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The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance
of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely
spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical
axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 �m spacing)
to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h
at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports,
we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly
lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information
than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer
were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded
in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in
large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small,
but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communica-
tion, learning, and memory.
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Significance Statement

Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have exam-
ined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several
hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for
mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, �70% of
the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of
information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex
processes information and responds to neurodegenerative diseases.
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Introduction
The performance of complex networks depends crucially on how
they route their traffic, whether it is passengers, supplies, or
phone calls (Barrat et al., 2008). Despite the importance of this,
we have only a few clues about how information is distributed in
local cortical networks, consisting of several hundred closely
spaced neurons.

Patch-clamp recordings in cortex have shown that the distri-
butions of synaptic strengths (Song et al., 2005) and firing rates
(Hromádka et al., 2008) are long tailed and approximately log-
normal (Buzsáki and Mizuseki, 2014). Moreover, cortical layer
2/3 pyramidal neurons with high firing rates are more likely to
share synaptic connections than neurons with low firing rates
(Yassin et al., 2010). Do the above results indicate that most
information transfer occurs within a small percentage of strongly
connected neurons? To draw this conclusion at the population
level, it is necessary to record simultaneously, preferably from
hundreds of closely spaced neurons. To quantify information
transfer at typical synaptic delays of 1–20 ms (Mason et al., 1991;
Swadlow, 1994), it is essential to measure spike trains with milli-
second precision (Panzeri et al., 2001; Wehr and Zador, 2003; Ito
et al., 2011, 2014).

As it is currently difficult to achieve all of these requirements
in vivo, we primarily used a high-density (60 �m spacing) 512-
electrode array to record spontaneous spike trains at submillisec-
ond resolution from up to 500 neurons [mean (�SD), 347 � 119
neurons] simultaneously in slice cultures of somatosensory cor-
tex (N � 15). To check the generality of our findings, we also
analyzed some multisite recording data from rodent cortex in
vivo. For all data, we applied a previously validated algorithm for
transfer entropy (TE; Schreiber, 2000; Ito et al., 2011) to extract
directed networks of information transfer (IT). TE has been used
widely in neuroscience (Gourévitch and Eggermont, 2007; Garo-
falo et al., 2009; Lindner et al., 2011; Vicente et al., 2011; Orlandi
et al., 2014; Timme et al., 2014) because it can accommodate
nonlinear relationships, and it compares favorably to other mea-
sures (Lungarella et al., 2007). Following Schreiber (2000), we
defined TE as predictive information. If the spike train of neuron
A contains information about the future spiking of neuron B not
given by the past of neuron B, then TE detects information transfer
from neuron A to neuron B. We have used TE before on cortical

networks and found that it reveals nonrandom structures in the
unweighted connectivity maps (Shimono and Beggs, 2015).

We sought to answer three specific questions. First, do the TE
strengths between cortical neuron pairs follow a lognormal dis-
tribution, as reported for synaptic strengths (Song et al., 2005)?
Second, as predicted by Koulakov et al. (2009), do some neurons
transfer and receive more information than others? Third, do the
neurons that transfer the most information preferentially interact
with each other, thus forming a “rich club” (van den Heuvel and
Sporns, 2011; Towlson et al., 2013)? These questions are aimed at
probing inhomogeneity at the level of connections, single neu-
rons, and the network, respectively.

Several studies motivated us to investigate the potential exis-
tence of inhomogeneous patterns of information transfer. A
model by Koulakov et al. (2009) suggested that lognormal firing
rates arise because some neurons receive much stronger inputs,
driving them to fire at much higher rates than the mean. Com-
putational models have shown that highly concentrated connec-
tivity patterns can facilitate bistability in cortical neurons, thus
promoting Up and Down states, which are commonly seen in
cortical recordings and are thought to be relevant for working
memory (Klinshov et al., 2014). Computational models also have
suggested that a rich-club structure can increase the number of
distinct network activity states that could serve long-term mem-
ory (Senden et al., 2014). If a relatively small, but information-
rich, population of neurons does exist in cortical networks, it
seems likely that such neurons would play vital roles in commu-
nication, learning, and memory. In addition, we expect that
knowledge about such neurons would help us to understand how
cortical networks respond to neurodegenerative diseases.

Materials and Methods
The methods used here, particularly for assessing effective connectivity,
are complex and involve many steps. For clarity, we first provide the
following outline to give an overview of what will be described in more
detail below: (1) in vitro preparation and recording; (2) in vivo prepara-
tion and recording; 3. estimating effective connectivity (transfer entropy
measure, controlling for firing rate, controlling for network drive,
controlling for common drive and transitive effects, and validation of
effective connectivity); and (4) graph theory measures (cumulative in-
formation transfer, rich club, betweenness centrality, dynamic impor-
tance, and neuron diversity).

In vitro preparation and recording
Cultured tissue from animals was prepared according to guidelines from
the National Institutes of Health, and all animal procedures were ap-
proved by the Animal Care and Use Committees at Indiana University
and at the University of California, Santa Cruz. For these studies, we
chose organotypic cultures because they preserve many of the features
characteristic of cortex, including neuronal morphology (Klostermann
and Wahle, 1999), cytoarchitecture (Caeser et al., 1989; Götz and Bolz,
1992), precise intracortical connectivity (Bolz et al., 1990), and intrinsic
electrophysiological properties (Plenz and Aertsen, 1996). In addition,
they produce a variety of emergent network activity patterns that have
been found in vivo, including precisely timed responses (Buonomano,
2003), Up states (Johnson and Buonomano, 2007), oscillations (Baker et
al., 2006; Gireesh and Plenz, 2008), synchrony (Beggs and Plenz, 2004;
Baker et al., 2006), waves (Harris-White et al., 1998), repeating activity
patterns (Beggs and Plenz, 2004; Ikegaya et al., 2004), and neuronal
avalanches (Beggs and Plenz, 2003; Friedman et al., 2012).

When cortical slice cultures are grown with subcortical target struc-
tures, as was done here, it has been shown that they form appropriate
connections that are not exuberant (Leiman and Seil, 1986; Baker and
Van Pelt, 1997). However, organotypic cortical cultures have been re-
ported to have disrupted layer structure (Staal et al., 2011). We prepared
organotypic cultures using methods previously reported (Tang et al.,
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2008). Briefly, brains from postnatal day 6 (P6) to P7 black 6 mouse pups
(RRID:Charles_River:24101632, Harlan) were removed under a sterile
hood and placed in chilled Gey’s balanced salt solution (Sigma-Aldrich)
for 1 h at 0°C. After 30 min, half the solution was changed. Brains were
next blocked into 5 mm 3 sections containing somatosensory cortex
(Paxinos and Watson, 1986). Blocks were then sliced with a thickness of
400 �m.

Each slice was placed on a small circular cutout of permeable mem-
brane (Millipore) that was then placed on top of a larger membrane that
spanned a culture well. Culture medium consisted of HBSS (catalog
#H9394, Sigma-Aldrich) 1:4, minimum essential medium (catalog
#M4083, Sigma-Aldrich) 2:4, horse serum (catalog #H1270, Sigma-
Aldrich) 1:4, and 4 ml of L-glutamine, with penicillin/streptomycin
1:1000 volume of media (catalog #P4083, Sigma-Aldrich). Slices were
maintained at an interface between medium below and atmosphere
above. The plates of wells were incubated at 37°C in humidified atmo-
sphere with 5% CO2.

After 2–3 weeks, the cultures were then gently placed on a microelec-
trode recording array by lifting the small circular cutout of membrane
with tweezers. Each culture was placed tissue side down, with the mem-
brane facing up. We attempted to place the tissue such that somatosen-
sory cortex was on the electrode array. During recording, cultures were
perfused at 1 ml/min with culture medium that was saturated with 95%
O2/5% CO2. Spontaneous activity was recorded for 1.5 h. The first 0.5 h
was not used in analysis. Spikes were recorded with a 512-electrode array
system that has been used previously for retinal (Litke et al., 2004; Shlens
et al., 2006; Petrusca et al., 2007; Field et al., 2010) and cortical (Tang et
al., 2008; Friedman et al., 2012) experiments. The outline of the array was
rectangular (1.8 mm � 0.9 mm) and electrodes were arranged in a hex-
agonal lattice with an interelectrode distance of 60 �m. Spike sorting was
performed off-line, as previously described (Litke et al., 2004; Tang et al.,
2008). Briefly, signals that crossed a threshold of 8 SDs were marked, and
the waveforms found on the marked electrode and its six adjacent neigh-
bors were projected into five-dimensional principal component space. A
mixture-of-Gaussians model was fit to the distribution of features based
on maximum likelihood. Neurons with well separated clusters in princi-
pal components space were retained for further analysis; duplicate neu-
rons and neurons with significant refractory period violations were
excluded.

