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Reversible Recruitment of a Homeostatic Reserve Pool of
Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of
Quantal Content
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Homeostatic regulation is essential for the maintenance of synaptic strength within the physiological range. The current study is the first
to demonstrate that both induction and reversal of homeostatic upregulation of synaptic vesicle release can occur within seconds of
blocking or unblocking acetylcholine receptors at the mouse neuromuscular junction. Our data suggest that the homeostatic upregula-
tion of release is due to Ca 2�-dependent increase in the size of the readily releasable pool (RRP). Blocking vesicle refilling prevented
upregulation of quantal content (QC), while leaving baseline release relatively unaffected. This suggested that the upregulation of QC was
due to mobilization of a distinct pool of vesicles that were rapidly recycled and thus were dependent on continued vesicle refilling. We
term this pool the “homeostatic reserve pool.” A detailed analysis of the time course of vesicle release triggered by a presynaptic action
potential suggests that the homeostatic reserve pool of vesicles is normally released more slowly than other vesicles, but the rate of their
release becomes similar to that of the major pool during homeostatic upregulation of QC. Remarkably, instead of finding a generalized
increase in the recruitment of vesicles into RRP, we identified a distinct homeostatic reserve pool of vesicles that appear to only partici-
pate in synchronized release following homeostatic upregulation of QC. Once this small pool of vesicles is depleted by the block of vesicle
refilling, homeostatic upregulation of QC is no longer observed. This is the first identification of the population of vesicles responsible for
the blockade-induced upregulation of release previously described.
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Introduction
The ways in which activity regulates synaptic strength have been
extensively studied, but are still only partially understood. There

are a series of changes in synaptic function following manipula-
tions of activity that appear to function to maintain the excitabil-
ity of networks within certain boundaries. This type of synaptic
plasticity is known as homeostatic regulation, and its cardinal
feature is that changes in synaptic strength serve to oppose per-
turbation of synaptic function. Homeostatic regulation of synap-
tic function appears to involve several distinct mechanisms,
including changes in the number of vesicles released [quantal
content (QC)], and changes in the response to an individual
quantum (quantal size) (Rich and Wenner, 2007; Turrigiano,
2012; Müller et al., 2015).

Some of the first descriptions of what would now be termed
“homeostatic synaptic plasticity” were close to 35 years ago at
mammalian neuromuscular junction (NMJ), where partial block
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Significance Statement

The current study is the first to demonstrate that both the induction and reversal of homeostatic upregulation of synaptic vesicle
release can occur within seconds. Our data suggest that homeostatic upregulation of release is due to Ca 2�-dependent priming/
docking of a small homeostatic reserve pool of vesicles that normally have slow-release kinetics. Following priming, the reserve
pool of vesicles is released synchronously with the normal readily releasable pool of synaptic vesicles. This is the first description
of this unique pool of synaptic vesicles.
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of acetylcholine receptors (AChRs) trig-
gers a compensatory increase in QC (Katz
and Miledi, 1978; Cull-Candy et al., 1980;
Wilson, 1982; Plomp et al., 1992; Tian et
al., 1994; Wang et al., 2010b).

The majority of studies suggest that the
induction of homeostatic regulation of
QC occurs within 5–10 min at both the
mammalian and Drosophila NMJ (Wil-
son, 1982; Tian et al., 1994; Frank et al.,
2006; Weyhersmüller et al., 2011), while
one study suggested it takes hours (Plomp
et al., 1992). No study has been performed
to determine the time course of the revers-
ibility of homeostatic regulation of QC.
The time course of reversibility may place
limits on mechanisms that underlie the
homeostatic regulation of QC.

Homeostatic regulation of QC has
been most extensively studied at the Dro-
sophila NMJ. Blocking postsynaptic re-
ceptors at the Drosophila NMJ has been
shown to trigger upregulation of QC that
is absent in flies with a point mutations in
the �1 subunit of Cav2.1 Ca 2� channels
(Frank et al., 2006, 2009) and is accompa-
nied by an increase of presynaptic Ca 2�

influx (Müller and Davis, 2012). A mech-
anism contributing to the increase in QC
is an increase in the readily releasable pool
(RRP) of synaptic vesicles, and this in-
crease is blocked by mutations of RIM
(rab3 interacting molecule; Müller et al.,
2012) and RIM binding protein (Müller et
al., 2015). Together, the studies in Dro-
sophila suggest that both the upregulation
of presynaptic Ca 2� entry and an increase
in the RRP contribute to the upregulation
of QC. The characteristics of the pool of
vesicles recruited to increase the RRP dur-
ing homeostatic upregulation of QC re-
mains unknown.

In the current study, we set out to de-
termine the time course, reversibility, and
characteristics of the pool of synaptic ves-
icles recruited during homeostatic regula-
tion of QC at the mammalian NMJ. We
identified a distinct homeostatic reserve
pool of vesicles that are rapidly and revers-
ibly recruited during homeostatic up-
regulation of QC.

