather, the analyses reported here
were conducted within medial temporal lobe regions and compared to rostral and caudal
anterior cingulate cortex. While these results illustrate the reliability of HARDI data used to
derive metrics from small-fiber bundles in regions highly susceptible to artefact and
previously reported to be more difficulty to reliably collect diffusion data from than larger
white matter regions, they do not speak to the reliability of EW or CDR data drawn from
other regions of interest. Future studies assessing the reliability of EW and CDR derived
from the entire connectome and compared across multiple scanner acquisition platforms are
therefore warranted.

Despite these limitations, this study suggests that 64-direction HARDI data acquisition is a
reliable data acquisition technique when acquisition parameters are uniform across scanner
session. Additionally, HARDI-derived eigenvalues appear to be more reliable than
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eigenvectors, however this is highly dependent on, and confounded by, the type of analysis
used (e.g. TBSS vs. Tractography). It is important to note, however, that any diffusion
imaging technique is bounded by its ability to investigate underlying axonal anatomy by the
relatively macroscopic resolution (e.g. 1-2mm/voxel) of DTI. Depending on the type of
analysis, one or two fiber orientations are assumed within each voxel, where each fiber
represents the predominant direction of water diffusion across thousands of axons.
Nevertheless, given the sufficient test-retest reliability demonstrated in this study, HARDI
appears to be a clinically useful MRI tool capable of producing qualitative and quantitative
results with high fidelity across scanner sessions.
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Figure 1.
Whole Brain TBSS Fractional Anisotropy White Matter Skeleton for a Single Reliability

Dataset
Yellow white matter FA skeleton overlaid onto one grouping of reliability whole brain mean
FA image.
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Figure 2.
Left and Right Temporal Lobe Fractional Anisotropy and Mean Diffusivity Skeletons from

One Reliability Library

Comparison of left and right temporal lobe masks used in between group reliability
analyses. A) Left temporal lobe mask. B) Right temporal lobe mask. These skeletons were
created and applied to FA and MD analyses of each reliability data library.
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Figure 3.
Symmetrized Fractional Anisotropy White Matter Skeleton for a Single Reliability Dataset

Blue symmetrized white matter FA skeleton overlaid onto control plus subject group whole
brain mean FA image from one reliability data library. This skeleton was created by first
thickening the previous, asymmetric skeleton by one voxel. Then, this asymmetric mean FA
image was flipped, averaged, and skeletonized to generate the initial symmetric skeleton.
This initial symmetric skeleton was masked using the thickened asymmetric skeleton. This
assured that only those structures already close to symmetric were used in this between-
hemisphere analysis. In this way, structures that showed significant hemisphere-to-
hemisphere differences were not overlaid and compared. Finally, to ensure symmetry, the
skeleton was flipped and masked back to the non-flipped skeleton. This mean symmetrized
skeleton was then thresholded (0.2) and each participant’s FA data was projected onto it.
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Figure 4.
Multiple Fiber per Voxel TBSS White Matter Skeletons for a Single Reliability Dataset

Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques for
Modeling Crossing Fibers (bedpostX; Behrens et al, 2007) was run in order to seed each
voxel with up to two fibers as supported by the diffusion data. This analysis yields two
individual files, each containing partial volume fraction estimates and the orientation of
those fibers composing those volumes for every voxel throughout the brain. These files were
then used to generate separate white matter skeleton masks, one for each partial volume, A
and B.
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Figure5.
Region of Complex Tissue Organization Mask

Complex tissue mask created for the right hemisphere. The mask composed of the region
where the apex of the arcuate fasciculus is most proximal to the superior longitudinal
fasciculus and the corpus callosum. JHU White Matter Tractography Atlas, incorporated in
the FSL software package, was used to identify these regions, one for each hemisphere, A
and B.
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Figure 6.
Whole Brain Streamline Tractography Results

Top row: Sagittal, coronal and axial orientation images of whole brain streamline
tractography conducted on a single control participant. Botfom row: To provide anatomical
references, the images from the top row were overlaid onto the participant’s FA-weighted
diffusion image.
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Figure7.
Example of MTL Filtered Streamline Tractography Result

Diffusion space coronal (A) and sagittal (B) slices of streamline tracts connecting the ERc
(blue) and HC (orange) in a single control participant.
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Figure8.
Reliability of Hard Segmentation of Left Entorhinal Cortex

Results of probabilistic tractography were used to hard segment the left (A) and right (B)
ERc from each of the ten HARDI reliability data sets. The ERc was parcellated into
connectivity-defined regions by classifying each voxel based on the highest probability of
connection from that voxel to one of three target masks: PRc (orange), HC (mustard), PHc
(bright yellow). Slides progress serially from posterior to anterior.
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Table 1

Reliability of Fractional Anisotropy and Mean Diffusivity assessed via Tract Based Spatial Statistics.

White Matter Mask Diffusion  Minimum Maximum  Null Hypothesis
Metric p-value p-value Rejected?

Whole Brain FA 0.404 0.901 No
Whole Brain MD 0.107 0.762 No
Whole Brain Partial Volume 1 FA 0.337 0.551 No
Whole Brain Partial Volume 2 FA 0.885 0.948 No
Left Temporal Lobe FA 0.670 0.881 No
Left Temporal Lobe MD 0.230 0.793 No
Left Temporal Partial Volume 1 FA 0.298 0.738 No
Left Temporal Partial Volume 2 FA 0.746 0.888 No
Right Temporal Lobe FA 0.392 0.698 No
Right Temporal Lobe MD 0.060 0.960 No
Right Temporal Partial Volume 1 FA 0.424 0.881 No
Right Temporal Partial Volume 2 FA 0.766 0.960 No
Hemispheric Asymmetry FA 0.508 0.714 No
Left Multiple Fiber Orientation FA 0.393 0.952 No
Partial Volume 1

Left Multiple Fiber Orientation FA 0.603 0.956 No
Partial Volume 2

Right Multiple Fiber Orientation FA 0.270 0.742 No
Partial Volume 1

Right Multiple Fiber Orientation FA 0.612 0.892 No

Partial Volume 2
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