The quality of the data collected for this study had a unique combina-
tion of features that made them particularly useful for uncovering effec-
tive connectivity in neural networks at this scale. The high temporal
resolution of the recordings allowed the sequence of spike activations to
be identified in many cases, letting us measure directed, rather than
undirected, connections. The close electrode spacing (�60 �m) was
within the radius of most synaptic contacts between cortical pyramidal
neurons (Song et al., 2005) and enhanced the probability that neurons
recorded on neighboring electrodes would share direct synaptic contacts.
The large number of neurons simultaneously recorded, as well as the long
recording durations (�1 h) enhanced the statistical power, allowing
many connections to be identified that would have otherwise gone un-
detected. Very few previous studies have been able to combine all of these
features simultaneously in cortex.

In vivo preparation and recording
To check the generality of our results, we also analyzed data collected in
vivo from rodent cortex where silicon-based microprobes, built in a fash-
ion that was similar to those in the study by Shobe et al. (2015), were
placed into orbitofrontal cortex of awake, behaving mice. All in vivo
recording procedures were approved by the University of California, Los
Angeles, Chancellor’s Animal Research Committee. Singly housed male
C57BL/6J mice (N � 7, 12–16 weeks old; The Jackson Laboratory) were
used in the experiments. Animals underwent an initial surgery under
isoflurane anesthesia in a stereotaxic apparatus to bilaterally fix stainless
steel head restraint bars (10 � 7.5 mm, 0.6 g, laser cut at Fab2Order) on
the skull in preparation for recording from awake head-fixed animals.
They recovered for 7 d, and subsequently animals were anesthetized with
isoflurane for a second surgery on the recording session day to make a
rectangular craniotomy over the orbitofrontal cortex for silicon micro-

probe insertion. An additional craniotomy was made over the posterior
cerebellum for placement of an electrical reference wire. After the crani-
otomy surgery, animals recovered from anesthesia in their home cage for
�2 h before being head fixed while awake and free to move on a spherical
uniaxial polystyrene treadmill. The silicon microprobes were slowly low-
ered to stereotaxically defined coordinates targeting the orbitofrontal
cortex (2.2–2.3 mm anterior to bregma). The microprobes contained a
total of 256 electrode recording sites that were densely distributed (hex-
agonal array geometry with 25 �m spacing) on five prongs (0.3– 0.4 mm
spacing) spanning the medial to lateral orbitofrontal cortex. Animals
were killed after the recording session; and brain tissue was sectioned,
immunostained for NeuN, and imaged to verify the silicon prong place-
ment. Signals from all recording sites were simultaneously sampled at 25
kHz. Spike sorting was performed off-line using a semi-automated Mat-
lab script. The data used for this analysis were prepared by concatenating
resting period activity in between periods when the mouse was perform-
ing an odor discrimination task in the same recording session. Resting
corresponded to periods of immobility (no treadmill movement and no
licking) and a lack of explicitly presented stimuli. The firing rates were
fairly constant across resting periods except for the last 2 s of each resting
period, where a consistent increase in firing rate was detected. Hence, we
deleted the last 2 s from each resting period and then concatenated the
different resting periods identified across the entire recording session
together to obtain the final spike trains for each recorded neuron. Al-
though we use the resting period spiking activity, when the animal is
immobile, to create the effective connectivity network, this does not
necessarily mean that during the resting periods the animal did not re-
ceive any sensory input. This could result in the activity being nonsta-
tionary. The culture data on the other hand do not receive any external
sensory input and could be thought of as approximately stationary. We
looked at the coefficient of variation (SD over the mean) of the number of
spikes per second per neuron for the entire recording periods for both the
in vitro and the in vivo data. We found that the coefficient of variation for
the in vivo data was smaller than that for the in vitro datasets. Thus,
although the analysis method does not explicitly take into account the
nonstationary nature of the data, this information suggests that the non-
stationarity in the in vivo datasets is smaller than that observed in the in
vitro datasets. A recent study (Wollstadt et al., 2014) looked into the issue
of nonstationarity in multiple neuron recordings in greater detail and
suggested new methods to analyze such data. Applying such methods
here, however, was beyond the scope of this study.

Estimating effective connectivity
Broadly speaking, the neuroscience literature discusses the following
three types of connections: structural, functional, and effective. At the
level of neurons that we are dealing with here, a synapse or gap junction
would constitute a structural connection; a correlation between spike
trains would constitute a functional connection; and a predictive rela-
tionship from the spike train of neuron J to the spike train of neuron I
would constitute an effective connection from neuron J to neuron I. Here
we examine effective connectivity to infer the directed transfer of infor-
mation among hundreds of neurons.

Transfer entropy measure. There is a large and growing literature on
metrics for effective connectivity (Okatan et al., 2005; Hlaváčková-
Schindler et al., 2007; Pillow et al., 2008; Gerhard et al., 2011); we selected
TE (Schreiber, 2000) because several previous studies (Lungarella et al.,
2007; Garofalo et al., 2009; Ito et al., 2011; Vicente et al., 2011; Stetter et
al., 2012) indicated that it compared quite favorably with other metrics in
terms of detecting connections. As an information theoretic measure, TE
is also capable of detecting nonlinear interactions and allows the quanti-
fication of information transfer in general units of bits that can be com-
pared across systems.

In neuroscience terms, given the spike trains of neurons J and I, TE is
nonzero if including information about the spiking activity of neuron J
improves the prediction of the activity of neuron I beyond the prediction
based on the past of neuron I alone. The original definition of TE
(Schreiber, 2000) was given as follows:
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TEJ¡I � �p�it�1, it

�k�
, jt

�l �� log2

p�it�1�it
�k�, jt

�l ��

p�it�1�it
�k��

. (1)

Here, it denoted the status of neuron I at time t, and could be either 1 or
0, indicating a spike or no spike, respectively; jt denoted the status of
neuron J at time t; it�1 denoted the status of neuron I at time t � 1; p
denoted the probability of having the status in the following parentheses;
and the vertical bar in the parentheses denoted the conditional probabil-
ity. The sum was over all possible combinations of it�1, it

�k�, and jt
�l �.

Probability for a particular triplet state is calculated by dividing the num-
ber of occurrences of that state by the total number of observable states.
The parameters k and l gave the order of TE, meaning the number of time
bins in the past that were used to calculate the histories of neurons I and
J, respectively (Ito et al., 2011). Here, we used k � l � 1, so that only single
time bins were considered; we used logarithms with base 2 so that our
units would be bits. It is important to note that TE is not merely a
time-lagged version of mutual information because TE takes into ac-
count the auto-prediction provided by the past of neuron I.

Note also that TE, as defined above, would only measure information
transfer from neuron J to neuron I at a delay of one time bin. Given that
synaptic delays between cortical neurons could span several milliseconds
(Barthó et al., 2004; Sirota et al., 2008), we adopted a version of TE that
evaluated multiple delays between neurons I and J. To continue to con-
sider the history of the neuron, we kept a one-bin delay for neuron I,
assuming that neuron I depended mostly on its closest previous state
(Wibral et al., 2015). To account for synaptic delays between neurons, the
time bin of neuron J was delayed by d bins (Fig. 1A). Taking these mod-
ifications into account, we used a delayed version of transfer entropy,
given by the following:

TEJ¡I�d� � �p�it, it	1, jt	d� log2

p�it�it	1, jt	d�

p�it�it	1�
. (2)

Here other terms were as defined in Equation 1. When TE between two
neurons was plotted as a function of multiple delays, d, it often showed a
distinct peak offset from time 0 (Fig. 1B), because it was likely to be
caused by one neuron driving another with axonal delay. We excluded
those cases where the peak TE (TEPk) value occurred at time 0, because
they were unlikely to be caused by one neuron driving another with
axonal delay. We took the nonzero TEPk value to be the single number
that represented effective connectivity between two neurons. For calcu-
lating TE rapidly over multiple delays, we used the freely available TE
toolbox developed by our group (posted at http://code.google.com/p/
transfer-entropy-toolbox/; Ito et al., 2011). When this version of TE was
applied to a cortical network model for validation, it correctly associated
85% of the total synaptic weights with effective connections. Other tool-
boxes that calculate transfer entropy are TRENTOOL (Lindner et al.,
2011) and MuTE (Montalto et al., 2014).

