Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 19;71(Pt 12):o1071–o1072. doi: 10.1107/S205698901502407X

Crystal structure of (Z)-4-methylbenzyl 3-[1-(5-methylpyridin-2-yl)ethylidene]dithiocarbazate1

Thahira Begum S A Ravoof a, Edward R T Tiekink b,*, Siti Aminah Omar a, Sharifa Zaithun Begum a, Mohamed I M Tahir a
PMCID: PMC4719984  PMID: 26870503

Abstract

In the title di­thio­carbazate compound, C17H19N3S2, the central CN2S2 residue is essentially planar (r.m.s. deviation = 0.0288 Å) and forms dihedral angles of 9.77 (8) and 77.47 (7)° with the substituted-pyridyl and p-tolyl rings, respectively, indicating a highly twisted mol­ecule; the dihedral angle between the rings is 85.56 (8)°. The configuration about the C=N bond is Z, which allows for the formation of an intra­molecular N—H⋯N(pyrid­yl) hydrogen bond. The packing features tolyl-methyl-C—H⋯N(imine), pyridyl-C—H⋯π(tol­yl) and π–π inter­actions [between pyridyl rings with a distance = 3.7946 (13) Å], which generates jagged supra­molecular layers that stack along the b axis with no directional inter­actions between them.

Keywords: crystal structure, hydrogen bonding, di­thio­carbazate

Related literature  

For the structure of the 4-methyl­pyridin-2-yl derivative, with an E configuration for the C=N bond, allowing for the formation of centrosymmetric {⋯HNCS}2 synthons in the crystal, see: Omar et al. (2014). For the synthesis, see: Ravoof et al. (2010).graphic file with name e-71-o1071-scheme1.jpg

Experimental  

Crystal data  

  • C17H19N3S2

  • M r = 329.47

  • Monoclinic, Inline graphic

  • a = 9.0073 (2) Å

  • b = 12.3856 (2) Å

  • c = 7.5553 (1) Å

  • β = 98.620 (2)°

  • V = 833.35 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.88 mm−1

  • T = 100 K

  • 0.31 × 0.22 × 0.18 mm

Data collection  

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.43, T max = 0.60

  • 16118 measured reflections

  • 3195 independent reflections

  • 3191 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.081

  • S = 1.05

  • 3195 reflections

  • 205 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack x determined using 1558 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).

  • Absolute structure parameter: −0.011 (13)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, I. DOI: 10.1107/S205698901502407X/hb7554sup1.cif

e-71-o1071-sup1.cif (557.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901502407X/hb7554Isup2.hkl

e-71-o1071-Isup2.hkl (255.1KB, hkl)

. DOI: 10.1107/S205698901502407X/hb7554fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

a . DOI: 10.1107/S205698901502407X/hb7554fig2.tif

A view of the unit-cell contents in projection down the a axis. The tolyl-methyl-C—H⋯N(imine), pyridyl-C—H⋯π(tol­yl) and π—π inter­actions are shown as orange, pink and orange dashed lines, respectively.

CCDC reference: 1442456

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.88 (2) 1.98 (3) 2.624 (3) 130 (3)
C12′—H12C⋯N2i 0.98 2.58 3.483 (3) 154
C13—H13⋯Cg1ii 0.95 2.76 3.582 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was funded by Universiti Putra Malaysia (UPM) under Research University Grant Schemes (RUGS No. 9419400), the Fundamental Research Grant Scheme (FRGS No. 5524425) and the Science Fund (Science Fund No: 06–01-04-SF810). SAO wishes to thank the UPM for the award of a Graduate Research Fellowship.

