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Quantifying induced virion production from single proviruses is important for assessing the effects of HIV-1 latency reversal
agents. Limiting dilution ex vivo cultures of resting CD4� T cells from 14 HIV-positive volunteers revealed that virion produc-
tion after T-cell activation from individual proviruses varies by 10,000-fold to 100,000-fold. High-producing proviruses were
associated with increases in cell-associated HIV-1 DNA levels, suggesting that reactivated proviruses proliferate. Single-cell anal-
yses are needed to investigate differences in proviral expansion and virus production following latency reversal.

HIV-1 virion production from resting CD4� T cells (rCD4) is
commonly measured to assess the size of the latent reservoir

and the effectiveness of latency reversal agents (1–4). Prior in vitro
and in vivo studies have estimated the average viral burst size,
defined as the total number of virions produced by an HIV-1-
producing cell over its lifetime, to be 3 to 4 log10 virions/cell (5–9).
However, most of these values were derived using parameters es-
timated from bulk proviral populations. No studies have quanti-
fied the distribution of virion production ex vivo from individual
reactivated proviruses.

To better understand latency reversal at the single-provirus
level, we isolated peripheral blood rCD4 from 14 HIV-1-infected
participants on suppressive antiretroviral therapy (ART) for �2
years by negative selection as described previously (1). The study
was approved by the University of Pittsburgh Institutional Review
Board, and all blood donors gave written informed consent. The
rCD4 were serially diluted and stimulated for 7 days with anti-
CD3/CD28 beads (Life Technologies) at 3 beads/cell in the pres-
ence of 300 nM efavirenz and 100 nM raltegravir, which block
viral replication as determined by single-genome sequencing
(SGS) analysis of supernatant HIV-1 RNA (data not shown).
HIV-1 virion production was measured using Roche Cobas
AmpliPrep/TaqMan v2.0 (1). Preliminary experiments demon-
strated that virion production peaked after 7 days of stimulation,
with high cellular viability (data not shown). Using Poisson’s dis-
tribution, we identified 19 wells with a �96% chance of contain-
ing only 1 reactivated provirus. The levels of virus production by
these single proviruses differed by �4 log10 HIV-1 RNA copies/
provirus (range, 42 to 42,456) (Fig. 1).

To perform a more detailed analysis of single reactivated pro-
viruses, rCD4 were isolated from a participant and cultured in 352
wells of 96-well plates at 74,000 cells/well (a concentration empir-
ically determined to identify individual reactivated proviruses).
The rCD4 were stimulated for 7 days with 50 ng/ml phorbol 12-
myristate 13-acetate (PMA) and 500 ng/ml of ionomycin (PMA/
ionomycin) in the presence of 300 nM efavirenz and 100 nM ralte-
gravir.

To characterize the upper limit of virion production by indi-
vidual reactivated proviruses, a screening method was developed
to identify wells with high virion production. Aliquots of super-
natant from wells in each plate row were pooled (12 wells/row, 32
rows total), and HIV-1 RNA was quantified using an integrase
single-copy assay (iSCA) (10) that was modified to include initial

centrifugation of supernatants at 21,000 � g for 1 h at 4°C. We
identified six rows containing at least 1 provirus each producing
�2,000 HIV-1 RNA copies/well. For these six rows, the remaining
supernatant from each well was extracted and HIV-1 RNA was
quantified using the modified iSCA to identify wells containing
single reactivated proviruses (Fig. 2). Virion production among
individual reactivated proviruses from this donor spanned �5
log10 HIV-1 RNA copies/provirus (range, 1 to 296,759).

Approximately 47% of the wells in the positively screened rows
had detectable HIV-1 virion production following stimulation.
According to Poisson’s distribution, �80% of wells with detect-
able HIV-1 RNA were expected to contain a single expressing
HIV-1 provirus. Single-genome sequencing (SGS) (11, 12) re-
vealed that three of four wells had monotypic sequences with in-
frequent single-base-pair differences within the known error rate
of SGS (�1.1 � 10�4 errors/nucleotide) (Fig. 3) (11), confirming
that most wells with detectable HIV-1 RNA contained a single
expressing provirus. The diversity in the fourth well (Fig. 3D) was
likely a result of the presence of �1 reactivated proviruses rather
than viral replication, which is blocked by 300 nM efavirenz and
100 nM raltegravir as described above.

