Computational and Structural Biotechnology Journal 13 (2015) 64-74

CrossMark

101010881

oo COMPUTATIONAL
moofie ANDSTRUCTURAL
oodli BTOTECHNOLOGY
ool J O URNAL

journal homepage: www.elsevier.com/locate/csbj

e o o o o e BT

A case study for cloud based high throughput analysis of NGS data using

the globus genomics system

Krithika Bhuvaneshwar ?, Dinanath Sulakhe P<, Robinder Gauba ?, Alex Rodriguez °, Ravi Madduri <,
Utpal Dave <, Lukasz Lacinski ®<, Ian Foster >¢, Yuriy Gusev ?, Subha Madhavan **

2 Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC 20007, USA

b Computation Institute, University of Chicago, Argonne National Laboratory, 60637, USA
¢ Globus Genomics, USA

ARTICLE INFO ABSTRACT
Article history:
Received 29 August 2014

Received in revised form 31 October 2014
Accepted 3 November 2014
Available online 7 November 2014

Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful
computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools.
We present a case study of a practical solution to this data management and analysis challenge that simplifies
terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are imple-

mented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available
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as a service that offers users the capability to process and transfer data easily, reliably and quickly to address
end-to-endNGS analysis requirements. The Globus Genomics system is built on Amazon's cloud computing
infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows
in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.

© 2014 Bhuvaneshwar et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction
1.1. Background

The popularity of next generation sequencing (NGS) grew exponen-
tially since 2007 due to faster, more accurate and affordable sequencing
[1]. Initial studies were focused on comparing data and analysis results
from NGS technologies with those from traditional polymerase chain
reaction (PCR) and Sanger sequencing methods. Since then, we have
come a long way in understanding how different it is from traditional
methods and genome wide association studies (GWAS). The potential
of NGS is now being tapped in a wide variety of applications including
re-sequencing, functional genomics, translational research, and clinical
genomics [2,3].

Focusing on NGS applications for translational research, the most
basic use cases involve comparison of two cohorts — a case and control
group with added complexity for longitudinal studies and meta-
analyses. Such use cases require medium to large sample sizes, ranging
from hundreds to thousands of samples, to be able to derive statistically
significant results [4]. As these large-scale genomic studies become a
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reality, high throughput data storage, management and computation
for large sample sizes are becoming increasingly challenging.

Current high performance computing (HPC) solutions in the
genomics area involve clusters and grids, which are distributed systems
targeted towards users who prefer a command line interface. These HPC
solutions are not cheap because they require support and maintenance.
University based clusters are shared resources with many competing
users. To support maximum usage of these expensive clusters, the
jobs are queued, and it becomes a buffer for managing IT capacity. For
NGS applications that use medium to large sized samples, researchers
would have to wait until enough resources become available; the time
needed to complete processing becomes unpredictable. Users could
potentially avoid queues by using grids, which are a collection of
resources from different locations; but the cost of constructing a grid
is high and its architecture and management is complex. Cloud comput-
ing leverages virtual technology to provide computational resources to
users and this virtualization helps better utilize resources [5]. Its shared
computing environment and pay-as-you-go storage can greatly benefit
geographically dispersed teams working on the same dataset. There are
a number of providers that offer cloud based solutions, some of them
include Amazon [6], Google [7], and Microsoft [8]. The need for cloud
computing for genomic analysis has been well-described by leaders in
bioinformatics and computational biology [4,9,10] due to its flexibility,
scalability and lower costs. This has been proven by the fact that many
medical institutes and centers in the US and around the world have
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already embraced it [11-16]. NGS analyses are well-suited for the cloud
since data upload (of input files) to an Amazon cloud instance does not
incur any extra charge and data download (of output files) becomes
relatively inexpensive as only a small percentage of output is needed
for downstream analysis [17,18]. There are several cloud service
models: (a) Infrastructure as a service (IaaS) offers compute, storage
and network resources as a service, (b) Platform as a service (PaaS)
that runs applications on the cloud and hides infrastructure implemen-
tation details from the user, and (c) Software as a service (SaaS) that
provides software and databases as a service. SaaS eliminates the need
to install and maintain the software. It also allows users to run
HPCprograms on the cloud through graphical interfaces, and may
be a promising solution for NGS analysis for biologists and re-
searchers [5,19].