supplementary crystallographic information

S1. Refinement

S2. Experimental

The precursor molecule, S-4-methylbenzyldithiocarbazate, was prepared by adapting the literature procedure of Ravoof et al. (2010). Thus, KOH (11.2 g, 0.2 mol) was dissolved in absolute ethanol (70 ml) and to this solution was added hydrazine hydrate (10 g, 0.2 mol) followed by cooling in an ice-salt bath. Drop wise addition of carbon disulfide (15.2 g, 0.2 mol) with constant stirring over 1 h followed. The two layers that subsequently formed were separated. The light-brown lower layer was dissolved in 40% ethanol (60 ml) below 268 K. The mixture was kept in an ice-bath and 4-methylbenzyl chloride (26.5 ml, 0.2 mol) was added drop wise with vigorous stirring. The major product, which was white and sticky was filtered and left overnight to dry over anhydrous silica gel in a desiccator. Recrystallization to yield analytically pure S-4-methylbenzyldithiocarbazate was achieved from hot acetonitrile. Yield: 82%; M.pt: 160–161 °C.

S-4-Methylbenzyldithiocarbazate (2.12 g, 0.01 mol) was dissolved in hot acetonitrile (100 ml) and added to an equimolar solution of 5-methyl-pyridine-2-aldehyde (1.21 g, 0.01 mol) in ethanol (25 ml). The mixture was then heated on a water bath until the volume has been reduced by half. A yellow precipitate formed after standing at room temperature for 1 h and this was washed with ethanol. Yellow prisms were deposited from its acetonitrile solution within a week. Yield: 78%. M.pt: 112–113 °C. Anal. Found (calc'd for C17H19N3S2): C, 62.32 (61.97); H, 5.59 (5.81); N 12.80 (12.75).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N—H atom was refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view of the unit-cell contents in projection down the a axis. The tolyl-methyl-C—H···N(imine), pyridyl-C—H···π(tolyl) and π—π interactions are shown as orange, pink and orange dashed lines, respectively.

Crystal data

C17H19N3S2 F(000) = 348
Mr = 329.47 Dx = 1.313 Mg m3
Monoclinic, Pc Cu Kα radiation, λ = 1.5418 Å
a = 9.0073 (2) Å Cell parameters from 12240 reflections
b = 12.3856 (2) Å θ = 4–71°
c = 7.5553 (1) Å µ = 2.88 mm1
β = 98.620 (2)° T = 100 K
V = 833.35 (3) Å3 Prism, yellow
Z = 2 0.31 × 0.22 × 0.18 mm