Materials and Methods
All procedures involving animals were ap-
proved by the Wright State Laboratory Animal
Care and Use Committee.

Several strains of mice were used. In most
experiments, mice expressing the yellow fluo-
rescent protein (YFP) transgene driven by the
Thy-1 promoter (Feng et al., 2000) were used.
The presence of YFP in motor terminal allowed
for easier identification of NMJs. In some ex-
periments, where indicated, unaffected sibling
mice of the ClCn1 adr-mto2J strain (The Jackson

Figure 1. Upregulation of QC triggered by blocking AChRs is rapidly reversible. A, QC was increased by partially blocking AChRs
with two antagonists: a, QC was sampled at a muscle holding potential of �70 mV from six TA muscles from ClC mice before and
1 h after the muscle was briefly exposed to �-BTX (1 mg/ml, 2 min) to irreversibly block AChRs. The QC was 80.5 � 6.3 before and
133.8 � 5.1 after partial block of AChRs ( p � 0.01), a 66% increase; b, QC was sampled at �70 mV from three TA muscles from
YFP mice before, after incubation with 0.1 �M D-TC for 1 h, and after washout. QC increased from 63.2 � 5.8 to 98.4 � 5.9 ( p �
0.01), a 56% increase. Muscle contraction was prevented by the addition of 1 �M �-conotoxin in the bathing solution. The
numbers inside each bar indicate the number of fibers recorded. B, Recording protocol used in C (and other experiments wherever
indicated). Two EPCs at 0.5 Hz and 20 s of mEPCs were alternately recorded, and the averaged values were used to calculate the
corresponding QC and construct the plot shown in C. EPCs and mEPCs are scaled differently so that they both fit on the same trace.
C, Average EPC (up triangle), mEPC (down triangle), and QC (square) were plotted over time during infusion and washout of D-TC
from a TA muscle preparation voltage clamped at -45 mV. The bathing solution was switched to a solution containing 0.1 �M D-TC,
where indicated. D, Averaged traces of EPCs and mEPCs taken from the record shown in C. The time they were recorded is indicated
by corresponding numbers. E, Averaged QC taken before and 3 min after D-TC infusion. Data from 19 endplates were pooled and
averaged together. QC was increased from 76.5 � 3.6 to 113.3 � 6.9 by D-TC infusion ( p � 0.01, paired t test). F–G, Average EPC,
mEPC, and QC are plotted over time during a brief block of AChRs via the application of D-TC from a wide-bore patch pipette. Current
traces shown in G correspond to the filled symbols in plot F. Immediately after 3 �M D-TC was pressure puffed (20 psi, 1 s) to the
endplate being voltage clamped, both EPCs and mEPCs were not detectable. As the washout continued, first the EPC, then the
mEPC became detectable. QC was obtained as soon as mEPCs could be accurately detected. QC was maximal as soon as it could be
calculated and then declined to baseline over 2–3 min as D-TC was washed out.
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Laboratory) were used (ClC mice). We have
used this strain previously for studies of ho-
meostatic regulation of QC (Wang et al., 2004,
2005, 2010b). We found no difference in ho-
meostatic upregulation of QC between the two
strains. GCamp2 and GCamp3 mice were ob-
tained from The Jackson Laboratory (B6;CBA-
Tg(Thy1-GCaMP2.2c)8Gfng/J, stock #017892;
and B6;CBA-Tg(Thy1-GCaMP3)6Gfng/J, stock
#017893). In addition to genotyping, each muscle
was checked for Gcamp2/Gcamp3 fluorescence
before recording. The experiment procedures
used to measure QC in the mouse tibialis anterior
(TA) muscle have been extensively described in
previous publications (Wang et al., 2004, 2005,
2010b). Briefly, 2- to 3-month-old mice of either
sex were killed using CO2 inhalation, and the TA
muscle was removed and pinned in a Sylgard
plated dish. After staining with 10 �M 4-(4-
diethylaminostyryl)-N-methylpyridinium
iodide (Invitrogen), NMJs were visualized
using an epifluorescence microscope, and
were perfused at a speed of 3–6 ml/min with an
external solution containing the following (in
mM): 118 NaCl, 0.7 Mg2SO4, 2 CaCl2, 3.5 KCl,
26.2 NaHCO3, 1.7 NaH2PO4, and 5.5 glucose,
pH 7.3–7.4 (at 20–22°C), equilibrated with 95%
O2 and 5% CO2. Endplate currents (EPCs) were
recorded using two-electrode voltage clamp, and
the nerve branch of the TA muscle was stimulated
via an extracellular tungsten electrode (FHC).