While a few large genomics sequencing centers such as the National
Institutes of Health (NIH) and major academic centers have developed
custom solutions relying on significant investment in local computation
infrastructure, an increasing number of universities and academic
institutions across the US are facing challenges due to increasing inter-
est and demand from researchers to utilize NGS technology. These
small to medium size biomedical research entities neither have the
capabilities to implement local computing infrastructures, nor are they
able to rapidly expand their capabilities depending on sequencing
data management needs. Additionally, there is an increasingly urgent
need for adequate software support and management systems capable
of providing reliable and scalable support for the ever-increasing
influx of NGS data. Some academic centers have been developing
customized software solutions, which are often coupled with commer-
cial computing infrastructures such as Mercury [20] utilizing Amazon
Web Services cloud via the DNAnexus [21] platform. However there is
clearly a lack of standardized and affordable NGS management solutions
on the cloud to support the growing needs of translational genomics
research.

1.2. Existing commercial and non-commercial solutions

Before choosing the Globus Genomics system [22] for our case study,
we briefly explored various commercial systems that offer solutions
including Partek [23], DNAnexus [21], CLC Bio [24], DNASTAR[25],
Maverix Biomics [26], Seven Bridges [27] and Golden Helix [28]. At the
time we explored these commercial tools, only a few of these systems
had cloud based solutions for large scale batch processing and such
solutions were too expensive for an academic center to adopt. Galaxy,
however is an open source web based platform for bioinformatics
analysis [29,30]. It provides users with an easy-to-use web interface
that allows users to create complex biological workflows by simply
dragging-and-dropping tools into its “workflow canvas”. The settings
and parameters for each tool can be customized by the user. After
upload of data, the workflow gets submitted to their backend analysis
server. The completed analysis results can be viewed, published
(made public), or shared with other users. Galaxy has an expanding
repository of tools in its “Tool Shed” [31]. It provides an extensible
framework and allows many software tools to be integrated into the
platform. An active community of developers ensures that the latest
tools are available through the Galaxy Tool Shed. The biggest advantage
of the Galaxy framework is that it automatically and transparently
tracks analysis details, and allows results to be documented, down-
loaded, shared, and published with complete provenance, guaranteeing
transparency and reproducibility.

A public Galaxy instance operated by Penn State University [32]-
allows thousands of users to perform hundreds of thousands of analyses
each month. This is a great solution for biologists analyzing small
genomes, but the free public resource has data transfer and compute
usage limits and hence is not suitable for large datasets. A CloudMan
framework helps researchers run their own Galaxy server on a
cloud infrastructure [33]. However, CloudMan still requires users to

understand the operating complexities of cloud computing, an expertise
that most researchers lack. Although Galaxy is easy to use, it has
data upload, storage and data manipulation bottlenecks, especially for
large datasets. It can analyze only sample at a time, and does not
take complete advantage of the elastic cloud compute capabilities
(Supplementary File 1a and 1b). This limitation of Galaxy is due to
its dependence on a single shared file system. When processing
large datasets across distributed compute resources, this limitation
represents a significant bottleneck [22].

1.3. Motivation

This paper presents a case study for using a cloud based computa-
tional environment for the processing and analysis of terabyte scale
NGS data. The paper is designed to provide guidance to the users
of NGS analysis software on how to address the scalability and
reproducibility issues with the existing NGS pipelines when dealing
with very large volumes of translational research data.

Analyzing whole genome, exome, or transcriptome sequencing
data for a large number of human subjects samples requires the ability
to transfer data from multiple samples into the analysis system
(batch processing) and run them simultaneously (parallel processing)
so as to complete the analysis in a few hours as opposed to days or
weeks on a compute-intensive resource that could scale elastically
(i.e., increasing and decreasing compute capacity in response to
changing demand). The Globus Genomics system has these necessary
features designed for AWS, and is the focus of this case study.

This case study covers an Amazon cloud based data management
software solution for next generation sequencing using the Globus
Genomics architecture, which extends the existing Galaxy workflow
system to overcome the barrier of scalability. We present three NGS
workflows to illustrate the data management and sharing capabilities
of the Globus Genomics system, and the novel cloud scheduling
architecture that can scale analyses elastically across a dynamic pool
of cloud nodes. The NGS workflows involve medium to large scale
genomics data presented through the Globus Genomics architecture;
providing a fast and scalable solution for pre-processing, analysis,
and sharing of large NGS data sets typical for translational genomics
projects.

The Globus Genomics system was developed at the Computation
Institute, University of Chicago.The Innovation Center for Biomedical in-
formatics (ICBI) at Georgetown University has collaborated with the
Globus Genomics team on a pilot project to develop and test several
NGS workflows and has summarized our experiences in this paper.