Controlling for firing rate. The information contained in a spike train is
provided by the following two components: spike rate and spike timing.
In this study, we were especially interested in the component provided by
spike timing. To ensure that we primarily measured information from
this component, we compared TE measured from spike trains in the
actual data to TE measured from jittered spike trains. We measured
randomized estimates of TE for each pair of neurons by jittering spikes
from the source spike train ( J) while keeping the target spike train ( I)
fixed. This preserved the auto-prediction for the target spike train and
only changed the prediction of the target spike train that was provided by
the source spike train. The values by which spike times were jittered lay in

Figure 1. Overview of transfer entropy analysis. A, To quantify a directed functional link from neuron J to neuron I, we used transfer entropy. It quantifies how much additional information a time
bin in the past of neuron J can provide about the current state of neuron I over and above the information provided by the past of neuron I itself. Multiple delays (d) can be used to identify a causal
connection. B, Schematic example of transfer entropy plotted as a function of delay. A functional interaction would result in a sharp peak. The sharpness of the peak can be quantified by CI. CI is
calculated by evaluating the area formed by a 4 ms region (shaded in blue) centered on the peak and then dividing it by the rest of the area in the plot (shaded in black). Each pair of neurons was
characterized by TEpeak and CI. C, Two-dimensional plot of CI and TEpeak for all pairs of neurons in a dataset. D, Two-dimensional plot of CI and TEpeak for all pairs of neurons in the same dataset where
spike times of the source neuron have been jittered, as described in the Materials and Methods section. E, Same plot as in C, except the connections that are deemed significant according to the
significance testing described in the Materials and Methods section are marked with blue circles. F, Controlling for spurious connections. Neuron A provides common drive to neurons B and C at axonal
delays t1 	
t and t1. As a result, a spurious connection may be detected by the TE analysis from neuron B to C at a delay of 
t. Links that satisfy these delay characteristics were removed from the
network. G, Neuron A drives neuron B with a delay t1, and neuron B drives neuron C with a delay of t2. As a result, the TE analysis may detect a spurious link from neuron A to neuron C with delay t1

� t2. All transitive links between triplets of neurons that satisfied these delay characteristics were removed from the network. This last step of spurious link removal generated the final networks
on which the network analysis was performed.
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the range 1–19 ms and were drawn from a normal distribution. As de-
scribed in our previous study (Shimono and Beggs, 2015), we found that
values of TE from cortical data showed a sharp decrease after jittering up
to 19 ms, and then remained relatively constant for jitter values of �19
ms. This suggested that TE produced by timing had a resolution of �19
ms, and that TE produced by rate had a resolution coarser than 19 ms.
We also note that direct synaptic connections in cortex have delays that
typically range from 1 to 20 ms (Swadlow, 1994). This jittering method
only changed firing times, leaving firing rates and the general form of the
interspike interval histogram largely unchanged. With this procedure, we
defined IT between a pair of neurons as follows:

ITJ¡I � TEJ¡I

raw
� TEJ¡I

jit , (3)

where raw and jit indicated unjittered and the average of the jittered data,
respectively. Here TE jit was produced by taking the average value of TE
among 100 jittered versions of spike train J and the unjittered version of
spike train I, at the particular delay where the raw TE peaked. Only
positive values of information transfer were used in the analysis. In this
manner, we aimed to control for the effects of firing rate on information
transfer.

Controlling for network drive. In addition to the control for firing rate
effects outlined above, we also controlled for possible effects produced by
network drive, such as might occur during a network burst. During a
burst, the firing rates of many neurons can be elevated simultaneously,
potentially leading to an increase in coincident spike firings. These in-
creased coincidences could produce an increase in TE. To control for
this, we exploited the fact that direct synaptic connections tend to pro-
duce relatively narrow peaks (�5 ms) when TE was plotted against delay,
while network bursts tend to produce relatively broad peaks (50 –200 ms;
Beggs and Plenz, 2003). To measure how narrow a peak was, we used the
coincidence index (CI; Ito et al., 2011; Shimono and Beggs, 2015). Intu-
itively, the CI measured the tendency for TE values to peak sharply at a
particular synaptic delay between neurons (Fig. 1B). The CI has been
used to identify connections in the context of cross-correlation studies
(Juergens and Eckhorn, 1997; Jimbo et al., 1999; Chiappalone et al.,
2006). We defined the CI as follows:

CI �
�d�tpeak	� / 2

d�tpeak�� / 2
TE�d�

�d�0

d�T
TE�d�

, (4)

where TE(d) was the transfer entropy measured at delay d, tpeak was the
delay where the TE value peaks, � was the coincidence window size, and
T was the entire window size of the measure. We used a value of T � 30
ms for the entire window size, as this encompassed the range of mono-
synaptic delays (1–20 ms) reported in cortex (Swadlow, 1994). We used a
value of � � 4 ms, as this reflected the typical width of peaks found in the
data.

Thus, direct connections were expected to have both (1) high values of
TE above those produced by jittered data and (2) high values of CI above
those produced by common network drive. To select for connections
that simultaneously satisfied both of these criteria, we made scatterplots
of CI against log10(TEpeak) for all pairs in both unjittered and jittered
data, as shown in Figure 1, C and D. When they were plotted together on
the same graph as shown in Figure 1F, the jittered data did not extend
into the region where both CI and log10(TEpeak) values were simultane-
ously high, whereas some of the actual data did occupy this region. Intu-
itively, this upper rightmost region of the plot was populated by
connections with tall (high TE) and narrow (high CI) peaks in the TE–
delay curve that were unlikely to be the result of merely the firing rate or
the network drive. The upper rightmost portion of the jittered data thus
formed a decision boundary that allowed us to distinguish significant
connections from those produced by chance (Fig. 1E). We found that
when this CI versus log10(TEPk) plot was divided at a resolution of 25 �
25 pixels, this decision boundary was smooth and closely followed the
contours of the jittered data distribution. The dimensions of this pixel
plot were chosen to minimize the squared error between the actual data
and the binned histogram. To minimize the error, we followed Terrell
and Scott (1985), who noted that the number of pixels needed to be

greater than (2n) 1/3 (where n is the square root of the number of neu-
rons). Because the maximum value of n in our data was 22.5, we selected
25 as the resolution of the pixels.

Next, we had to decide which pixels in the CI versus log10(TEPk) plot to
include. To do this, we defined the maximum fraction of connections in
each pixel that were allowed to come from jittered data. We called this
measure the rejection threshold (RT), which is given by the following:

RT(CI, TEpk) �
Njitt(CI, TEpk)

Nactual(CI, TEpk) � Njitt(CI, TEpk)
, (5)

where the number of data samples at each pixel was denoted by Nactual for
actual data, and by Njitt for jittered data. If a pixel contained connections
from jittered data that were below this fraction, all connections from the
original data in this pixel were deemed significant. Thus, RT gave the
maximum allowable fraction of connections in any pixel that came from
randomized data. Note that the majority of pixels that were accepted had
a fraction of connections from jittered data that were far below the se-
lected RT. The range of RT values used was determined on the basis of the
performance of the TE analysis method in picking out synaptic connec-
tions on spiking data generated from a cortical network model where the
connectivity was known beforehand. We describe the details of this cor-
tical network model in a dedicated subsection below. The RT value was
chosen to maximize the ratio TPR/FPR, where TPR is the true-positive
rate and FPR is the false-positive rate. Using the cortical network model,
where the connections between neurons were known, we found that this
ratio was maximized at an RT of 0.37. To demonstrate robustness, we
also examined RT values in the range 0.35– 0.50 and found that key
network features found in our data were qualitatively similar over this
range. Using these methods, we attempted to control for network drive
effects.