Muscle fibers were crushed on both ends of
the TA, away from the endplate band to elimi-
nate contractions upon nerve stimulation, and
the holding potential was set at �45 mV. In
some experiments [where �-bungarotoxin
(BTX) was used], a more negative holding po-
tential was required to detect miniature EPCs
(mEPCs) due to block of postsynaptic AChRs.
In these experiments, muscle fibers were not
crushed, and contraction was prevented by the
addition of 1–3 �M �-conotoxin GIIIB (Pep-
tide Institute, Inc.) into the external solution to
inhibit muscle Na � channels. We have shown
that the QC obtained from preparations
treated with both methods is identical (Wang
et al., 2004, 2005).

Drugs were applied either by adding them
into the perfusate or by pressure puff delivery
to individual NMJs with a picospritzer II (20
psi). �-BTX was purchased from Sigma-
Aldrich and applied at a dose of 1 mg/ml for 2
min. D-Tubocurarine (D-TC) was purchased
from Sigma-Aldrich, and bath applied at a dose
of 0.1 �M and puffed at a concentration of 3
�M. 3,4-Diaminopyridine (DAP) was purchased from Sigma-Aldrich.
For bar graphs of QC before and after block, EPC amplitude was deter-
mined from an average of 10 EPCs evoked at 0.5 Hz using the protocol
shown in Figure 1B, while mEPC amplitude was determined from an
average obtained from at least 30 mEPCs recorded over a 1 or 2 min
period (depending on the frequency of mEPCs).

A point-by-point deconvolution of EPCs was performed using a
method detailed in studies by Rich et al. (2002) and Wang et al. (2010a).
The averaged EPC was deconvolved with the fitted mEPC, which was
obtained by best fitting onset-aligned and averaged mEPC records using
the least-squares method.

A nested ANOVA (SYSTAT; Systat Software) was used for comparing
the effect of drugs and other experimental manipulations. Plots and
curve fittings were made using SigmaPlot software (Systat Software). The

averaged results are expressed as the mean � SEM. p Values �0.05 and
�0.01 are denoted by one and two stars, respectively.

Results
Upregulation of QC following block of acetylcholine
receptors is rapid and reversible
We and others (Plomp et al., 1992; Wang et al., 2010b) have
previously shown that long-term blocking of AChRs in vivo
with �-BTX triggers an increase in QC at the mouse NMJ. It
has been suggested previously (Plomp et al., 1992) that this
increase in QC following application of BTX takes �3 h to
develop. In contrast, it has been reported by that the block of
AChRs in vitro using D-TC triggers an increase in QC within
5–10 min (Wilson and Thomsen, 1992; Tian et al., 1997). The

Figure 2. The homeostatic upregulation of QC is Ca 2� dependent. All experiments were performed using the protocol shown
in Figure 1B. The dose of D-TC for all infusions was 0.1 �M. A, Averaged QC taken before and at the peak of D-TC infusion in variety
of Ca 2� and Mg 2� combinations as indicated below each pair of bars (in mM). The numbers above the bars indicate the number
of fibers recorded. Significant QC increase by D-TC (paired t test, from left to right: p � 0.49, p � 0.64, p � 0.34, p � 0.17, p �
0.20, p � 0.01, p � 0.01, p � 0.01) was seen in 1 Ca/0.7 Mg, 2 Ca/0.7 Mg, and 4 Ca/0.7 Mg groups (numbers represent
concentrations in mM). B, QC upregulation is attenuated in transgenic mice expressing GCamp in motor neurons. QC values
averaged from GCamp2 wild-type mice (n � 16) and transgenic (n � 27) mice, and GCamp3 wild-type (n � 7) and transgenic
(n � 25) mice before and after the infusion of D-TC 0.1 �M are shown in the left panel. Although D-TC caused significant QC
increases in both wild-type and transgenic groups, the percentage increases in the transgenic groups were significantly attenu-
ated, as shown in the right panel. C, The frequency of mEPCs, reported as the number of events per 20 s, was measured from 27
endplates before and after the increase in QC induced by the infusion D-TC (paired t test, p � 0.67). D, Plot of an experiment in
which a QC increase induced by 0.1 �M D-TC infusion was absent in a low-Ca 2� (2 mM Ca 2�/8 mM Mg 2�) solution. Upon the
addition of 40 �M 3,4-DAP, the baseline QC increased from 10 to 80. Following the addition of D-TC, QC increased further to 120. E,
Representative EPC and mEPC traces taken from the corresponding numbers in D. F, Data were collected in 2 mM Ca 2�/8 mM Mg 2�

in the presence (n � 4, p � 0.01) and absence (n � 19, p � 0.34) of 40 �M 3,4-DAP.
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difference in time course between the reported effects of D-TC
and BTX raises the possibility that different mechanisms un-
derlie the increase in QC following application of these differ-
ent AChRs blockers.

We re-examined whether both toxins were able to trigger
increased QC within 1–2 h in vitro. Partial blockade of AChRs
with either D-TC or BTX for 1–2 h in vitro triggered similar
increases in QC (Fig. 1A). After the �-BTX exposure, QC was
increased by 66% ( p � 0.01). Under similar conditions with a
similar degree of block of AChRs, D-TC induced a 56% in-
crease ( p � 0.01). These data are consistent with a similar time
course of induction of increased QC following the application
of either BTX or D-TC.