2. Methods
2.1. The globus genomics system overview

The Globus Genomics system is a data management and analysis
platform built on top of the Galaxy platform to take advantage of
Galaxy's best features, and overcome Galaxy's data transfer, storage
and data manipulation bottlenecks and limitations. It also provides
additional features such as faster computation times, advanced data
security, and support and maintenance of the system. It is offered as a
Software as a service (SaaS) that eliminates the need to install and
maintain the software, and allows users to run HPC workflows on the
cloud through graphical interfaces; so users don't have to worry about
any operating complexities [22,34]. By leveraging Galaxy, which is an
existing, functional platform with multiple users in the translational
research community, the Globus Genomics system maximizes the use
of existing capabilities while adding multiple new features that will
enable a wider community use, not just for NGS analysis but all other
types of datasets as well. Fig. 1 shows a summary of architecture
diagram of the system.
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Fig. 1. Architecture of the Globus Genomics system. The orange colored components indicate the three distinct components of the system (at a higher level), and the pink colored com-

ponents are additional features added by the Globus Genomics team.

2.1.1. How the globus genomics system provides faster computation times

The Globus Genomics system is implemented using Amazon's cloud
computing infrastructure. One of the important features of the system is
the optimization for selecting the right instance types for the analytical
tools. An Amazon web services (AWS) instance type comprises varying
combinations of multi-core processors, memory, storage, and network-
ing capacity [35,36].

As part of the managed service, the Globus Genomics team creates
computational profiles for various analytical tools used within the
platform to ensure optimal and efficient execution on the AWS. When
any new tool is added to the platform, all the critical details required
for best performance of the tool, such as the number of compute
cores and memory requirements, are collected and documented as a
computational profile for that tool. For example, for BWA alignment
tool [37], a compute instance with 16 cores and 32 GB RAM was found
to provide best performance for the tool. These computational profiles
are used to dynamically launch appropriate compute nodes (AWS
Spot instances [38]) for a given analytical tool thus making sure the
node can run the tool efficiently and within the best possible execution
time.

The system takes advantage of elastic scaling of compute clusters
using Amazon (Elastic Compute Cloud) EC2 [25]. Elastic scaling refers
to the automatic scaling up or down of compute resources based on
demand and pre-defined conditions to maximize performance, and
minimize costs [39]. The Globus Genomics system provides parallelism
at the workflow level, such that multiple workflows can be submitted in
parallel, and new compute resources are added to the pool on demand.
It also allows tools to use multi-threaded parallelism by launching the
appropriate multi-core nodes as per the profile for that tool. The system
uses HTCondor [26], a queue based scheduler for efficient scheduling
of these pipelines over many processors and can run multiple tasks
simultaneously for faster computation [34,40].

2.1.2. How the globus genomics system provides improved data transfer
capabilities

Efficient and reliable data transfer is a critical feature in handling
large volumes of sequence data. In addition to data transfer, we need
robust authentication and authorization mechanisms in place to ensure
data security. In order to address these requirements, the Globus
Genomics system is integrated with Globus Transfer [41] and Globus
Nexus [42] services for transfer and identity and group management
capabilities.

Globus Transfer is a service that provides high-performance and
secure data transfer between endpoints. An “endpoint” refers to the
point where data transfer occurs to and from the Globus Genomics
system, and can be a local desktop, data center, external hard drive, or
Amazon storage buckets (Amazon S3). Globus Transfer provides man-
aged transfer capabilities (users don't have to wait and manage the
transfers and the service provides automated fault recovery), tuning
parameters to maximize bandwidth, managing security configurations,
and notifications service for error and success [23]. In addition to
the transfers, it also provides sharing capability to share data in place
without the overhead of moving data to the cloud. Within the Globus
Genomics system, the Globus Transfer service has been integrated
with Galaxy using the REpresentational State Transfer Application
Programming Interface (REST API). This enables users to perform
large-scale data transfers between remote source endpoints and the
Amazon cloud where Galaxy is hosted.

The Globus Genomics system leverages the Globus Nexus' identity
and group management services. Globus Nexus integration handles
the authentication operations ensuring secure access to data. It provides
Single Sign On (SSO) across the entire infrastructure and when transfer-
ring data to/from other endpoints thus allowing Globus Genomics users
to sign in using their preferred identity. Globus Genomics also uses the
groups within Globus Nexus to control access to a particular project's
instance or to limit access to data, applications and workflows.

User authentication in the Globus Genomics system follows the
typical OAuth2 workflow where by a user is redirected to authenticate
using Globus Nexus (where they can use their preferred identity provid-
er), and then the user is redirected back to the Globus Genomics
instance with a limited time access token which is mapped to the
Galaxy session and the Globus username. Thus users don't have to
create new account with the Galaxy component and their Globus
username is used across various components of the system (Transfer
and Galaxy). This mapped information is used by Globus transfer service
to perform data transfer on the user's behalf.