Controlling for spurious connections caused by common drive and tran-
sitivity. Besides network drive, common drive and transitive effects can
confound a pairwise measure (such as the TE we are using here) in the
following ways. First, if neurons B and C both receive common drive
from neuron A, such that the drive of neuron A to B arrives 
t before the
drive of neuron A to C (Fig. 1G), it is possible that the putative connec-
tion from neuron B to neuron C, with delay 
t, is spurious. Second if
neuron A drives neuron B at a delay (t1) and neuron B drives neuron C at
a delay of t2, then there could be a spurious connection from neuron A to
C with a delay of t1 � t2, which we called the transitive effect (Fig. 1H ).
Recent work (Yatsenko et al., 2015; P. Wollstadt, U. Meyer, M. Wibral,
unpublished observations) has tried to take into account spurious con-
nections that may be present in pairwise measures. We have used a sim-
pler post hoc scheme to correct for common drive and transitive effects in
triplets of neurons. For each neuron (let us call it the source neuron) in
the network, we looked at the target neurons that received connections
from this neuron. If the target neurons had connections between them-
selves, we examined whether the delays associated with these connections
were equal to the difference of the delays for the links originating from
the source neuron. If they were equal, we eliminated those edges from the
network as they could possibly be the result of common drive. This was
repeated for all other neurons in the network yielding a corrected IT
matrix. To correct for transitive edges, we looked at chain connections
(A ¡ B ¡ C), and, if there was a connection between A and C,
we examined whether the associated delay was the sum of the delays
of the connections from A to B and from B to C. In that case, we elimi-
nated the link between A and C as a spurious transitive link. We per-
formed this transitive link removal for all triangular motifs that satisfied
the above criteria and generated a corrected IT matrix. The process was
repeated 1000 times each time following a different order of the neurons
to remove possible order-dependent effects. Finally, the connections that
appeared 90% of the time across all of the 1000 corrected networks were
used to construct the final common drive corrected or transitive effect
corrected matrix of interactions between the neurons. For the in vitro
datasets, after eliminating possible spurious connections of either nature,
connection density changed by 45 � 14%, and for the in vivo datasets the
connection density changed by 10 � 5%. The network properties that we
report here (e.g., highly concentrated information transfer, rich club)
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were found to be robust with respect to the elimination of these spurious
edges. We note that this procedure was conservative, as many of the
connections that it removed might not have been spurious (e.g., a pair of
neurons could have both a direct connection and a connection through a
third neuron). By this procedure, we ensured that our results were con-
trolled against potential spurious connections.

Validation of effective connectivity. We used a cortical network model
to examine the validity of these methods and to select an appropriate
value for the RT. The model used here was composed of 625 Izhikevich
model neurons (Izhikevich, 2003). Excitatory neurons took on graded
parameterizations between the regular spiking, intrinsically bursting,
and chattering regimes (with a strong bias toward regular spiking). Sim-
ilarly, inhibitory neuronal dynamics were selected using randomized val-
ues placing each neuron between the fast-spiking and low-threshold
spiking regimes. Inhibitory neurons made up 20% of the total neuronal
population. For excitatory (inhibitory) neurons, Inoise was drawn from a
normal distribution with a mean of 0 and an SD of 5.0 (2.0). All neurons
were placed at random locations within a three-dimensional cube, with
the probability of their being a connection between two neurons given as
follows (Maass et al., 2002):

P�a, b� � Cxye
	�D�a,b�

∧ � 2

, (6)

where D(a, b) is the Euclidean distance from neuron a to neuron b, where
� is a parameter that controls both the average number of connections
and the average distance between neurons that are synaptically con-
nected, and Cxy is a constant that takes on different values based on the
polarity of neurons a and b. This allowed us to control the relative ratios
of connections that exist between inhibitory and excitatory neurons. The
various C values were set to the following: CEI � 0.4, CEE � 0.3, CIE � 0.2,
and CII � 0.1, where CEI represents the value of the constant Cxy for
connections between excitatory and inhibitory neurons and CEE, CIE,
and CII are defined accordingly. This resulted in an absolute connection
density of 4%. Synapses were given temporal delays based on the distance
between their presynaptic and postsynaptic cells, with a mean delay of 3.5
ms. Excitatory (inhibitory) synaptic efficacies were randomly drawn
from a lognormal distribution with a location parameter of 	1.5 (	0.8)
and a scale parameter of 1.25 (1.3). The final major difference between
this model and the model presented in the study by Izhikevich (2003) was
that each postsynaptic response was modeled as an exponential decay
from the following equation:

q�t � 
t� � q�t�e
	

t0	t

� � 	t0,t, (7)

where t0 is the time of arrival for the postsynaptic response (the spike
time of the presynaptic cell, plus the delay assigned to the synapse in
question), ô is a decay time constant set to 3 ms (6 ms) for excitatory
(inhibitory) synapses, and 	t0,t is the Kronecker 	 function (	t0,t � 0 if to


 t; 	t0,t � 1 if to � t). This model was used to generate spiking activity
for 1 h, which was approximately equal to the duration of the in vitro and
in vivo recordings. From the model data, we applied the above methods
to quantify their performance in detecting existing synaptic connections.
This performance was then used to set the level of the RT that was used on
the actual data.

Graph theory measures
Graph-theoretic measures were calculated by using algorithms written
by the authors, and some of them can be found in the publicly available
Brain Connectivity Toolbox (www.brain-connectivity-toolbox.net; Ru-
binov and Sporns, 2010). To introduce terminology, we begin with the
binary directed adjacency matrix A. The element aij of the matrix A
represented the presence or absence of a link from neuron i to neuron j
and was 1 or 0. W was the corresponding information transfer matrix,
where element wij represented the IT value directed from neuron i to
neuron j.

Cumulative information transfer. To examine the distribution of infor-
mation transfer in the neuronal population, we made cumulative infor-
mation transfer plots. For these, the neurons were arranged along the
x-axis in descending order of their total outgoing (or incoming) IT val-

ues. The total outgoing IT for neuron i was found by taking a sum along
row i in the weight matrix W. Incoming IT was found by taking a column
sum. At every point along the x-axis, the total normalized cumulative
value of IT was plotted for the percentage of neurons up to that point.
This procedure was used for making Figure 4.

Rich-club coefficient. Previous work has shown that some neurons have
more connections, or stronger connection, than other neurons (Bonifazi
et al., 2009; Shimono and Beggs, 2015).The fact that some neurons are
“richer” than others naturally leads to the question of how these rich
neurons are connected to each other. If rich neurons are more densely/
strongly connected to each other than expected by chance, then a (un-
weighted/weighted) rich club (Zhou and Mondragón, 2004; Colizza et
al., 2006; Opsahl et al., 2008) is said to exist (Fig. 2A). Here we describe
the methods we used for probing the existence of rich clubs in these data.
We closely followed the approach of van den Heuvel and Sporns (2011)
to determine the rich-club coefficients. Although a very recent article
(Alstott et al., 2014) introduced a new definition of the rich-club mea-
sure, here we used the older, and most commonly used, definition of the
rich club.
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Figure 2. Schematic description of graph-theoretic measures. A, Representation of a rich-
club topology in a toy network. The neurons represented by filled gray circles are rich according
to a certain chosen parameter, while the neurons represented by filled white circles are nonrich
neurons. A rich club is said to exist if the rich neurons preferentially connect to each other more
strongly and densely with each other than with the rest of the network. The shaded bigger circle
separates this rich-club group from the rest of the network. B, The shortest path in a network is
the path involving fewest edges between a source and a target neuron of all possible existing
paths. For example, the shortest path from neuron A to D (thick black arrows) goes through
neurons B and C. Another alternative path (thin black arrows) exists between neurons A and F,
and it goes through neurons E, F, G, and H, which is a longer path in terms of the number of links
traveled. A neuron or a link is said to have a high betweenness centrality if a large fraction of
shortest paths of the network between all neurons in the network goes through that neuron or
link. C, Here we consider the nature of the distribution of outgoing strengths of a neuron. In one
case, all of the outgoing connections from neuron i are approximately of the same strength.
Hence, this neuron has a homogeneous outgoing weight distribution. It interacts equally with
different targets. This makes it more diverse in its interactions. In another case, the same neuron
i has outgoing strengths, some of which are very strong, some are medium, and some are very
weak in strength. This neuron has a heterogeneous distribution of outgoing weights. Hence, it
does not interact with its target nodes equally, making it less diverse. The diversity metric aims
to quantify the differences in these two scenarios. A node having a homogenous outgoing
weight distribution would have a higher diversity value than a node that has a heterogeneous
outgoing weight distribution.
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A weighted rich-club analysis (Opsahl et al., 2008) was performed,
with the total outgoing and incoming IT from and into each neuron as
the richness parameter. The analysis was performed on the largest weakly
connected component of the network. The largest weakly connected
component of a network was composed of neurons that could be reached
from any other neuron following an existing link without taking direc-
tionality into account. The weighted rich-club coefficients were then
calculated in the following way.