To determine the reversibility of the upregulation of QC, we
tracked changes in QC in individual fibers during reversible block
of AChRs with D-TC. To follow QC over time in individual fibers,
two evoked EPCs were recorded every 20 s using a stimulation
rate of 0.5 Hz. Between the recordings of EPCs, spontaneous
mEPCs were recorded. By dividing the average EPC amplitude by
the average mEPC amplitude of mEPCs collected during the fol-
lowing 20 s, we were able to determine QC every 22 s to follow
changes over time (Fig. 1B). Individual muscle fibers were voltage
clamped for up to 1 h as we repeatedly switched the solution
between one containing D-TC and one lacking D-TC. During
bath infusion of D-TC, mEPC amplitude was reduced over min-
utes and during this time there was an increase in QC (Fig. 1C,D).
Experiments using the same protocol were repeated in 19 end-

plates from six mice. When measured be-
fore D-TC application and at the peak of
QC increase during D-TC infusion, QC
was increased by 48% (p � 0.01, paired t
test; Fig. 1E), an increase similar to that
induced by �1 h of either �-BTX or D-TC.
The increase in QC paralleled the reduc-
tion in mEPC amplitude, and could re-
peatedly be induced and reversed in
individual fibers within minutes.

To determine the speed of induction
and reversibility of changes in QC as accu-
rately as possible, we briefly puffed D-TC
onto the NMJ being recorded using a
wide-bore patch pipette (Fig. 1F,G). Im-
mediately following the application of 3
�M D-TC, mEPC amplitudes fell below
the level of detection. As D-TC was washed
out over several minutes, mEPCs became
detectable, and at that time QC was in-
creased. As the smallest mEPCs fall into
the noise, we likely underestimated the
magnitude of the increase in QC. These
data suggest that QC is increased within
90 s of the application of D-TC, and this
increase was reversed as rapidly as we
could wash out D-TC. There was no lag in
the decrease in QC, such that QC de-
creased in parallel with the recovery of
mEPC amplitude. We conclude that re-
versal of the increase in QC occurs within
seconds. High-dose D-TC puff tests were
repeatedly performed in three endplates,
and the results were consistent. These data
are the first demonstration that the in-
crease in QC triggered by block of neu-

rotransmitter receptors is both rapidly inducible and rapidly
reversible.

Upregulation of QC following block of acetylcholine
receptors is Ca 2� dependent
When either external Ca 2� level was lowered or external Mg 2�

level was raised, blocking AChRs in the short term did not cause
QC to increase (Fig. 2A). Manipulating the external Ca 2� or
Mg 2� level could be preventing the upregulation of QC by block-
ing signaling in either the postsynaptic muscle fiber or via disrup-
tion of a Ca 2�-dependent process in the presynaptic terminal.
For example, a significant amount of Ca 2� enters skeletal muscle
through AChRs (Scuka and Mozrzymas, 1992), and that Ca 2�

entry might play a key role in regulating a retrograde signal from
muscle that triggers the upregulation of QC.

To selectively manipulate presynaptic Ca2� levels, we used trans-
genic mice in which GCamp2 and GCamp3 were driven by the Thy1
promoter (Chen et al., 2012). We hypothesized that the GCamp
Ca2� indicator dyes would partially buffer the presynaptic Ca2�

signal (Tian et al., 2009; Faas et al., 2011). Baseline QC was not
reduced in GCamp transgenic mice. However, in both lines, trans-
genic mice exhibited attenuated upregulation of QC triggered by
partial AChR block (Fig. 2B). The attenuation of homeostatic syn-
aptic plasticity in these mice is consistent with the possibility that the
effect of manipulation of external Ca2� or Mg2� in wild-type mice is
due to effects on Ca2� in the presynaptic nerve terminal rather than
the muscle.

Figure 3. Blocking AChRs increases the RRP size. A, QC from an individual NMJ was monitored during the infusion of D-TC, as
previously described. Two 100 Hz trains were recorded where indicated by the numbers. B, Fifty EPCs recorded in response to 100
Hz stimulation at times 1 (baseline, top) and times 2 (in the presence of D-TC, bottom). Averaged mEPC traces before train
stimulation at each time point are shown in the right panel. C, Plot of QC, which was calculated from the example shown in A and
B. D, The cumulative QC plot was constructed from the plot of QCs shown in C, and the RRP size was estimated by the intercepts of
linear regression of the linear portion of the cumulative QC plot (last 20 points). Upon D-TC blockade, RRP was increased to 468.9
from an initial value of 288.7, while the slope was unchanged (34.7 vs 34.8). E, Averaged results from eight individual NMJs show
that upon AChRs blockade, RRP was increased (from 280.3 � 24.1 to 524.5 � 40.4; p � 0.01). The steady-state QC was
unchanged by D-TC infusion (average QC from the last 20 pulses was 29.0 � 1.9 at baseline and 27.9 � 1.9 after D-TC infusion; p �
0.13). 1st QC, First QC of the train ( p � 0.01); P-QC, QC when EPC amplitude has plateaued.
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Presynaptic voltage-gated Ca 2� influx during the action
potential is critical
The Ca 2� dependence of the homeostatic increase in QC
could derive from either an increase in basal levels of Ca 2� in
the nerve terminal or an increase in Ca 2� influx during the
action potential. If there was an increase in basal Ca 2�, we
would expect to see an increase in mEPC frequency (Angleson
and Betz, 2001). However, increased QC was not paralleled by
an increase in mEPC frequency (Fig. 2C). This suggested that
the Ca 2� dependence of the increase in QC was most likely
due to increased Ca 2� entry during the action potential rather
than an increase in resting Ca 2� level.