Globus Transfer leverages Globus GridFTP [43] an open source,
standards-based [44] technology for reliable, high performance, secure
data transfer; and its superiority over other technologies has been
well-established [45-47]. Supplementary File 2 shows a performance
comparison of a number of data transfer technologies done by the
Globus Genomics team.

These Globus platform services are used by many large computing
facilities including XSEDE[48], KBase [49], and other national centers
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including Semel Institute at UCLA,NYU Langone Medical Center, STAR
Experiment at Brookhaven National Lab, University of Colorado, and
NERSC (National Energy Research Scientific Computing Center) [50].
The 1000 Genomes project [51,52] and EBI's European Nucleotide
Archive [53] now offer data download options using the Globus Transfer
system. As of September 2014, there are about 25,000 Globus Platform
users that have transferred about 1 billion files which is about 60PBs
of data.

2.1.3. Additional features — batch submission

For NGS applications for translational research, it becomes a
necessity to be able to process batches of samples together. If the
computational infrastructure, storage and data transfer capabilities are
not powerful and fast enough, it may take many weeks or months to
process NGS data. The Globus Genomics team has implemented a
batch submission capability that allows users to submit large batches
of samples for analysis in parallel.

Called the “batch submit” workflow, it has been implemented as a
Galaxy tool within the Globus Genomics system and leverages Galaxy
APIs to submit batches of input sequences. Users are required to
complete a tab-delimited file template file for each analytical pipeline,
where rows represent the different samples to be submitted and
columns represent the parameters to be set at run-time. When “batch
submit” is submitted, the desired workflow is executed on each sample
in parallel. Using the computational profile, each tool in the workflow is
optimized to run in the best available compute node (i.e. compute
intensive jobs can be submitted to a multiple core node and memory
intensive jobs can be executed on high RAM nodes). Thus, multiple
samples can use multiple core nodes in parallel to efficiently execute
the analysis. The tool also takes advantage of Galaxy's workflow track-
ing system, and once the batch is submitted successfully, users can
track the analysis of each sample separately in its own history within
Galaxy.

Another important feature of batch submission is that the data
transfers can also be included as part of the workflows. Thus, there is
no need to pre-stage the data and each run in the batch can transfer
its own input and output data to and from a remote endpoint using
Globus Transfer.

This combination of on-demand cloud computing resources and
batch submission capabilities makes the Globus Genomics system a
powerful platform for NGS data analysis at scale.

2.1.4. Maintenance and support

The Globus Genomics team has adopted a Software-As-A-Service
SaaS [54] delivery model so that researchers can access sophisticated
analysis functionality without requiring any software to be installed
locally. All interaction with the software occurs through web browsers
and APIs. This centrally deployed software is updated, operated and
supported, a service provided by the Globus Genomics team.

2.1.5. Taking advantage of the galaxy platform for NGS analysis

The Globus Genomics system not only uses Galaxy's workflow and
tracking system, but also its pipeline design tool where new pipelines
can be designed by end users and deployed on the infrastructure. The
Galaxy tool shed has a comprehensive collection of tools to be able to
create a wide variety of workflows.

Upon request by a user, the Globus Genomics team can add tools
that are not present in Galaxy's tool shed, so the user can take advantage
of the latest tools without waiting for a new release of Galaxy. So
where necessary, custom pipelines can be developed and deployed
for scientists. Even though there is flexibility in creating one's own
workflows, there is convenience and time saving in reusing already
established public workflows.

ICBI has created and provided three ready-to-use common NGS
workflows for a convenient and hassle free experience for the user
without having to spend time creating workflows. These computational

pipelines are widely used best practices for whole genome, whole
exome and whole transcriptome data. Some well-known tools used in
the best practices include Tophat [55], Cufflinks [56], RSEM[57],
GATK[58], Samtools [59], and others; many of which have been
reviewed [60,61]. These standard workflows include data transfer of
raw sequencing files into the system, alignment to genome, variant call-
ing and other steps. The processed output files are variant calls or gene/
isoform expression data that can be easily exported from the system
and used for biological interpretation and drive hypothesis generation
for personalized medicine research.

These workflows have been made public, and can be imported and
shared within the Globus Genomics system. To demonstrate usability
and efficiency, we ran these workflows on publicly available datasets,
evaluated their performance and have made the results public.

2.2. NGS analysis using the globus genomics system — a case study

For a typical translational genomics project, DNA or mRNA
extracted from multiple samples of blood/tissue is subjected to library
preparation. The libraries will then undergo, for example, Illumina
HiSeq sequencing, which outputs raw data in the form of fastq files.
After an investigator obtains the raw sequencing files from the vendor
or core lab, a number of processing steps are needed to get meaningful
results for biological interpretation.