First, a list (IT rank) of the pairwise IT values in the network that were
found to be significant was created, ranked from largest to smallest
(ITmax, IT2…ITn	1, ITmin). We defined the richness parameter r to be
the normalized total outgoing IT from each neuron. Then a list of the
unique values of this richness parameter r, was constructed from smallest
to largest (rmax, r2…rn	1, rmin). Second, we looked at the subnetwork
where each of the neurons had a richness parameter, �rk. We counted
the number of edges in that subnetwork and called it E�rk

. Then we
summed all the pairwise IT values between this subset of neurons and
called it W�rk

. The weighted rich-club coefficient �act
w �rk� was defined as

the ratio between W�rk
and the sum of the E�rk

strongest pairwise IT
values in the network obtained from the list (IT rank).

�act
w �rk� �

W�rk

�l�1

E�rk

ITl
rank

. (8)

The above ratio represents what fraction of the strongest weights in the
whole network is present in the subnetwork. Third, to observe how much
the observed coefficient was above chance, we generated 1000 random-
ized versions of the actual networks such that the richness parameters of
the neurons were unchanged and the largest connected component of the
network also remained the same. The weighted rich-club coefficients
were also calculated for these randomized networks �rand

w �rk�, and the
normalized rich-club coefficient for a particular richness parameter rk

was given by the following:

�norm
w �rk� �

�act
w �rk�

�rand
w �rk�

. (9)

The normalized rich-club coefficients were determined for each value of
the ranked richness parameter (rmin, r2…rk	1, rmax). If �norm

w was �1 for
a range of the richness parameter, then a rich club existed in that regime
of the richness parameter. To determine the statistical significance of the
rich-club coefficients, the coefficients obtained from the actual network
were compared with the null distribution of rich-club coefficients gen-
erated from the 1000 randomized networks, and a one sided p value was
generated. Fourth, to correct for multiple comparisons over the range of
values of the richness parameter, false discovery rate correction (Benja-
mini and Yekutieli, 2001) was performed, limiting the false discovery rate
to 0.05.

Betweenness centrality. Measures of node and link centrality attempt to
quantify the global importance of individual neurons and links between
pairs of neurons (Freeman, 1979; Brandes, 2001). We used node and edge
betweenness centrality to characterize the importance of the neurons and
links in the network. Betweenness centrality is closely tied to the concept
of shortest path in a network. The shortest path is the minimum number
of edges that one has to travel to go from one neuron to another. A
neuron is said to have a high betweenness centrality if many of the short-
est paths of the network go through that neuron. Similarly, an edge has a
high betweenness centrality if many of the shortest paths of the network
go through that particular edge (Fig. 2B). Since we had weighted directed
connectivity matrices, we used the weighted versions of betweenness
centrality (Rubinov and Sporns, 2010). Weighted betweenness centrality
was computed by inverting the normalized weights of the connections to
create a distance matrix, where stronger connections implied smaller
distance.

Dynamic importance. To quantify the importance of neurons in a net-
work, we used dynamic importance (Restrepo et al., 2006). Given the
adjacency matrix of the network, we found the largest eigenvalue of
the matrix, 
, which, according to Perron’s theorem, is real and positive.
The largest eigenvalue of the adjacency matrix has been shown to deter-

mine important aspects of the dynamics of complex networks, like the
critical coupling strength at which transition occurs from incoherence to
coherence in a network of coupled oscillators (Restrepo et al., 2005), the
emergence of a giant connected component in the case of weighted per-
colation in complex networks (Restrepo et al., 2008), and whether a
network will have chaotic, critical, or damped responses to perturbation
(Larremore et al., 2011). The dynamic importance of a neuron (Ik) was
defined as fractional change in the largest eigenvalue of the adjacency
matrix upon removal of the neuron from the network. Similarly, the
dynamic importance of an edge (Iij) connecting two neurons (i and j) was
the fractional change in the maximum eigenvalue upon removal of the
edge from the network, as follows:

A

-2 -1 0 1

C
ou

nt
s

0

50

100

150

200
B

log10 ITnorm

-2 -1

pr
ob

ab
ili

ty

 0.0

0.01

0.02

0.03

0.04

0 1

log 10 (f       )norm

C

Figure 3. Lognormal distributions of firing rates and pairwise IT values. A, Stained organo-
typic culture tissue with the array (white rectangle) and neurons identified after spike sorting
(filled purple circles). B, Distribution of the logarithm of the pooled normalized firing rates (N �
15 slices). The firing rates of all neurons in a particular dataset were divided by the mean firing
rate of the dataset to obtain normalized firing rates for each neuron. The black dots represent
the actual distribution, while the dotted red line represents the Gaussian fit generated by the
curve fitting toolbox in MATLAB. C, Distribution of the logarithm of the pooled pairwise IT values
(N � 15) normalized by the mean IT of each dataset. The black dots represent the actual
distribution, while the solid blue line represents the Gaussian fit generated by the curve fitting
toolbox in MATLAB.
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Ik �
�

k



(10)

Iij �
�

ij



. (11)

Neuron diversity. To quantify how heterogeneous or homogenous the
outgoing/incoming links were in terms of their strengths (Fig. 2C), we
used the diversity metric (Eagle et al., 2010). It was defined as follows: let
neuron i have k outgoing connections, the strength of connections being
ITi1, ITi2…ITik. We then normalized these IT values by their sum, as
follows:

Pci �
ITic�c�1

k
ITic

. (12)

These normalized values were then used to define the diversity of neuron
i, as follows:

Di �
��c�1

k
pci log �pci�

log �k�
. (13)

If all the outgoing IT values were approximately
of the same value (i.e., they were homogenous),
then Di was close to its maximum value of 1. This
implied that if a neuron had the same amount of
interaction with a large number of other neurons,
then it was maximally diverse and minimally het-
erogeneous. If the values of the outgoing IT val-
ues were different, then Di would assume a value
�1. In this case, the neuron was less diverse be-
cause it had different levels of interaction with
different neurons. Hence, higher diversity values
indicated a homogenous set of incoming/outgo-
ing IT values, and lower values indicated a more
heterogeneous set.

Results
The Results are composed of three main sec-
tions. First, we describe the effective connec-
tivity obtained from TE and the pattern of
highly concentrated information transfer.
Second, we calculate various graph-
theoretic measures for weighted networks
to show that there is “central/rich” core in
the network. Third, we describe the proper-
ties of the “rich” neurons, the connections
between them, and how these differ from
what is found in the rest of the network.

Effective connectivity from transfer
entropy analysis
The average number of neurons detected
by spike-sorting analysis was 347 � 119,
with the maximum number being 500.
Figure 3A shows the positions of identi-
fied neurons (filled purple circles) over-
laid on the rectangular micro-electrode
array (white rectangle) in a representative
experiment. The duration of these record-
ings was �1 h, and the average firing rate
of the neurons across all cultures was
2.61 � 1.27 Hz, which remained fairly
constant over the duration of the record-
ing. Similar to what has been reported in
vivo, the distribution of firing rates was
found to be approximately lognormal

(Fig. 3B). Transfer entropy analysis was performed on the spike
trains of the detected neurons to generate effective connectivity
maps of the networks. We obtained both binary and weighted
effective connectivity matrices for these networks. The resulting
networks were found to be sparse, having an average connection
density of 6.1 � 4.7%. We found that the distribution of pairwise
IT values was heavy tailed, with a few strong links and a large
number of weak links. The logarithms of the pairwise IT values
were found to approximately follow a normal distribution (Fig.
3C), which implied that the IT values had an approximately log-
normal distribution. This was similar to the distribution of syn-
aptic strengths reported from acute slice data (Song et al., 2005).
Thus, in terms of firing rate distribution, connection strength
distribution, and sparsity, the data from these slice cultures were
similar to what has been reported in acute slices and in vivo prep-
arations.