We tested the role of voltage-gated Ca2� entry into the presyn-
aptic terminal by application of 3,4-DAP, which enhances Ca2� en-
try during action potentials by blocking presynaptic voltage-gated
K� channels (Thomsen and Wilson, 1983). The addition of 3,4-
DAP increased baseline QC under conditions of low external Ca2�

back to normal levels and restored the D-TC-induced increase in QC
(Fig. 2D,F). These data suggest the Ca2� dependence of the increase
in QC derives from Ca2� entry through presynaptic voltage-gated
Ca2� channels during the action potential.

Blocking AChRs increases RRP size
We found previously that BTX treatment in vivo increased the
number of releasable vesicles (the binomial parameter n) rather
than increasing the probability of release (the binomial parame-
ter p; Wang et al., 2010b). We examined whether partial block of
AChRs increased n by increasing the size of RRP (Rosenmund
and Stevens, 1996). The size of RRP can be estimated by measur-
ing cumulative QC evoked by high-frequency stimulations (Sch-
neggenburger et al., 1999; Liu et al., 2011), assuming that the
release probability and the rate of replenishment are constant,
and therefore depression during high-frequency stimulation is
mainly due to the reduction of vesicles in the RRP. In the example
shown in Figure 3, the increase in QC measured using 0.5 Hz
stimulation (Fig. 3A) was paralleled by an increase in the calcu-
lated RRP size from 289 to 469, as estimated from the y-intercept
of the linear fit of data plotted in Figure 3D. An average increase
of 245 quanta (from 280.3 � 24.1 to 524.5 � 40.4) was obtained
from eight individual NMJs (Fig. 3E). The increase in RRP size
was not accompanied by an increase in the steady-state QC dur-
ing 100 Hz stimulation (Fig. 3C), such that the slope of the data
plotted in Figure 3D was unaltered. These data suggest that the
block of AChRs selectively increases the RRP, while leaving the
rate of vesicle mobilization unaltered.

Deconvolution of EPCs reveals an increase in synchronized
release following partial block of AChRs
One change that might cause an increase in the RRP is an increase in
the amount of Ca2� entering through Ca2� channels. We have pre-
viously used deconvolution of EPCs with mEPCs to demonstrate
that with increased Ca2� entry there is an increase in the peak rate of
vesicle release (Wang et al., 2010a). We term this wave of rapidly
released vesicles “synchronously released vesicles” (Fig. 4A). In ad-
dition to synchronously released vesicles, there is a continued release
of vesicles at a lower rate that we term “late release” (Fig. 4A). As
external Ca2� is increased, there is a greater increase in late release
than in synchronous release (Wang et al., 2010a). This leads to an
increase in the ratio of late to total release (Fig. 4A–E).

It has been proposed that homeostatic upregulation of QC in
Drosophila may be due to the broadening of presynaptic action
potentials such that there is prolongation of presynaptic Ca 2�

entry (Younger et al., 2013). We examined the effect of broaden-
ing the presynaptic action potential on release using 10 �M 3,4-
DAP to block presynaptic K channels (Thomsen and Wilson,
1983) and found that late release was increased to a greater degree
than peak release (Fig. 4B–E). Thus, both the elevation of extra-
cellular Ca 2� and the widening of the action potential trigger an
increase in the ratio of late to total release.

We next examined the change in release kinetics triggered during
homeostatic upregulation of QC. The changes in the kinetics of re-
lease following the application of D-TC were distinct from those
induced by either increasing the external Ca2� level or widening the
presynaptic action potential. Instead of triggering an increase in the
ratio of late to total release, partial block of AChRs selectively in-
creased the peak rate of release such that the ratio of late to total
release was decreased (Fig. 4F–I). The marked difference between
the effects of elevated external Ca2� level and partial block of AChRs
suggest that Ca2� entry is not increased following homeostatic up-
regulation of release at the mouse NMJ. This agrees with data in
Figure 2 showing no homeostatic upregulation of QC when external
Ca2� is reduced. It further suggests there is no broadening of the
presynaptic action potential at the mouse NMJ. We conclude that
adequate Ca2� entry plays a permissive role in homeostatic upregu-
lation of QC, but there is no increase in Ca2� entry.