First, the user would have to manage the large amount of data that
would arrive from the sequencing center via hard drives, FTP, or other
means, which is a nontrivial task. Secondly, the user would have to
determine the processing steps, tools, and the appropriate analysis
workflow for a given data type. Even knowledgeable users who are
familiar with Unix or Python would have to find a local cluster or a
high performance computing environment that could handle such
large data, install the tools required, and run the analysis. Depending
on the sample sizes and computational power of a local machine, this
process would take anywhere from a few days to weeks. And this
does not include the time required to identify the appropriate set of
tools, install the tools, write the necessary scripts to execute the target
workflow and secure the level of resources needed for the eventual
analysis. Both a novice or knowledgeable user may not want to bother
with these implementation details for translational genomics research;
a solution such as the Globus Genomics system can save significant time
and cost.

In this case study, we ran the three readymade ICBI workflows for
Whole exome sequencing (WES) data (b) Whole genome sequencing
(WGS) data and (c¢) mRNA sequencing (RNA-seq) data on the Globus
Genomics system on publicly available datasets, and evaluated their
performance (cost, time and CPU). Fig. 2 shows what is required of
the user to run one of the ready-madeNGS workflows on the Globus
Genomics system. Detailed steps are shown in Supplementary File 3a.

The three analytical pipelines are: (a) Whole exome sequencing
(WES) workflow (b) Whole genome sequencing (WGS) workflow and
(c) mRNA sequencing (RNA-seq) workflow. These workflows are
currently designed for Illumina HiSeq platforms. We are currently in
the process of creating workflows for other platforms and other NGS
data types.

2.2.1. Whole Exome Wequencing (WES) and Whole Genome Sequencing
(WGS) workflow

The workflow for pre-processing of WES and WGS is the same, the
difference being that WES only sequences the exome region, while in
WGS; the entire genome is sequenced as seen in the difference in size
and content of the fastq files. (Fig. 3a shows a schematic block diagram
of the workflow and Fig. 3b shows the same workflow created in the
Globus Genomics system).

The fastq files are filtered based on quality using Sickle [62]. Sickle
accepts gzipped fastq files as input and works effectively on paired
end data for both WES and WGS data. The filtered output is aligned to
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Fig. 2. How to run a ready-made NGS workflow in the Globus Genomics system.

a reference human genome using Bowtie2 [63], an ultrafast, memory
efficient short read aligner to create alignment files in BAM format.
The BAM files are re-ordered and read groups are added using Picard
|64]. PCR duplicates removed using Samtools [59]. Variants are called
using Genome Analysis Toolkit (GATK) [58]. VCF-tools[65] are used
to separate the SNPs from the indels and produce two variant call
format (VCF) files for each sample. These VCF files are small in size
(MB range) and can be easily exported from the Globus system. Once
exported, the VCF files can be used for further case-control association
tests that provide statistically significant variants, which can then be
filtered to obtain a short list of non-synonymous, potentially deleterious
markers. These variants can then be mapped to genomic regions and
further aggregated at the levels of gene, pathways, and biological
processes relevant to disease outcome.

2.2.2. Whole transcriptome sequencing (RNA-seq) workflow

For this workflow in the Globus Genomics system, RNAseq fastq files
are pre-processed for quality checks using Sickle, and input to RSEM[57]
a software package that uses Bowtie for alignment and estimates gene
and isoform expression levels. Fig. 4a shows a schematic block
diagram of the workflow and Fig. 4b shows the workflow in Globus
Genomics. Variants are extracted from this data using Picard, GATK
and VCF-tools as mentioned above in the form of VCF files. The advan-
tage of variants extracted from RNA-seq data is that these have already
undergone transcription and is a validation of variants from WGS data.
The output of the workflow are the gene and isoform expression data
and the VCF files which can be exported from the Globus system and
further analyzed at the level of gene, pathways and biological processes
relevant to disease outcome.

For the WES, WGS and RNA-seq workflows created for this case
study, the downstream analyses steps have not been included; as the
filtering and settings for downstream analysis may vary depending on
the biological question in mind. Most of the downstream analysis
steps can be added and executed by the user through the Galaxy
interface of the Globus Genomics system.

3. Results
3.1. Performance evaluation

3.1.1. WES workflow performance

We ran the WES pipeline on a batch of 78 samples from a lung cancer
study obtained from the European Bioinformatics Institute's Sequencing
Read Archive (SRA) [66], from which we downloaded the fastq files.

