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The adaptive immune system relies on the diversity of receptors
expressed on the surface of B- and T cells to protect the organism
from a vast amount of pathogenic threats. The proliferation and
degradation dynamics of different cell types (B cells, T cells, naive,
memory) is governed by a variety of antigenic and environmental
signals, yet the observed clone sizes follow a universal power-law
distribution. Guided by this reproducibility we propose effective
models of somatic evolution where cell fate depends on an effective
fitness. This fitness is determined by growth factors acting either on
clones of cells with the same receptor responding to specific antigens,
or directly on single cells with no regard for clones. We identify
fluctuations in the fitness acting specifically on clones as the essential
ingredient leading to the observed distributions. Combining our
models with experiments, we characterize the scale of fluctuations
in antigenic environments and we provide tools to identify the
relevant growth signals in different tissues and organisms. Our results
generalize to any evolving population in a fluctuating environment.

immune repertoire | population dynamics | fluctuating fitness | lymphocyte
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Antigen-specific receptors expressed on the membrane of
B- and T cells (B-cell receptors, BCRs and T-cell receptors,

TCRs) recognize pathogens and initiate an adaptive immune
response (1). An efficient response relies on the large diversity of
receptors that is maintained from a source of newly generated
cells, each expressing a unique receptor. These progenitor cells
later divide or die, and their offspring make up clones of cells
that share a common receptor. The sizes of clones vary, as they
depend on the particular history of cell divisions and deaths in
the clone. The clone-size distribution thus bears signatures of the
challenges faced by the adaptive system. Understanding the form
of the clone-size distribution in healthy individuals is an impor-
tant step in characterizing the antigenic recognition process and
the functioning of the adaptive immune system. It also presents
an important starting point for describing statistical deviations
seen in individuals with compromised immune responses.
High-throughput sequencing experiments in different cell types

and species (2–9) have allowed for the quantification of clone sizes
and their distributions (2, 9–11). Previous population dynamics ap-
proaches to repertoire evolution have taken great care in precisely
modeling these processes for each compartment of the population,
through the various mechanisms by which cells grow, die, commu-
nicate, and change phenotype (12–17). However, one of the most
striking properties of repertoire statistics revealed by high-through-
put sequencing is the observation of power laws in clone-size dis-
tributions (Fig. 1 A and B), which holds true for various species
(human, mice, zebrafish), cell type (B- and T cells), and subsets
(naive and memory, CD4 and CD8), and seems to be insensitive to
these context-dependent details. It remains unclear, however, what
universal features of these dynamics lead to the observed power-law
distributions. Here we identify the key biological parameters of the
repertoire dynamics that govern its behavior.
The wide range and types of interactions that influence a B- or

T-cell fate happen in a complex, dynamical environment with
inhomogeneous spatial distributions. They are difficult to mea-
sure in vivo, making their quantitative characterization elusive.

Motivated by the universality of the observed clone-size distribu-
tion, we describe the effective interaction between the immune
cells and their environment as a stochastic process governed by
only a few relevant parameters. All cells proliferate and die
depending on the strength of antigenic and cytokine signals they
receive from the environment, which together determine their net
growth rate (Fig. 1C). This effective fitness that fluctuates in time is
central to our description. We find that its general properties de-
termine the form of the clone-size distribution. We distinguish two
broad classes of models, according to whether these fitness fluc-
tuations are clone-specific (mediated by their specific BCR or
TCR) or cell-specific (mediated by phenotypic fluctuations such as
the number of cytokine receptors). We identify the models that are
compatible with the experimentally observed distributions of clone
sizes. These distributions do not depend on the detailed mecha-
nisms of cell signaling and growth, but rather emerge as a result of
self-organization, with no need for fine-tuned interactions. Per-
forming a series of validated approximations, we find a simple al-
gebraic relationship constraining the different timescales of the
problem by the experimentally observed exponent of the clone-size
distribution. This result allows for testable predictions and esti-
mates of the rates that govern the diversity of a clonal distribution.