Data collection

Agilent Xcalibur, Eos, Gemini diffractometer 3195 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3191 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 16.1952 pixels mm-1 θmax = 71.5°, θmin = 3.6°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −15→15
Tmin = 0.43, Tmax = 0.60 l = −9→9
16118 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.1105P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.28 e Å3
3195 reflections Δρmin = −0.30 e Å3
205 parameters Absolute structure: Flack x determined using 1558 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
3 restraints Absolute structure parameter: −0.011 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.01004 (7) 0.74703 (4) 0.22309 (8) 0.01770 (17)
S2 0.20197 (7) 0.59121 (5) 0.07598 (9) 0.02369 (18)
N1 0.2382 (2) 0.80053 (17) 0.1071 (3) 0.0165 (4)
H1N 0.324 (2) 0.788 (3) 0.069 (4) 0.020*
N2 0.1881 (2) 0.90223 (17) 0.1402 (3) 0.0151 (4)
N3 0.4835 (2) 0.88995 (18) 0.0262 (3) 0.0171 (4)
C1 0.1524 (3) 0.7141 (2) 0.1305 (3) 0.0164 (5)
C2 −0.0843 (3) 0.6138 (2) 0.2616 (4) 0.0227 (6)
H2A −0.1317 0.5817 0.1469 0.027*
H2B −0.0025 0.5655 0.3160 0.027*
C3 −0.1993 (3) 0.6274 (2) 0.3865 (4) 0.0187 (5)
C4 −0.1541 (3) 0.6423 (2) 0.5698 (4) 0.0211 (5)
H4 −0.0502 0.6481 0.6153 0.025*
C5 −0.2590 (3) 0.6487 (2) 0.6864 (4) 0.0232 (5)
H5 −0.2259 0.6587 0.8107 0.028*
C6 −0.4129 (3) 0.6409 (2) 0.6239 (4) 0.0224 (6)
C6' −0.5270 (4) 0.6430 (2) 0.7516 (4) 0.0309 (7)
H6'1 −0.5477 0.7180 0.7812 0.046*
H6'2 −0.4872 0.6038 0.8612 0.046*
H6'3 −0.6200 0.6085 0.6950 0.046*
C7 −0.4574 (3) 0.6281 (2) 0.4406 (4) 0.0239 (6)
H7 −0.5613 0.6238 0.3946 0.029*
C8 −0.3525 (3) 0.6216 (2) 0.3238 (4) 0.0221 (5)
H8 −0.3857 0.6130 0.1992 0.027*
C9' 0.1975 (3) 1.0925 (2) 0.1434 (4) 0.0174 (5)
H9'1 0.1047 1.0801 0.1937 0.026*
H9'2 0.1743 1.1322 0.0305 0.026*
H9'3 0.2675 1.1348 0.2282 0.026*
C9 0.2679 (3) 0.9857 (2) 0.1097 (3) 0.0149 (5)
C10 0.4164 (3) 0.9860 (2) 0.0464 (3) 0.0148 (5)
C11 0.6190 (3) 0.8899 (2) −0.0256 (3) 0.0174 (5)
H11 0.6657 0.8221 −0.0378 0.021*