Highly concentrated information transfer
We next sought to quantify how these few strong links were
distributed among different neurons. This question was im-
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Figure 4. Nonuniform information transfer in cortical networks. A, Cumulative distribution of incoming IT averaged over all
datasets (thick curved red line). The shaded (light red) region shows the variation (SD) across datasets. The thick black line
represents the average cumulative distribution of incoming IT for a null model where IT values were randomly allocated to neuron
pairs from the pairwise IT distribution. The shaded light gray region represents the variation (SD) across datasets. The horizontal
and vertical red lines show that 20% of the neurons contributed �70% of the total information transfer. B, Same as plot A, except
that the thick black line represents the average cumulative distribution of incoming IT for a null model in which weights were
allocated randomly, keeping the in and out degree distribution fixed. Here, 20% of the neurons carried approximately the same
amount of outgoing IT as in the actual networks. C, D, Same as in A and B except we plot the cumulative outgoing information
instead of the cumulative incoming information. The dotted black diagonal line in each of the plots represents what the cumulative
information transfer would look like for a completely uniform network where each neuron contributed equally to the total
information transfer.
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portant because a previous model (Kou-
lakov et al., 2009) predicted that for a
lognormal firing rate distribution and a
lognormal weight distribution to coex-
ist, some neurons would have to receive
much stronger net inputs than others.
Also, they showed that a Hebbian learn-
ing rule would not only generate strong
inputs to some neurons but would also
cause some neurons to send out much
stronger net outputs than others. Ac-
cordingly, we calculated the cumulative
distribution of total incoming IT (Fig.
4A, solid red lines) and total outgoing IT
(Fig. 4C, solid red lines) from each neu-
ron averaged over all 15 datasets. We
found that �20% of the neurons con-
tributed to �70% of the total incoming/
outgoing IT, suggesting that some
neurons were richer than others in
terms of how much information they re-
ceived and how much they sent out.
This is shown in (Fig. 4 A, C), where
neurons are sorted in descending order
of total incoming/outgoing IT contribu-
tion. To check whether this nonunifor-
mity was different from what could be
expected by chance, for each dataset we
assigned the calculated pairwise IT val-
ues to randomly chosen pairs of neu-
rons. This preserved the approximately
lognormal pairwise IT distribution but
randomized any possible correlations
between weights. This procedure also
randomized the degree of distribution.
The resulting average cumulative distri-
bution of outgoing/incoming IT (N �
15) from the random assignment
of weights was found to be significantly different [Kolmogo-
rov–Smirnov (KS) test; p � 10 	6] from the cumulative distri-
bution found in the actual datasets. In the null model, 20% of
the neurons accounted for �40% of the total incoming/out-
going IT (Fig. 4 A, C, solid black lines) in the network, which
was significantly less than the nonuniformity observed in the
actual networks. This result showed that a lognormal distribu-
tion of information transfer values coupled with a random
network topology could not account for the nonuniformity
observed in the actual datasets. To explore a possible mecha-
nism underlying this nonuniformity, we next looked at the
contribution of the particular network topology. To do this,
we randomized the weights in the networks, but preserved
both the pairwise IT and degree (out and in) distributions. In
this case, there was no significant difference between the cu-
mulative curves of the actual data and the null model (KS test,
p � 0.09; Fig. 4 B, D) for both incoming and outgoing IT. From
this, we conclude that the network topology observed in the
datasets played an important role in producing the nonuni-
form pattern of both outgoing and incoming information
transfer.

Edge effects and subsampling effects in observed nonuniformity
It could be argued that because of the limited size of the array,
potential biases could produce artifacts in the structure of the

estimated network. These could be quantified in terms of (1) edge
effects, in which rich neurons could potentially be concentrated
toward the center of the array (rich neurons on the edges would
have invisible connections and would not be seen as rich); and (2)
subsampling effects, in which the observed nonuniformity could
be a result of observing only a small part of the network. To check
whether this was the case, we calculated the correlation coeffi-
cient between the distance of a neuron from the center of the
array and its total degree. We did not find a significant correla-
tion, implying that high-degree neurons were not concentrated at
the center of the array. To check for bias created by subsampling,
we created a random network of 50,000 neurons with the same
connection density as observed in the actual networks. We also
constructed the networks so that each neuron sent out approxi-
mately the same amount of information, which made the net-
works close to being uniform. In these uniformly constructed
networks, we observed that 20% of the neurons accounted for
�30% of the total information transfer. Then we randomly sub-
sampled from these networks the same number of neurons as
observed in our datasets 1000 times. We calculated the average
cumulative outgoing IT curves for these subsampled networks.
We found that subsampling introduced some amount of nonuni-
formity in the cumulative curves. Here, 20% of the neurons
carried �45% of the total information (15% increase in nonuni-
formity) but could not account for all of the nonuniformity ob-
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Figure 5. Rich neurons interact strongly with each other, forming a rich club. A, Weighted rich-club coefficient (y-axis) for
different values of the normalized richness parameter (x-axis), which is the total outgoing IT from each neuron. The red line
represents the average rich-club coefficient across all datasets, and the shaded pink region represents the SD. We also plotted the
cumulative outgoing information (blue curve) for the various subnetworks generated at different values of the richness parameter.
The shaded region represents the SD of the values for all the datasets. The dashed lines (green, blue, and magenta) are drawn to
show that subnetworks that cumulatively account for 80%, 70%, and 60% of the total outgoing information all have rich-club
coefficients of �1. B, Effective connectivity maps showing rich-club topology for one representative culture. The three maps
correspond to three definitions of rich neurons. For the top right network, neurons that cumulatively contribute 80% of the total
outgoing information are classified as rich. Those neurons are represented by filled green circles, and connections between them
are represented by green lines. All other connections are labeled with a gray line, and the nonrich neurons are represented by filled
gray circles. Similarly for the same network, in the middle right panel, neurons that cumulatively contribute 70% of the total
outgoing information are defined to be rich and are represented by filled blue circles, and connections between them are repre-
sented by blue lines. Finally, in the third network we define neurons to be rich if their cumulative contribution is 60% of the total
outgoing information. The networks are represented as undirected for the sake of clarity.

678 • J. Neurosci., January 20, 2016 • 36(3):670 – 684 Nigam et al. • Rich Club in Cortical Microcircuits



served in the actual datasets, where 20% of the neurons
accounted for �70% of the information transfer. From this, we
conclude that the effect of nonuniform IT is unlikely to be a result
of subsampling from a larger, more evenly distributed network.

Graph-theoretic analysis
The above results confirmed that the information transfer
weights were unevenly distributed, but they did not tell us how
neurons with high total weights connected to each other. To
probe this issue, we turned to graph-theoretic measures.

To look at how the rich neurons in the network interacted
with each other, we calculated the weighted rich-club coefficient
for all datasets (Fig. 5A). The richness parameter was chosen to be
the total outgoing IT from each neuron. From the plots, we see
that there is a regime of the richness parameter where the nor-
malized coefficient was �1, indicating that the actual rich-club
coefficients were significantly greater than those found in the
randomized networks, where the significance testing was per-
formed as described in the Materials and Methods section.
Hence, in this regime the rich neurons were connected with each
other more strongly than would be expected by chance. Figure 5A
also shows that the subnetwork formed by the rich neurons, as
defined in the previous section (70% cumulative outgoing infor-
mation transfer), has a rich-club coefficient of �1. We also ob-
served similar rich-club topology if the richness of the neurons
was classified according to the total IT flowing in instead of out.
Hence, neurons that received a large amount of net incoming
information were strongly connected to neurons that also re-
ceived a large amount of incoming information. Figure 5B shows
the rich-club network topology in one representative effective
connectivity network from one of the cultures for three different
thresholds picked for defining rich neurons. We saw similar rich-
club properties in networks of in vivo recordings in the mouse
orbitofrontal cortex (Fig. 6A). The mean (�SD) number of neu-
rons in the datasets was 141 � 35. In these networks, subnetworks
of rich neurons were more strongly connected to each other than
expected by chance. This was evident from the rich-club coeffi-
cient being �1 over a range of values of the richness parameter
(Fig. 6B).