Figure 4. Changes in release kinetics following D-TC are distinct from the changes triggered
by increased Ca 2� entry. A, Measurements of total release and late release (defined as the
integral from half of the peak on the decay phase to the end of the decay, shaded area) are
illustrated. B, Deconvolution traces, obtained at 1 mM (n � 29, blue) and 2 mM (n � 46,
magenta) Ca 2� and 0.7 mM Mg 2�, and at 2 mM Ca 2� and 0.7 mM Mg 2� with the addition of
10 �M 3,4-DAP (n � 26, green). The superimposed deconvolution waveforms shown represent
average traces for each condition. C, Shown are the waveforms in B normalized so that the ratio
of late to peak release can be compared. D, E, Bar graphs of total and late release, and the ratio
of total to late release. All differences are statistically significant ( p � 0.01). F, G, Averaged
deconvolution traces obtained from 41 NMJs before (black trace) and after (red trace) AChRs
were partially blocked by D-TC are superimposed (F ) and peak normalized (G). H, I, Correspond-
ing statistics of measurements are shown (Total, p � 0.01; Late, p � 0.33; ratio of Late to Total
(L/T) release, p � 0.01).

832 • J. Neurosci., January 20, 2016 • 36(3):828 – 836 Wang et al. • Novel Homeostatic Reserve Pool



Inhibition of vesicle recycling does not block the initial D-TC-
induced increase in QC, but blocks subsequent upregulation
of QC
We wished to determine how the RRP is increased to cause the
increase in QC. Partial block of AChRs might increase the size of
the RRP by increasing vesicle mobilization/recycling. One way to
increase vesicle mobilization is to rapidly endocytose membrane

and refill vesicles with neurotransmitter.
Another is to move vesicles from a reserve
pool. If rapid vesicle recycling and refilling
is the mechanism underlying the increase
in the RRP, blocking vesicle refilling
should prevent the homeostatic increase
in QC. To examine this possibility, we in-
terrupted vesicle refilling by applying 5
�M vesamicol, a vesicular ACh trans-
porter inhibitor (Van der Kloot, 2003). At
a concentration of 5 �M, vesamicol was
found to have no detectable postsynaptic
effect (Enomoto, 1988). It does not alter
the quantal size of preformed vesicles
(Van der Kloot, 2003) and does not dis-
turb synaptic vesicle recycling (Parsons et
al., 1999), but it completely abolishes re-
filling (Bahr and Parsons, 1986). As ex-
pected, vesamicol caused a gradual
decrease in QC over time as vesicles were
released, but not refilled (Fig. 5A). Vesa-
micol did not block the initial response of
NMJ to the infusion of D-TC (Fig. 5A).
However, subsequent infusions of D-TC
no longer caused an increase in QC in
both the NMJ recorded from during the
initial infusion of D-TC as well as all other
NMJs from the same muscle that were ex-
posed to the initial infusion of D-TC. This
finding was repeated in 10 muscles. These
data suggest that the pool of vesicles mo-
bilized during homeostatic upregulation
of QC was almost completely depleted fol-
lowing the first application of D-TC, at a
time when the pool of vesicles normally
released was reduced by �40%. We con-
clude that the pool of vesicles mobilized
following homeostatic upregulation of
QC is distinct from the pool of vesicles
normally released. We term this novel
pool of vesicles the “homeostatic reserve
pool.”

The finding that the homeostatic re-
serve pool of vesicles was completely de-
pleted during the initial infusion of D-TC
allowed us to estimate the size of the pool.
We took into account the gradual reduc-
tion in QC induced by vesamicol by lin-
early fitting the reduction in QC (Fig. 5B).
We used the fitted QC to estimate what
the QC would have been in the absence of
D-TC and subtracted this from the ob-
served QC at each time point. By sum-
ming the “additional” vesicles released
during each EPC in the presence of D-TC,
we calculated the size of the recruited pool

and obtained an estimate of 316.0 � 38.5 (n � 10 NMJs). This
estimate agrees reasonably well with the estimated increase of 244
in RRP size obtained by high-frequency repetitive stimulation
(Fig. 3) and thus suggests that the recruitment of the homeostatic
reserve pool can fully account for the changes we found in the
response to repetitive stimulation following partial block of
AChRs.

Figure 5. Vesamicol does not block the initial D-TC-induced increase in QC, but blocks the subsequent upregulation of QC. A, An
example of the action of vesamicol. Averaged EPC (upward triangle), mEPC (downward triangle), and QC (square) values are
plotted against time. Vesamicol 5 �M was added into the bathing solution where indicated by the arrow and was present in the
bathing solution for the rest of the recording. Low-dose D-TC (0.1 �M) was infused and washed out twice, as indicated during the
recording. QC was increased only during the first D-TC infusion. No clear increase in QC could be detected for the subsequent infusion
of D-TC. B, Estimation of pool size. The method used to calculate the size of the vesicle pool recruited by infusion of D-TC is indicated
by the expanded area of the square region of the QC plot. In the expanded plot, filled squares indicate QC at time points used to
generate the linear fit of the decay in QC. Open triangles indicate the estimate for what QC would have been without infusion of D-TC
at each time point. Gray squares indicate the QC actually measured. Open squares are QCs that were measured, but not used for
calculations. C, Deconvolution traces derived from the experiment shown in Figure 1C each represent the average of five traces from
the times indicated by the corresponding numbers in Figure 1C. The traces are shown superimposed with the peak normalized. D,
Zoomed plot of the region in C indicated by the arrows shows differences in late release before and after each infusion of D-TC. In
comparison, E and F show averaged deconvolution traces, derived from the experiment shown in A, processed in the same manner
as in C and D, in a situation where vesicle recycling was blocked by the infusion of vesamicol.
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We wished to further characterize the homeostatic reserve
pool. Homeostatic upregulation of QC is absent in a solution
containing a low external Ca 2� level (Fig. 2). Late release of ves-
icles is also absent in a solution containing a low external Ca 2�

level (Fig. 4). This correlation led to the hypothesis that the ho-
meostatic reserve pool normally participates primarily in late re-
lease and is recruited into the synchronously released pool to
cause upregulation of QC. Supporting this was the finding that
homeostatic upregulation of QC is paralleled by a rapidly revers-
ible decrease in the percentage of vesicles released late (Fig.
5C,D). If homeostatic upregulation of QC is due to the recruit-
ment of a distinct homeostatic reserve pool of vesicles, vesamicol
should lead to a permanent decrease in late release as it prevents
refilling of the homeostatic reserve pool. As shown in Figure 5, E
and F, the decrease in late release triggered by D-TC was main-
tained following washout of D-TC in the presence of vesamicol.
Our interpretation is that the pool of vesicles that normally par-
ticipate in late release was completely depleted during homeo-
static upregulation of QC in the presence of vesamicol. We
conclude that the homeostatic reserve pool is distinct from the
pool of vesicles that are synchronously released and normally
have slower release kinetics.

Discussion
We provide evidence that homeostatic upregulation of QC is
mediated by a rapid and reversible recruitment of a small pool of
synaptic vesicles that we term the homeostatic reserve pool. We
demonstrate that adequate Ca 2� entry during action potentials is
necessary for the recruitment of this pool of vesicles during ho-

meostatic upregulation of QC. However, our data suggest that
there is no upregulation of Ca 2� entry during action potentials
during homeostatic upregulation of QC. Inhibition of vesicle re-
filling as well as repetitive stimulation indicate that the homeo-
static reserve pool of vesicle is small (�300) and can be rapidly
depleted. Deconvolution of EPCs to determine release kinetics
suggests that the homeostatic reserve pool normally participates
primarily in late release, and its recruitment is accompanied by an
increase in its rate of vesicle release.

Mobilization of vesicles from a small, unique pool underlies
homeostatic upregulation of QC at the mouse NMJ
Several findings in the current study suggest the homeostatic re-
serve pool is distinct from the normal RRP vesicles. First, the
homeostatic reserve pool is more dependent on vesicle recycling
than the pool normally participating in release. This conclusion is
supported by experiments using vesamicol to prevent the refilling
of recycled vesicles as well as the finding that during repetitive
stimulation the homeostatic increase in QC is eliminated. Our
interpretation is that this pool of vesicles dose not recycle fast
enough to maintain the homeostatic upregulation of QC during
repetitive stimulation. Second, deconvolution suggests that the
homeostatic reserve pool is normally released later than the nor-
mal pool of vesicles. Recruitment of these vesicles appears to be
accompanied by a selective increase in their rate of release such
that release becomes more synchronous. Third, the homeostatic
reserve pool is more sensitive to the reduction of extracellular
Ca 2� than the normal pool of vesicles. This is suggested by the

Figure 6. Blocking postsynaptic AChRs mobilizes a homeostatic reserve pool of vesicles at the mouse NMJ. Illustration of single action potential evoked synaptic vesicle release (top diagram) and
its corresponding release profile obtained by deconvolution of evoked current (bottom). When extracellular Ca 2� entry is low, the only pool of vesicles participating in release is the synchronously
released pool of vesicles (blue vesicles). Both release probability and the number of releasable vesicles are low. With the elevation of extracellular Ca 2� level, there is an increase in the pool of
synchronously released vesicles. The time course of release of these vesicles is indicated by vertical blue lines in the deconvolution profile. In normal Ca 2� levels, there is also recruitment of the
homeostatic reserve pool (red vesicles), but most vesicles in this pool are released slowly, after the peak of vesicle release is over (red dotted arrow in diagram, vertical red lines in deconvolution
profile). Following partial block of AChRs, the homeostatic reserve pool becomes primed and is released as rapidly as the synchronously released pool (superimposed red and blue vertical lines,
deconvolution profile). The homeostatic reserve pool is small and must be continuously replenished through vesicle recycling (red arrow).
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elimination of homeostatic upregulation of QC when extracellu-
lar Ca 2� is reduced.