First, we executed the workflow on a single sample of average input
size (6.5 GB compressed paired-end fastq files) to set the baseline,
which completed in 4 h. Next, we executed the workflow on all
samples, which ran in parallel and completed analysis in 40 h generat-
ing between 20-120 GB of data per sample depending on the size of
the fastq files. The actual execution time for the batch was about 10
times higher than running a single sample of average input size due to
the I/0 (disk usage for input/output files) bottlenecks. This bottleneck
is introduced by the Galaxy component that requires a shared file
system wherein all the jobs from multiple workflows that are run
simultaneously need to read the input data from and write the inter-
mediate outputs to the same shared file system [22]. Due to this high
I/O nature of the analysis, the Globus Genomics team was able to
determine that the servers being used were not optimal for this
type of analysis. They switched to a more [/O intensive node
(e.g. h1.4x large) and were able to reduce the total execution time for
all 78 samples to about 12 h. The /O intensive node uses provisioned
I/0 on the Elastic Block Storage (EBS) [67] when building the shared
file system, which significantly improved the read/write performance.
Each sample was analyzed in an average time of 10 h, which was closer
to baseline. The input data totaled to about 400 GB, and the amount of
data generated from running the pipeline was 2.7 TB. The total data
handled by the system for this dataset was about 3.1 TB.

Fig. 5 shows summary of cost, time and total data generated for the
analysis of 78 lung cancer samples through the exome-seq workflow
executed on a single multi-core Amazon instance (non-optimal run).
Fig. 6 shows summary of cost, time and total data generated for the
analysis of 78 lung cancer samples through the exome-seq workflow
(optimal run). It shows improvement in CPU and execution time as
compared to the non-optimal run. For both figures, we can see that
larger input files (fastq files) generate larger intermediate and output
sizes, which is typical for NGS analysis.

Supplementary Files 4 and 5 show run times for each sample in the
batch job run (non I/O optimized and I/O optimized). It shows a large
amount of data generated by intermediate files.

3.1.2. WGS workflow performance

To demonstrate this workflow, we ran the WGS workflow on a
human breast cancer cell line dataset. We were unable to obtain fastq
files for medium-large sized public WGS dataset on Illumina platform
and hence chose this small dataset. This fastq file was of 80 GB size, it
took 12 h to produce variants (VCF) files in a compute intensive cluster
instance (cr1.8x large). Details of run time for this sample is shown in
Supplementary File 6.
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Fig. 3. a. Schematic diagram of the whole Genome and whole exome analysis workflow. b. Whole genome and exome analysis workflow inside the Globus Genomics system.

3.1.3. RNA-seq workflow performance
We ran this workflow on The Cancer Genome Atlas' (TCGA's)
ovarian cancer samples. We downloaded raw files from the Cancer

Genomic Hub (CGhub) archive [68] and extracted fastq files from the
raw files. This study has 25 samples in all, and we applied the workflow
to 21 samples as 4 samples did not pass quality check. Each sample ran
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Fig. 4. a. Schematic diagram of the whole transcriptome (RNA-seq) analysis workflow. b. Whole transcriptome (RNA-seq) analysis workflow inside the Globus Genomics system.
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Fig. 5. Summary for analysis of 78 lung cancer samples through the exome-seq workflow. Execution time was not optimal due to the high nature of I/0 in the workflow.
"Spot Price" as mentioned in the figure key refers to the price of the AWS spot instance [38].
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Summary for Exome Analysis of 78 Lung Cancer Samples with Optimized I/O Server
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Fig. 6. Summary of the 78 lung cancer samples in an /O optimized server.
“Spot price” refers to the price of the AWS spot instance [38].

in parallel based on the settings in the computational profiles taking
about 20-22 h for each sample to generate expression files and variants,
generating about 150 GB of data depending on size of fastq files. The
intermediate files contribute the most to the overall size of data. The
21 samples were completed within 24 h from the time the first sample
was submitted to the time the last sample completed. Overall, the input
data totaled to about 480 GB, and the amount of data generated from
running the pipeline is 2.9 TB. The total data the system handled for
this dataset was about 3.2 TB.

Fig. 7 shows a summary of the RNA-seq analysis for the 21 samples.
The Amazon spot instance [38] used for this run (cr1.8x large instance)
cost $0.34 per hour. Supplementary file 7 shows run time details for
each sample in the batch run.

The graphs in Figs. 5, 6, and 7show a linear relationship between the
input size and data generated by the workflow, while for CPU time,
workflow execution time with data transfer, and cost the relationship
is non-linear. This is mostly due to heavy I/O utilization especially

when multiple samples are written to the same disk space. As smaller
samples get completed, the larger samples have less I/0 issues and
thus can be executed faster. This issue can be resolved by using a
more /0 intensive node as previously explained.