Properties of the rich subnetwork
Now that graph-theoretic measures identified a subnetwork of
rich neurons, we turned to further investigate the properties of
rich neurons to see whether they differed from those of other
neurons. As shown in Figure 4A, we defined the rich subpopula-
tion of the network to be made up of those neurons whose cu-
mulative contribution to the total outgoing IT in the network was
�70%. In each dataset, these subnetworks had a rich-club coef-
ficient of �1 and hence formed a rich club. In the following
sections, we look at the properties of these rich neurons. The
reported properties were robust with respect to the percentage of
the cumulative contribution that was chosen to define rich neu-
rons. We looked at two other values: 60% and 80%. The proper-
ties reported below were the same in this range and were not
limited to merely the cumulative contribution value of 70%.

Rich neurons are the most active in the network
The firing rates of the rich neurons and nonrich neurons were
calculated and were normalized by the mean firing rate of the
dataset to allow comparison. A two-sample KS test showed that
the distributions of firing rates between these two populations
were significantly different (p � 10	4), with the rich neurons
having a higher firing rate than the nonrich neurons. To summa-

rize the results for all datasets, we pooled together the mean nor-
malized firing rate of rich and nonrich neurons from each dataset
and plotted the values in a box plot (Fig. 7A). The rich neurons on
average were found to have more than two times (2.4 � 0.6) the
mean firing rate of the networks, while the nonrich neurons
had �0.8 times (0.77 � 0.07) the mean firing rate of the
networks. We observed very similar results in the in vivo net-
works as well (Fig. 8A).

Spike-timing contributions to rich club
The above results might suggest that the strong connections be-
tween rich-club neurons are simply the result of the high firing
rates of these neurons. This could be expected, to some extent, as
high-firing rate neurons have higher entropy rates than low-
firing rate neurons. We observed that there was indeed a positive
correlation (Pearson’s correlation coefficient, r � 0.28; p �
10	4) between the significant pairwise IT values and the average
firing rates of the source and target neuron pairs. Recall, however,
that we defined IT as the difference between the actual and the
jittered TE values (Eq. 3) in an effort to control for firing rate
effects. Thus, all of the connection strengths reported here were
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the result of spike timing at a scale of �19
ms. Although rich-club neurons indeed
tend to have high firing rates, the rich-
club structure identified here is not caused
by them, but is caused by information
contained in spike timing around the 20
ms scale.

Rich neuron connections are not
more diverse
Diversity analysis on the outgoing con-
nections of the rich neurons showed that
their diversity coefficients were less than
unity, implying a heterogeneous outgoing
IT distribution (Fig. 7B). To check
whether the strength of the outgoing con-
nections of the rich neurons were being
sampled from the entire range of the IT
distribution, we created a null model
where each neuron had the same fixed out
degree as in the actual data but was al-
lowed to sample freely from the available
weights. The average mean diversity of
rich neurons was not found to be signifi-
cantly different than that in the null model
(Wilcoxon rank sum test, p � 0.9).We ob-
served the same results in the in vivo net-
works as well (Fig. 8B). This shows that
the rich neurons do not become rich by
just grabbing on to the strongest links in
the network. Rather, they sample from a
wide range of weights, as explained in Fig-
ure 2C.

Rich neurons are highly central to
the network
To assess the importance of the rich-club neurons and the con-
nections between them, we calculated the weighted neuron and
edge betweenness centrality of the rich and the nonrich neurons
(Fig. 7C). A significantly higher number of shortest paths went
through the rich neurons and through the edges connecting the
rich neurons to one another, than through the nonrich neurons
or edges connecting nonrich neurons to other nonrich neurons.
We observed similar results in the in vivo networks as well (Fig.
8C). These results indicate that rich neurons and their connec-
tions are positioned so that they could facilitate efficient commu-
nication in cortical networks.

Rich neurons are dynamically important
In all 15 in vitro datasets, the mean dynamic importance of rich
neurons and edges was significantly higher than that of nonrich
neurons and edges (KS test, p � 10	4). We also calculated the
ratio of the mean dynamic importance of the rich neurons and
edges connecting rich neurons to each other to that of nonrich
neurons and edges connecting nonrich neurons to each other for
all datasets (Fig. 7D), and observed that the ratios were greater
than unity. We observed the same results in the in vivo networks
as well (Fig. 8D). This shows that rich neurons and their connec-
tions are very influential to the dynamics of the network.

Discussion
The main result of this work is that information transfer in local
cortical networks is highly concentrated. Some neurons transfer
much more information than others, and these neurons in turn

connect with each other more than chance, forming a rich club.
This causes 70% of the total transfer entropy to pass through only
20% of the neurons in local cortical networks.

Validity
The in vitro networks self-organized to a state where they
spontaneously produced an approximately lognormal distri-
bution of firing rates, as observed in vivo (Hromádka et al., 2008).
In addition, they had an approximately lognormal distribution of
information transfer strengths, as seen for synaptic strengths in
paired patch-clamp studies (Song et al., 2005). Our previous
work in slice cultures (Shimono and Beggs, 2015) has shown that
the patterns of information transfer between clusters of six to
eight neurons are qualitatively similar to the patterns of synaptic
connectivity reported in acute slice experiments (Perin et al.,
2011). Furthermore, we also analyzed in vivo data from rodent
cortex. Although these data generally had fewer total neurons,
and sometimes had larger interelectrode spacing, we obtained
results that were qualitatively similar to those found in vitro. In
addition, we checked that our results were not confounded by
edge effects, subsampling, firing rate effects, or transitive or com-
mon drive, and were valid over a wide range of values of the
rejection threshold (see Materials and Methods, Eq. 4). Together,
this suggests that highly nonuniform information transfer is a
robust, general feature of mammalian cortical networks.

Information transfer versus synaptic connections
The drive to understand the connectome of the brain (Sporns et
al., 2005) has included impressive work that has identified de-
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tailed synaptic connections in organisms ranging from the worm
Caenorhabditis elegans (White et al., 1986; Jarrell et al., 2012) to
the fly (Takemura et al., 2013), to mammalian patches of retina
(Helmstaedter et al., 2013) and cortex (Bock et al., 2011). This
work will form an essential component in developing activity
maps of brains (Alivisatos et al., 2013). Even complete knowledge
of synaptic connections, though, is not sufficient to reveal how
neural activity is routed. For example, decades after the complete
wiring diagram for C. elegans became known (White et al., 1986),
a vibrant body of work still aims to record (Larsch et al., 2013)
and model (Izquierdo and Beer, 2013) its neural activity patterns.
For similar reasons, it is also essential to study directed relation-
ships of neural activity in mammalian cortex, using, for example,
information transfer or Granger causality (Brovelli et al., 2004;
Nakhnikian et al., 2014). Such work is complementary to studies
of synaptic connectivity in the same way that knowledge of traffic
patterns complements a roadmap.

Lognormal firing rates
Any detailed model of local cortical networks must simultane-
ously satisfy the constraints of a lognormal firing rate distribution
(Hromádka et al., 2008) and a lognormal connection weight dis-
tribution (Song et al., 2005), as observed in the data. One type of
model (Roxin et al., 2011) has shown that a lognormal firing rate
distribution can be produced when neuronal firing rates, f, are an

exponential function of I, the synaptic in-
put currents (f � eI). In this type of model,
the lognormal firing rate is primarily a
consequence of the transfer function, and
not the networkconnectivity.Anothertypeof
model, in contrast, emphasizes that partic-
ular patterns of network connectivity can
produce a lognormal firing rate distribu-
tion (Koulakov et al., 2009). In a random
network, if synaptic input strengths are
drawn randomly from a lognormal distri-
bution, they tend to produce a relatively
narrow distribution of total input cur-
rents, due to the central limit theorem.
This leads to a Gaussian distribution of
firing rates, contradicting the data. There
are two ways to overcome this. First, if
connection strengths are drawn in a cor-
related manner, a small population of
neurons receives much stronger connec-
tions, driving them to firing rates several
orders of magnitude larger than the mean.
Second, if some neurons receive many
more connections than others, they could
also be driven to fire at much higher rates.
Either or both mechanisms would lead to
a long-tailed, and approximately lognor-
mal, firing rate distribution. Our results
are consistent with those of Koulakov et
al. (2009), who predicted that some neu-
rons would receive much more drive than
others. By randomizing both the correla-
tions in connection strengths and the to-
pology, we found that the topology
contributed most to this effect (Fig. 4).
However, this does not exclude possible
contributions of an exponential f–I rela-
tionship to the firing rate distribution.

Rich-club structure
The fact that some neurons receive much more input than others
does not, by itself, necessarily imply that neurons with high total
information transfer will preferentially transfer information to
each other. Even though we previously found that highly con-
nected neurons (hubs) exist in local cortical networks (Shimono
and Beggs, 2015), until now we had not investigated whether
these hubs strongly connected to each other more than chance.
To assess group structure and move beyond neuron-wise mea-
sures, we measured the rich-club coefficient. Rich-club analysis
(unweighted and weighted) has been performed on a variety of
real-world and biological networks.(Zhou and Mondragón,
2004; Colizza et al., 2006; Opsahl et al., 2008).

In the brain at the macroscopic scale, rich-club structure has
been shown to exist in the structural connectome of cat (de Reus
and van den Heuvel, 2013), macaque (Harriger et al., 2012), adult
human (van den Heuvel and Sporns, 2011), and newborn infants
(Ball et al., 2014). In these studies, though, the analysis has been
performed at the macroscopic scale of structural connections
between brain regions and not at the scale of individual neurons.
There is only one study (Towlson et al., 2013) to have reported a
rich club at the level of individual neurons, and that was in the
structural connectome of the worm C. elegans. Very recent work
by Schroeter et al. (2015) reported a rich-club structure at the
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level of electrodes, not neurons, in dissociated cultures. Our find-
ings are consistent with these previous reports, but go beyond
them by identifying individual neurons as well as the information
transfer strengths between them. Thus, we are the first to show the
existence of a rich club for incoming and outgoing information
transfer among hundreds of neurons. This finding is consistent with
the significant clustering values obtained by Perin et al. (2011) for
synaptic connections among 6–12 cortical neurons. It may also har-
monize with the findings of a recent study (Cossell et al., 2015) in the
visual cortex that found neurons with similar receptive fields were
functionally more correlated and structurally more strongly coupled
than neurons with dissimilar receptive fields.

Role of rich-club neurons
Several clues to the possible roles of rich-club neurons may be
gleaned from previous work. Studies at the macroscopic scale in
humans performing diverse cognitive tasks have shown the exis-
tence of a rich club in functional coactivation networks (Crossley
et al., 2013; Baggio et al., 2015). Rich-club structures also have
been suggested to facilitate control of synchronization (Gómez-
Gardeñes et al., 2010; Batista et al., 2012; Watanabe, 2013), to
reduce network path length (Zhou and Mondragón, 2004), and
to elevate the network clustering coefficient (van den Heuvel and
Sporns, 2011). The potential benefits of these features could jus-
tify the costly long-distance synaptic connections that are neces-
sary to establish a rich-club structure in the human brain (Collin
et al., 2014). Interestingly, a recent study (van den Heuvel et al.,
2013) showed that patients with schizophrenia had significantly
smaller rich-club density than healthy control subjects. This sug-
gests the importance of the rich-club organization for healthy
brain function.

At the neuronal scale, modeling studies (Klinshov et al., 2014)
have shown that networks with clustered subnetworks have bi-
stable low-firing and high-firing network states. Random net-
works with no clustering just show one stable, low-firing state.
Bistability has been shown to play an important role in stored-
trace reactivation (Johnson et al., 2010) and working memory
(Goldman-Rakic, 1995). Recent work by Senden et al. (2014) has
shown that in a spin glass model, the number of attractors was
found to be larger for scale-free networks with rich-club charac-
teristics than for non-rich-club networks that had scale-free,
small-world regular or random patterns of connectivity. This
suggests that networks with rich clubs can sustain a larger reper-
toire of distinct network activity states, enhancing versatility.

Teramae et al. (2012) have even suggested a role for the non-
rich neurons. Using a computational model, they noted that a
strong cortical synapse, by itself, is unable to drive a postsynaptic
neuron to fire. A noisy background produced by many weak
connections, though, could enhance the ability of single strong
inputs to drive their postsynaptic target neurons in a process
called stochastic resonance.

Future questions
This division of labor between information-rich and information-
poor neurons naturally raises questions about how these two
populations would interact in vivo as an animal is encoding,
learning, and remembering. We view the identification of these
neuron populations and their information flow structure as a first
step toward future studies on these topics.
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ing framework for measuring weighted rich clubs. Sci Rep 4:7258.
CrossRef Medline

Baggio HC, Segura B, Junque C, de Reus MA, Sala-Llonch R, Van den Heuvel
MP (2015) Rich club organization and cognitive performance in healthy
older participants. J Cogn Neurosci 27:1801–1810. CrossRef Medline

Baker RE, Van Pelt J (1997) Cocultured, but not isolated, cortical explants
display normal dendritic development: a long-term quantitative study.
Brain Res Dev Brain Res 98:21–29. CrossRef Medline

Baker RE, Corner MA, van Pelt J (2006) Spontaneous neuronal discharge
patterns in developing organotypic mega-co-cultures of neonatal rat ce-
rebral cortex. Brain Res 1101:29 –35. CrossRef Medline

Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson EC,
Ogundipe E, Rueckert D, Edwards AD, Counsell SJ (2014) Rich-club
organization of the newborn human brain. Proc Natl Acad Sci U S A
111:7456 –7461. CrossRef Medline

Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes on
complex networks. Cambridge, UK: Cambridge UP.
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Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly non-
random features of synaptic connectivity in local cortical circuits. PLoS
Biol 3:e68. CrossRef Medline

Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural
description of the human brain. PLoS Comput Biol 1:e42. CrossRef
Medline

Staal JA, Alexander SR, Liu Y, Dickson TD, Vickers JC (2011) Characteriza-
tion of cortical neuronal and glial alterations during culture of organo-
typic whole brain slices from neonatal and mature mice. PLoS One
6:e22040. CrossRef Medline

Stetter O, Battaglia D, Soriano J, Geisel T (2012) Model-free reconstruction
of excitatory neuronal connectivity from calcium imaging signals. PLoS
Comput Biol 8:e1002653. CrossRef Medline

Swadlow HA (1994) Efferent neurons and suspected interneurons in motor

cortex of the awake rabbit: axonal properties, sensory receptive fields, and
subthreshold synaptic inputs. J Neurophysiol 71:437– 453. Medline

Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT,
Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura
S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund
C, et al. (2013) A visual motion detection circuit suggested by Drosoph-
ila connectomics. Nature 500:175–181. CrossRef Medline

Tang A, Jackson D, Hobbs J, Chen W, Smith JL, Patel H, Prieto A, Petrusca D,
Grivich MI, Sher A, Hottowy P, Dabrowski W, Litke AM, Beggs JM
(2008) A maximum entropy model applied to spatial and temporal cor-
relations from cortical networks in vitro. J Neurosci 28:505–518. CrossRef
Medline

Terrell GR, Scott DW (1985) Oversmoothed nonparametric density esti-
mates. J Am Stat Assoc 80:209 –214.

Teramae JN, Tsubo Y, Fukai T (2012) Optimal spike-based communication
in excitable networks with strong-sparse and weak-dense links. Sci Rep
2:485. CrossRef Medline

Timme N, Ito S, Myroshnychenko M, Yeh FC, Hiolski E, Hottowy P, Beggs
JM (2014) Multiplex networks of cortical and hippocampal neurons re-
vealed at different timescales. PLoS One 9:e115764. CrossRef Medline
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