C12' 0.8495 (3) 0.9734 (2) −0.1194 (3) 0.0198 (5)
H12A 0.8776 1.0426 −0.1679 0.030*
H12B 0.8470 0.9174 −0.2115 0.030*
H12C 0.9233 0.9538 −0.0156 0.030*
C12 0.6969 (3) 0.9832 (2) −0.0632 (3) 0.0164 (5)
C13 0.6260 (3) 1.0811 (2) −0.0445 (3) 0.0174 (5)
H13 0.6734 1.1468 −0.0692 0.021*
C14 0.4852 (3) 1.0830 (2) 0.0107 (3) 0.0166 (5)
H14 0.4363 1.1498 0.0239 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0175 (3) 0.0118 (3) 0.0255 (3) −0.0019 (2) 0.0087 (2) −0.0006 (2)
S2 0.0239 (3) 0.0140 (3) 0.0359 (4) −0.0007 (3) 0.0131 (3) −0.0039 (3)
N1 0.0152 (10) 0.0128 (10) 0.0220 (10) −0.0006 (7) 0.0043 (8) 0.0006 (8)
N2 0.0138 (10) 0.0142 (11) 0.0165 (9) −0.0007 (7) 0.0001 (8) 0.0002 (7)
N3 0.0147 (9) 0.0160 (10) 0.0198 (10) −0.0023 (8) 0.0008 (8) −0.0003 (8)
C1 0.0144 (11) 0.0196 (13) 0.0154 (11) 0.0002 (10) 0.0029 (9) 0.0003 (10)
C2 0.0276 (14) 0.0112 (12) 0.0326 (15) −0.0066 (10) 0.0151 (11) −0.0013 (10)
C3 0.0215 (12) 0.0098 (11) 0.0266 (13) −0.0010 (10) 0.0096 (10) 0.0011 (9)
C4 0.0215 (12) 0.0131 (12) 0.0285 (13) 0.0016 (10) 0.0031 (10) 0.0021 (10)
C5 0.0324 (14) 0.0160 (13) 0.0219 (12) 0.0013 (10) 0.0061 (10) 0.0016 (10)
C6 0.0276 (14) 0.0090 (12) 0.0342 (14) −0.0017 (10) 0.0162 (11) 0.0007 (10)
C6' 0.0382 (16) 0.0168 (13) 0.0434 (17) −0.0032 (12) 0.0246 (13) −0.0037 (12)
C7 0.0196 (13) 0.0149 (13) 0.0376 (15) −0.0032 (10) 0.0057 (11) −0.0035 (11)
C8 0.0252 (13) 0.0157 (13) 0.0256 (13) −0.0042 (10) 0.0043 (10) −0.0033 (10)
C9' 0.0166 (12) 0.0156 (13) 0.0196 (11) 0.0005 (8) 0.0012 (9) −0.0007 (9)
C9 0.0147 (11) 0.0175 (12) 0.0115 (10) −0.0010 (9) −0.0019 (8) 0.0000 (8)
C10 0.0150 (11) 0.0167 (12) 0.0115 (10) −0.0015 (9) −0.0021 (8) −0.0002 (9)
C11 0.0148 (11) 0.0171 (12) 0.0200 (12) −0.0009 (9) 0.0018 (9) −0.0001 (9)
C12' 0.0145 (11) 0.0229 (13) 0.0218 (12) −0.0027 (9) 0.0023 (10) 0.0025 (10)
C12 0.0138 (12) 0.0217 (13) 0.0125 (10) −0.0031 (9) −0.0022 (9) 0.0002 (9)
C13 0.0171 (11) 0.0176 (12) 0.0166 (11) −0.0040 (9) −0.0005 (9) 0.0022 (9)
C14 0.0172 (11) 0.0155 (12) 0.0160 (12) 0.0002 (9) −0.0008 (9) −0.0001 (9)