We next quantified cell-associated HIV-1 DNA (CA-DNA) (1,
13) in 14 culture wells with �200 HIV-1 RNA copies/well and in 9
wells that produced �200 HIV-1 RNA copies/well. A statistically
significant, positive correlation was found between the increase in
CA-DNA levels in wells and HIV-1 RNA production (Spearman
� 	 0.476, P 	 0.0338) (Fig. 4A). Grouped by the number of
virions produced, wells with higher virion production (�200
HIV-1 RNA copies/well) had greater CA-DNA levels than the
lower producers (�200 HIV-1 RNA copies/well) and nonproduc-
ers (�1 HIV-1 RNA copy/well) (P 	 0.0186, P 	 0.0075, respec-
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tively [Mann-Whitney U test with Bonferroni adjustment]),
suggesting that expansion and survival of virus-producing cells
may contribute to the higher virion production observed for
some proviruses (Fig. 4B).

Interpretation of changes in CA-DNA levels is complicated,
however, because wells with single induced proviruses contained
multiple noninduced proviruses. Specifically, an average of 144
HIV-1 DNA copies were seeded per well. Although the majority
(up to 98.5%) of proviruses are not inducible (1, 14), levels of both
induced and noninduced proviruses can expand following activa-
tion. Hence, the association between CA-DNA level increases and
higher virion production may arise from (i) selective proliferation
of induced proviruses, (ii) proliferation of noninduced provi-
ruses, or (iii) proliferation of both induced and noninduced pro-
viruses. Because CA-DNA increases were observed only in wells
with high virion production (Fig. 4B), proliferation of induced
proviruses could well have played a role.

Variable expansion of provirus levels may be attributable to
differences in proviral integration sites and in infected T-cell sub-
sets. Certain integration sites may promote survival and cellular
proliferation, as observed in vivo (15, 16). In addition, HIV-1 pro-

FIG 1 (A) Schematic of theoretical results using the limiting dilution method and
use of Poisson statistics to calculate the probability that a culture with detectable
HIV-1 virion production was produced by a single HIV-1 provirus. Wells with
detectable HIV-1 virion production are represented by a plus sign (�), and the
wells without detectable HIV-1 virion production are represented by a minus sign
(�). The Poisson statistics for each row are indicated in the table. 
 represents the
average rate of success, which is the fraction of wells with detectable HIV-1 virion
production at a given dilution. P(x�1) represents the cumulative probability that
a given well contains one or fewer expressing proviruses. (B) Distribution of in-
duced HIV-1 virion production from individual proviruses in resting CD4� T
cells from 14 HIV-infected donors. Purified resting CD4� T cells were serially
diluted and stimulated with anti-CD3/CD28 beads for 7 days. HIV-1 RNA in the
supernatants was quantified using Roche Cobas AmpliPrep/TaqMan v2.0, and
Poisson statistics were used to identify 19 wells in which single inducible proviruses
were present. Only data from wells with detectable HIV-1 RNA are shown.

FIG 2 Detailed analysis of HIV-1 virion production from single inducible provi-
ruses. Resting CD4� T cells from a donor were serially diluted, maximally stimu-
lated with PMA/ionomycin for 7 days, and then assayed for HIV-1 RNA in the
supernatant using quantitative reverse transcriptase PCR (qRT-PCR). Data are
shown from 6 plate rows (72 wells in total) that were positively screened to contain
at least 1 provirus that produces �2,000 HIV-1 RNA copies/ml.

FIG 3 Single-genome sequence and phylogenetic analysis of virions induced
from proviruses at the limiting dilution endpoint. Closed symbols represent
supernatant RNA sequences, and open symbols represent the consensus
HIV-1 subtype B sequence to which each tree was rooted. The single nucleo-
tide (nt) differences of the sequences in panels A to C are within the expected
error rate of SGS (�1.1 � 10�4 errors per base sequenced or �1 to 2 errors per
10 sequences) and are thus consistent with virus production from single pro-
viruses. The sequences in panel D show multiple nucleotide differences and
therefore were likely derived from two or more reactivated proviruses in that
culture.
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viruses can be found across many T-cell subsets (17, 18), which
vary in proliferative and apoptotic potential (19). Virion produc-
tion may also vary as a result of differences in proviral transcrip-
tion. Integrations in inducible genes could contribute to higher
levels of virion production, but could also lead to lower virion
production from transcriptional interference (15, 20, 21). Epige-
netic modifications that promote or inhibit HIV-1 transcription
(22) may differ between individual infected cells. Cells may also
possess variable amounts of key transcription factors (e.g., P-
TEFB, NF-�B) (23). Finally, differential expression of inhibitory
receptors (24) and cytokines (25) may limit T-cell activation and
HIV-1 transcription. Detailed single-cell analyses are required to
differentiate among these mechanisms of cell proliferation and
virion production.

In summary, analysis of single inducible proviruses reveals that
levels of induced virion production can vary by 100,000-fold.
Given the wide range of virion production following latency re-
versal, results obtained from bulk cell cultures should be inter-
preted with caution. Detailed single-cell analyses are needed to
investigate the mechanisms that contribute to the wide varia-
tion in virion production and cellular proliferation following
activation.
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