4. Discussion

In a typical translational research setting a core genomics or a
bioinformatics laboratory is facing the challenge of processing and
analyzing a massive volume of next generation sequencing data in
studies amounting hundreds of DNA or RNA samples. ICBI in collabora-
tion with the Globus Genomics team has conducted a case study aimed
at testing a data management solution by running fast, standard,
scalable and reproducible bioinformatics pipelines on an enhanced
Galaxy platform called the Globus Genomics system built on the Ama-
zon cloud.

Summary for RNA-Seq Analysis of 21 Samples from TCGA Database
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Fig. 7. Summary for RNA-Seq Analysis of 21 TCGA samples of varying input sizes.
“Spot price” refers to the price of the AWS spot instance [38].
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4.1. User experience from case study

After running the case study at Georgetown ICBI, we found pros and
cons with the Globus Genomics system. The main advantage was that
the system was user friendly — its user-interface is suitable for scientists
who don't have programming experience. The system is especially
suited for genomics cores that need to process medium to large volumes
of NGS data in a short amount of time, and have to share the processed
results with their respective clients. Other advantages of the system
include (a) it was convenient to use since it's available on the web, we
did not have to worry about updates and maintenance of system,
(b) the upload of the file template into the system and batch execution
for the analysis of 21 whole transcriptome files and 78 whole exome
samples was not difficult, (c) we were able to track the progress in pro-
cessing of each sample. The workflows could be run overnight without
any supervision. Most samples completed processing overnight, which
was very convenient as compared to non-cloud based systems.

We found the system to have bottlenecks as well. We had first tested
the RNAseq workflow and then the Exome seq workflow. So when
we scaled the analysis from 21 samples to 78 samples, we encountered
I/0 related issues mentioned previously. We learned that the Globus
Genomics I/0 becomes a bottleneck when multiple concurrent applica-
tions start accessing the same file system thus deteriorating the perfor-
mance. As demonstrated in the results, using provisioned I/O on the
EBS[67] when building the shared file system significantly improves
the performance. While provisioned I/O can help scale the number of
parallel jobs to a couple of hundred, there is a natural upper limit in
the number of concurrent jobs that can be handled by the shared file
system. The Globus Genomics team is currently working on better
load balancing techniques and is working closely with engineers from
AWS for larger scalability.

Researchers that have cited the Globus Genomics system include:
the Cox lab [69] and Olopade lab [70] at University of Chicago, and the
Dobyns lab at Seattle Children's Research Institute [71]. Other users
of the system include Kansas University Medical Center [72], Inova
Translational Medicine Institute, and the Genome Sciences Institute
at Boston University [73]. As of September 2014, there are about 20
institutions/research groups actively using the Globus Genomics
platform.

4.2. Economics of running the analysis pipelines on the cloud

The Globus Genomics team has adopted a Software-As-A-Service
SaaS [54] delivery model so that researchers can access sophisticated
analysis functionality without requiring any software to be installed
locally. Although this model offers cost savings over traditional
approaches with multiple local software installations, some costs re-
main including running the service on Amazon Web Services (AWS),
as well as providing any ongoing technical support.

To recover these types of costs, the Globus Genomics team
has adopted a subscription model, whereby users are charged for
components of usage such as cloud compute and cloud storage as well

Table 1
Sample workflow run costs including compute, temporal storage and outbound 1/0°.

as operational and technical support. Fortunately, with the continuous
reduction in costs of cloud resources driven by economies of scale and
gains in efficiency, public cloud infrastructure becomes increasingly
cost effective and most importantly, provides the flexibility of on-
demand resource scaling. Advantages for users include lower cost of
development as only a single platform is supported, accelerated feature
delivery, transparent and frequent software updates, subscription based
licensing, pay-as-you-go usage, collaborative and social integration
(the option to publish and rate the workflows, so that other experts or
users in the field can also rate these published workflows thus leading
to best practices), and intuitive and easy to use interfaces for users.

Table 1 shows actual costs for executing five workflows commonly
used in NGS analysis using the Globus Genomics system. To minimize
compute costs, the Globus Genomics team created computational pro-
files of the tools (as described earlier in the System Overview section)
used in the analysis workflows and matched them with appropriate
Amazon resources to achieve the best price/performance balance dur-
ing workflow execution. The team also used spot instances [38] to
scale-up to the required compute levels with the lowest cost resources.