Geometric parameters (Å, º)

S1—C1 1.762 (3) C6'—H6'2 0.9800
S1—C2 1.820 (3) C6'—H6'3 0.9800
S2—C1 1.655 (3) C7—C8 1.389 (4)
N1—C1 1.348 (3) C7—H7 0.9500
N1—N2 1.374 (3) C8—H8 0.9500
N1—H1N 0.872 (14) C9'—C9 1.505 (3)
N2—C9 1.299 (3) C9'—H9'1 0.9800
N3—C11 1.336 (3) C9'—H9'2 0.9800
N3—C10 1.353 (3) C9'—H9'3 0.9800
C2—C3 1.512 (4) C9—C10 1.486 (3)
C2—H2A 0.9900 C10—C14 1.397 (4)
C2—H2B 0.9900 C11—C12 1.403 (4)
C3—C8 1.391 (4) C11—H11 0.9500
C3—C4 1.396 (4) C12'—C12 1.503 (3)
C4—C5 1.387 (4) C12'—H12A 0.9800
C4—H4 0.9500 C12'—H12B 0.9800
C5—C6 1.399 (4) C12'—H12C 0.9800
C5—H5 0.9500 C12—C13 1.388 (4)
C6—C7 1.392 (4) C13—C14 1.394 (4)
C6—C6' 1.511 (3) C13—H13 0.9500
C6'—H6'1 0.9800 C14—H14 0.9500
C1—S1—C2 101.58 (12) C6—C7—H7 119.4
C1—N1—N2 119.6 (2) C7—C8—C3 121.0 (3)
C1—N1—H1N 117 (3) C7—C8—H8 119.5
N2—N1—H1N 123 (3) C3—C8—H8 119.5
C9—N2—N1 119.5 (2) C9—C9'—H9'1 109.5
C11—N3—C10 118.5 (2) C9—C9'—H9'2 109.5
N1—C1—S2 121.07 (18) H9'1—C9'—H9'2 109.5
N1—C1—S1 113.26 (19) C9—C9'—H9'3 109.5
S2—C1—S1 125.66 (16) H9'1—C9'—H9'3 109.5
C3—C2—S1 107.59 (18) H9'2—C9'—H9'3 109.5
C3—C2—H2A 110.2 N2—C9—C10 127.3 (2)
S1—C2—H2A 110.2 N2—C9—C9' 114.3 (2)
C3—C2—H2B 110.2 C10—C9—C9' 118.4 (2)
S1—C2—H2B 110.2 N3—C10—C14 121.0 (2)
H2A—C2—H2B 108.5 N3—C10—C9 118.3 (2)
C8—C3—C4 118.2 (2) C14—C10—C9 120.7 (2)
C8—C3—C2 121.2 (2) N3—C11—C12 124.5 (2)
C4—C3—C2 120.6 (2) N3—C11—H11 117.8
C5—C4—C3 120.8 (2) C12—C11—H11 117.8
C5—C4—H4 119.6 C12—C12'—H12A 109.5
C3—C4—H4 119.6 C12—C12'—H12B 109.5
C4—C5—C6 121.1 (2) H12A—C12'—H12B 109.5
C4—C5—H5 119.4 C12—C12'—H12C 109.5
C6—C5—H5 119.4 H12A—C12'—H12C 109.5
C7—C6—C5 117.8 (2) H12B—C12'—H12C 109.5
C7—C6—C6' 121.0 (3) C13—C12—C11 116.6 (2)
C5—C6—C6' 121.2 (3) C13—C12—C12' 123.6 (2)
C6—C6'—H6'1 109.5 C11—C12—C12' 119.8 (2)
C6—C6'—H6'2 109.5 C12—C13—C14 119.9 (2)
H6'1—C6'—H6'2 109.5 C12—C13—H13 120.1
C6—C6'—H6'3 109.5 C14—C13—H13 120.1
H6'1—C6'—H6'3 109.5 C13—C14—C10 119.6 (2)
H6'2—C6'—H6'3 109.5 C13—C14—H14 120.2
C8—C7—C6 121.1 (2) C10—C14—H14 120.2
C8—C7—H7 119.4
C1—N1—N2—C9 −176.9 (2) C2—C3—C8—C7 176.4 (3)
N2—N1—C1—S2 174.81 (17) N1—N2—C9—C10 −2.4 (4)
N2—N1—C1—S1 −5.6 (3) N1—N2—C9—C9' 177.39 (19)
C2—S1—C1—N1 −173.23 (18) C11—N3—C10—C14 1.3 (3)
C2—S1—C1—S2 6.4 (2) C11—N3—C10—C9 −178.1 (2)
C1—S1—C2—C3 164.66 (18) N2—C9—C10—N3 −4.0 (4)
S1—C2—C3—C8 104.6 (2) C9'—C9—C10—N3 176.2 (2)
S1—C2—C3—C4 −77.7 (3) N2—C9—C10—C14 176.6 (2)
C8—C3—C4—C5 1.4 (4) C9'—C9—C10—C14 −3.1 (3)
C2—C3—C4—C5 −176.4 (2) C10—N3—C11—C12 −0.9 (4)
C3—C4—C5—C6 −0.2 (4) N3—C11—C12—C13 −0.1 (4)
C4—C5—C6—C7 −1.0 (4) N3—C11—C12—C12' 179.6 (2)
C4—C5—C6—C6' 177.3 (3) C11—C12—C13—C14 0.5 (3)
C5—C6—C7—C8 1.1 (4) C12'—C12—C13—C14 −179.1 (2)
C6'—C6—C7—C8 −177.3 (3) C12—C13—C14—C10 −0.1 (3)
C6—C7—C8—C3 0.1 (4) N3—C10—C14—C13 −0.9 (3)
C4—C3—C8—C7 −1.3 (4) C9—C10—C14—C13 178.5 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C3–C8 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···N3 0.88 (2) 1.98 (3) 2.624 (3) 130 (3)
C12′—H12C···N2i 0.98 2.58 3.483 (3) 154
C13—H13···Cg1ii 0.95 2.76 3.582 (3) 145

Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+2, z−1/2.

Footnotes

1

Additional correspondence author: thahira@upm.edu.my

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7554).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Omar, S. A., Ravoof, T. B. S. A., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119–126.
  5. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  6. Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, I. DOI: 10.1107/S205698901502407X/hb7554sup1.cif

e-71-o1071-sup1.cif (557.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901502407X/hb7554Isup2.hkl

e-71-o1071-Isup2.hkl (255.1KB, hkl)

. DOI: 10.1107/S205698901502407X/hb7554fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

a . DOI: 10.1107/S205698901502407X/hb7554fig2.tif

A view of the unit-cell contents in projection down the a axis. The tolyl-methyl-C—H⋯N(imine), pyridyl-C—H⋯π(tol­yl) and π—π inter­actions are shown as orange, pink and orange dashed lines, respectively.

CCDC reference: 1442456

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES