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The interaction of pathogens and its hosts causes a drastic change in the transcriptional landscape in both cells. Among
the several mechanisms of gene regulation, transcriptional initiation is probably the main point. In such scenario, the access
of transcriptional machinery to promoter is highly regulated by post-translational modification of histones, such as
acetylation, phosphorylation and others. Inhibition of histone deacetylases is able to reduce fungal pathogens fitness
during infection and, therefore, is currently being considered for the development of new antifungal therapy strategies.

Post-translational modification of his-
tones represents an important mechanism
of gene expression regulation in eukaryotic
cells. The impact of such modifications,
either singly or in combination, is to form
a language that could be deciphered by a
set of proteins that regulate downstream
functions in chromatin. Among such
modifications, acetylation of lysine lying
at N- and C-terminal domains that pro-
trude from the nucleosome core particle
plays an important role in gene expression
regulation. This occurs mainly at tran-
scriptional level by altering DNA-histone
and histone-histone interactions and by
the function of other proteins that can
alter chromatin dynamics and functions.1

Histone acetylation is a dynamic process
regulated by the activity of 2 groups of
enzymes conserved from yeast to humans:
histone acetyltransferases (HAT), gener-
ally associated with the positive regulation
of transcription, and histone deacetylases
(HDAC), whose function is linked to neg-
ative regulation of transcription.2 HDACs
constitute a family of enzymes that are
able to remove the acetyl group from his-
tones and other cellular proteins. These

enzymes can be classified by sequence
homology into the Rpd3/Hda1 (classical
HDAC) and into the sirtuin family.3 A
recent genomic analysis revealed that the
number of genes that codes for HDACs in
fungal genomes varies from 2 to 112. In
Ascomycota, classical HDACs gene num-
bers range from 2 to 5, and the number of
sirtuin family genes ranges from 2 to 92. A
similar number of genes of both families
are found in Basidiomycota (2 to 7 for
classical HDACs and 3 to 8 for sirtuin
HDACs, respectively) and other Phyla
(Blastocladiomycota, Chytridiomycota,
Microsporidia, and Zygomycota).2

The pathogenic yeast Cryptococcus neo-
formans, together with its sibling species
Cryptococcus gattii, causes cryptococcosis, a
life-threatening disease with over 1 million
new cases and 600.000 deaths every year.4

This disease is normally characterized by
an initial pneumonia that could evolve to
meningitis, which is normally the death
cause. Cryptococcosis is generally treated
with antifungal drugs, as fluconazole, flucy-
tosine and amphotericin B.5 However,
resistance to fluconazole was already
observed in this pathogenic yeast.6 In this

way, new targets for the development of
antifungals are needed. In this issue of Vir-
ulence, Brand~ao and coworkers described
the effects of pharmacological inhibition of
HDACs in the human fungal pathogen C.
neoformans.7 Employing the HDAC inhib-
itors sodium butyrate (SB) and Trichosta-
tin A (TSA), the authors found that pivotal
virulence factors, such as growth at 37�C,
melanin synthesis, phospholipase and cap-
sule polysaccharide production are affected
in a dose dependent fashion. In addition,
they found alterations in morphogenetic
traits (filamentation and mating) and in
cell cycle (leading to arrest at G2/M).
However, they could not found differences
in the infectious potential of pre-treated
fungal cells in a non-mammalian model of
cryptococcosis. The results presented by
Brand~ao and coworkers show that the
effects of HDAC inhibition by SB were
more pronounced, if not unique, than
those obtained with inhibition by TSA.
HDACs are currently considered as targets
for the development of new antifungal
drugs, since such enzymes have been
described as regulators of key virulence
aspects in important pathogenic fungal
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species. Gene inactivation experiments led
to association of individual HDAC genes
with morphological transitions, virulence
and expression and regulation of important
drug resistance associated proteins, as the
chaperone Hsp90 protein and drug efflux
pumps.8-11 Interestingly, inactivation of C.
albicans HDAC coding genes HDA1 and
RPD3 led to reduced trailing growth and
reduced capability to evolve azole resis-
tance, possibly due to a effect of these
HDACs on the expression regulation of
efflux pumps.12 In the pathogenic mold
Aspergillus fumigatus, HDAC gene inactiva-
tion led to defects in germination and in
secondary metabolite production.13

HDACs coding genes from plant fungal
pathogens have also been characterized and
associated with key events in virulence of
Fusarium graminearum and Magnaporthe
oryzae.2 Recent evidences show that
HDACs inhibition in pathogenic fungi
constitutes a promising therapeutic strat-
egy, resulting in altered expression of genes
necessary for virulence or drug resistance.
In line with this, treatment of C. albicans
and other pathogenic Candida species with
TSA lowered the expression of ERG genes
(the products are targets of the azole drugs)

and CDR/MDR1 genes (code for multidrug
transporters).14 One of the pivotal work
that supports this employment of HDACs
inhibitors as antifungal drugs describes the
synergistic effect of MGCD290, a HDAC
inhibitor, with different azoles (flucona-
zole, posaconazole or voriconazole) in
opportunistic fungal isolates from genera
Candida, Cryptococcus, Aspergillus, Rhodo-
torula, Fusarium, Trichosporum, and
others.15 Also, TSA has been proposed for
the treatment of invasive aspergillosis.16 In
A. fumigatus, the proposed mechanism of
action of TSA refers to modulation of acet-
ylation of Hsp90, which led to defects in
growth and conidiation, as well as hyper-
sensitivity to geldanamycin (an inhibitor of
Hsp90).17 In addition, TSA appears to
potentiate the activity of caspofungin in A.
fumigatus,16 which would broaden the anti-
fungal strategies for treatment of aspergillo-
sis. More recently, the HDAC inhibitor
MGCD290, in combination with echino-
candins, was show to impair the growth of
echinocandin-resistant Candida spp. iso-
lates.18 In C. albicans, pharmacological
inhibition by TSA also led to alterations in
the development of azole resistance.12

Pharmacological inhibition of HDACs was

also employed to characterize alterations of
virulence traits in fungal pathogens. Treat-
ment of C. neoformans and C. albicans with
SB led to reduced biofilm formation and
increased azole sensitivity. In addition,
reduced germ tube formation was observed
in C. albicans cells treated with SB19 and
reduced adhesion to pneumocytes were
found in these fungal cells treated with dif-
ferent HDACs inhibitors.20 Despite the
classical use of HDACs inhibitors in the
treatment of cancer,3 HDACs inhibition
appear to benefit immunological control of
yeasts during host-pathogen interaction. At
least in vitro, C. neoformans and C. albicans
were found to be more sensitive to a SB-
treated macrophage cell line (J774.16), and
this effect was due to a raise in the macro-
phage cells levels of reactive nitrogen spe-
cies.19 Altogether, the results presented
summarize the potential of HDACs inhibi-
tion as a new venue for antifungal drug
development.
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