The Globus Genomics team accounts for AWS storage costs
mentioned in Table 1. This allows storage of the computation results
for a month, and also accounts for outbound I/0 costs from moving
the intermediate and final results from Amazon to local resources for
downstream analysis or local archiving. While AWS charges for
outbound I/0, users can transfer these intermediate and final results of
analysis to their own S3 buckets or other AWS storage with no I/O
costs, though they may have to pay for the actual storage itself.

At the end, 21 RNA seq samples ran in parallel (average input size
13.5 GB each paired-end set compressed) based on the settings in the
computational profiles in about 20-22 h. The total data handled by
the system for this dataset was about 3.2 TB. 78 WES samples (average
input size 5.5 GB each paired-end set compressed) completed execution
on about 12 h. The total data handled by the system for this dataset
was about 3.1 TB. One WGS cell line sample of 80 GB size completed
execution in about 12 h. This will hopefully allow users to roughly pre-
dict the time required to complete the analysis given the workflow and
size of data.

In summary, the Globus Genomics system achieves a high degree
of end-to-end automation that encompasses every stage of the data
analysis lifecycle from initial data retrieval (from remote sequencing
center or database by the Globus file transfer system) to on-
demandresource acquisition (on Amazon EC2); specification, configura-
tion, and reuse of multi-step processing pipelines (via Galaxy); and effi-
cient scheduling of these pipelines over many processors (via the
HTCondor scheduler [74]). The system allows researchers to perform
rapid analysis of terabyte scale NGS datasets using just a web browser
in a fully automated manner, with no software installation.

4.3. Conclusion and future work

The Globus Genomics architecture extends the existing Galaxy
workflow system adding not only superior data management

Workflow Input data Storage size reqs Amazon storage Compute requirement Amazon compute Data download Amazon outbound Total amazon
size (GBs) costs (node hours) costs (GBs) 1/0 costs costs

DNA copy number .070 GB 0.03 <$0.01 0.15 $0.05 0.003 <$0.01 $0.05

microRNA Seq 0.3 GB 1 <$0.01 0.5 $0.17 0.1 $0.01 $0.18

RNA Seq 10 GB (~5 Gbp) 70 $0.12 20 $6.80 7 $0.70 $7.62

WES 6 GB (~5 Gbp) 50 $0.08 6 $2.04 5 $0.50 $2.62

WGS 72 GB (~35 Gbp) 320 $0.53 30 $10.20 32 $3.20 $13.93

2 The analysis presented in Table 1 was carried out under the following assumptions: (a) Input data are compressed in GZ format, paired-end Illumina reads (b) RNA-seq analysis in-
cludes variant analysis as well: Sickle QC, RSEM (singleton and paired), sort, rmdup, fixmate, picard reorder, picard add or replace groups, GATK Unified Genotyper, GATK recalibration, and
GATK variant filtering (c) WES analysis includes: BWA, sort, rmdup, fixmate, picard reorder, picard add or replace groups, GATK Unified Genotyper, GATK recalibration, and GATK variant
filtering (d) WGS analysis includes: Bowtie2, sort, rmdup, fixmate, picard reorder, picard add or replace groups, and GATK Unified Genotyper (e) Reference genome used for all analyses is

hg19.
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capabilities but also a novel cloud scheduling architecture that can scale
analyses elastically across a dynamic pool of cloud nodes [22].

We present three NGS workflows for medium to large scale genomic
data in a Galaxy based system built on the cloud that executes these
workflows across high performance compute systems. We believe that
Globus Genomics is a valuable system that provides a hassle free and
fast solution for pre-processing and analysis of large NGS data sets
typical for translational genomics projects.

We hope to expand this system to support other NGS workflows and
platforms in the future. The Globus Genomics team is also developing
new features to enable cataloging of dynamic collections of data and
metadata including provenance metadata. Another future direction is
to provide sophisticated search capabilities to discover and analyze
datasets based on user-defined and automatically extracted metadata.
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Data access

The results of the analysis shown in this paper can be viewed here:
http://icbi-georgetown.globusgenomics.org/ using the following login
details — username: testuser@test.com, password: globus. It is a guest
account, so users can anonymously access the workflows and analysis
results. This is a static instance (not a demo instance) showing the re-
sults of the batch jobs run on exome-seq and RNA-seq data. Users can
look into the history of each and sample and go through the output of
each and every step in the workflow, to demonstrate the transparency,
share-ability and reproducibility aspect of the system. Click on Shared
Data — Published Workflows to view the workflows demonstrated in
this manuscript.Click on Shared Data — Published Histories to view de-
tailed analysis results from the WES and RNASeq batch runs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2014.11.001.
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