Putting the above findings together led us to propose the
model in Figure 6. In low Ca 2� the homeostatic reserve pool is
functionally absent due to a lack of Ca 2�-dependent vesicle mo-
bilization. Thus, when AChRs are blocked, there is no homeo-
static upregulation of QC. As the external Ca 2� level is increased
and sufficient Ca 2� entry is ensured, the homeostatic reserve
pool is mobilized, but is primarily limited to participating in late
release. Following partial block of AChRs in normal Ca 2�, the
kinetics of release of the homeostatic reserve pool speed up to
become similar to the synchronously released pool of vesicles.
Sufficient Ca 2� entry during action potentials appears necessary
to allow for Ca 2�-dependent priming and/or recycling (Cecca-
relli and Hurlbut, 1980; Sakaba and Neher, 2001) of the homeo-
static reserve pool. The increased synchronization of release is
both rapidly induced and rapidly reversed as AChRs are blocked
and unblocked. The rapid reversal stems from the small size of the
homeostatic reserve pool [300 of a total of 174,000 vesicles per
mouse NMJ (Schofield and Marshall, 1980)], such that vesicles in
that pool that are primed for synchronous release are rapidly
depleted following washout of AChR blockers.

Comparison of homeostatic regulation at the mouse and
Drosophila NMJ
Homeostatic upregulation of QC has been extensively studied at
the Drosophila NMJ. There are a number of features shared by ho-
meostatic regulation at mouse and Drosophila NMJs. In both, there
is upregulation of QC following partial block of postsynaptic recep-
tors, with a strong correlation between the degree of block and the
upregulation of QC (Plomp et al., 1994; Frank et al., 2006). In neither
synapse is there a change in the rate of spontaneous mEPCs (Frank et
al., 2006; our study), such that it appears unlikely that there is an
increase in resting presynaptic Ca2� level. In addition, in both sys-
tems the increase in QC is due to an increase in the RRP (Wang et al.,
2010b; Müller et al., 2012, 2015; our study) and is not sustained
during repetitive stimulation, suggesting a special dependence on
rapid vesicle replenishment (Wilson, 1982; Tian et al., 1994; Frank et
al., 2006; our study). These findings suggest that the homeostatic
regulation of QC is a similar process in the mouse and Drosophila.

However, our study suggests there are several fundamental
differences between the mouse and Drosophila. (1) In the mouse,
upregulation of QC occurred as rapidly as we could measure it. In
Drosophila, there is a several minute lag between the block of
receptors and the upregulation of QC (Frank et al., 2006). (2)
When external Ca 2� concentration is reduced, there is no in-
crease in QC following either short-term block (Tian et al., 1994;
Wilson et al., 1995; our study) or long-term block (Gallant, 1982;
Plomp et al., 1994) of AChRs at the mammalian NMJ. In Dro-
sophila, the increase in QC occurs at both low and normal extra-
cellular Ca 2� levels (Frank et al., 2006; Müller et al., 2015). (3)
Finally, in Drosophila the upregulation in QC is accompanied by
an increase in presynaptic Ca 2� entry (Müller and Davis, 2012).
In the mouse, we find no evidence to suggest the upregulation of
Ca 2� entry. If there was an increase in Ca 2� entry, the increase
should be sufficient to trigger an increase in QC independent of
vesicle mobilization as the relationship between external Ca 2�

and QC is most dramatic when external Ca 2� is low (Wang et al.,
2010a). Our deconvolution analysis provides further evidence
that there is no increase in presynaptic Ca 2� entry at the mouse
NMJ. These differences suggest fundamental differences in ho-
meostatic mechanisms between the two model synapses.

Time course and reversibility
Ours is the first study of the reversibility of homeostatic regula-
tion of QC. We found that both the induction and reversal of
homeostatic regulation of QC occurred in parallel with the block
of AChRs. These data suggest that homeostatic upregulation and
downregulation of QC occur faster than the 22 s sampling rate of
QC that we were able to achieve. These findings have implications
for underlying mechanisms. First, the signal that triggers the up-
regulation in QC must be induced rapidly. Second, the signal
must have a half-life of �22 s. Finally, the signal needs to be able
to be turned on and off repeatedly within minutes.

Our data suggest that homeostatic upregulation of QC is due
to Ca 2�-dependent priming/docking of a small homeostatic re-
serve pool of vesicles that normally have slow-release kinetics.
Following activation of the homeostatic reserve pool, it is released
synchronously with the normal RRP of synaptic vesicles. Once
this small pool of vesicles is depleted, homeostatic upregulation
of QC does not occur.
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