Results
Clone Dynamics in a Fluctuating Antigenic Landscape. The fate of the
cells of the adaptive immune system depends on a variety of clone-
specific stimulations. The recognition of pathogens triggers large
events of fast clone proliferation followed by a relative decay, with
some cells being stored as memory cells to fend off future infec-
tions. Naive cells, which have not yet recognized an antigen, do
not usually undergo such extreme events of proliferation and
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death, but their survival relies on short binding events (called
“tickling”) to antigens that are natural to the organism (self-
proteins) (18, 19). Because receptors are conserved throughout
the whole clone (with the exception of B-cell hypermutations),
clones that are better at recognizing self-antigens and pathogens
will on average grow to larger populations than bad binders. By
analogy to Darwinian evolution, they are “fitter” in their local,
time-varying environment.
We first present a general model for clonal dynamics that ac-

counts for the characteristics common to all cell types, following
previous work by de Boer, Perelson, and collaborators (14, 20, 21).
We later explore the effect of specific features such as hyper-
mutations, memory/naive compartmentalization, and thymic out-
put decay on the clone-size distribution.
We denote by ajðtÞ the overall concentration of an antigen j as

a function of time. We assume that after its introduction at a
random time tj, this concentration decays exponentially with a
characteristic lifetime of antigens λ−1, ajðtÞ= aj,0e−λðt−tjÞ as patho-
gens are cleared out of the organism, either passively or through
the action of the immune response. Lymphocyte receptors are

specific to certain antigens, but this specificity is degenerate, a
phenomenon referred to as cross-reactivity or polyspecificity. The
extent to which a lymphocyte expressing receptor i interacts with
antigen j (foreign or self) is encoded in the cross-reactivity function
Kij, which is zero if i and j do not interact, or a positive number
drawn from a distribution to be specified, if they do. In general,
interactions between lymphocytes and antigens effectively promote
growth and suppress cell death, but for simplicity we can assume that
the effect is restricted to the division rate. In a linear approximation,
this influence is proportional to

P
jKijajðtÞ, i.e., the combined effect

of all antigens j for which clone i is specific. This leads to the fol-
lowing dynamics for the evolution of the size Ci of clone i (Fig. 1C):

dCi

dt
=
�
ν+

X
j

KijajðtÞ− μ

�
Ci +BξiðtÞ, [1]

where ν and μ are the basal division and death rates, respectively,
and where BξiðtÞ is a birth–death noise of intensity B2 =
ðν+P

jKijajðtÞ+ μÞCi, with ξiðtÞ a unit Gaussian white noise
(see SI Appendix, section A for details about birth–death noise).
New clones, with a small typical initial size C0, are constantly

produced and released into the periphery with rate sC (Fig. 1C).
For example, a number on the order of sC = 108 new T cells is
output by the thymus daily in humans (22). Because the total
number of T cells is on the order of 1011, this means that the net
effect of cell death and proliferation results in a negative average
growth rate of 10−3 days−1 in homeostatic conditions (22). Be-
cause the probability of rearranging the exact same receptor
independently is very low (<10−10) (23), we assume that each
new clone is unique and comes with its own set of cross-reactivity
coefficients Kij. Assuming a rate sA of new antigens, the aver-
age net growth rate in Eq. 1 is f0 = ν+ haj,0ihKisAλ−1 − μ< 0, and
the stationary number of clones should fluctuate around NC ≈
sCjf0j−1 clones. This is just an average, and treating each clone
independently may lead to large variations in the total number of
cells (i.e., the sum of sizes of all clones). To maintain a constant
population size, clones compete with each other for specific re-
sources (pathogens or self-antigens) and homeostatic control can
be maintained by a global resource such as Interleukin 7 or In-
terleukin 2. Here we do not model this homeostatic control ex-
plicitly, but instead assume that the division and death rates ν, μ
are tuned to achieve a given repertoire size. We verified that
adding an explicit homeostatic control did not affect our results
(SI Appendix, Fig. S2 and SI Appendix, section B).
We simulated the dynamics of a population of clones inter-

acting with a large population of antigens. Each antigen interacts
with each present clone with probability p= 10−7, and with
strength Kij drawn from a Gaussian distribution of mean 1 and
variance 1 (truncated to positive values). Although it has been
argued that the breadth of cross-reactivity and affinity to self-
antigens are correlated (24, 25), here for simplicity we draw them
independently, as we do not expect this correlation to qualitatively
affect the results. A typical trajectory of the antigenic stimulation
undergone by a given clone,

P
jKijaj, is shown in Fig. 1E (green

curve), and shows how clone growth tracks the variations of the
antigenic environment. When the stimulation is particularly
strong, the model recapitulates the typical behavior experimentally
observed at the population level following a pathogenic invasion
(26, 27), as illustrated in Fig. 1D: The population of a clone ex-
plodes (red curve), driving the growth of the total population (blue
curve), while taking over a large fraction of the carrying capacity of
the system, and then decays back as the infection is cleared.
On average, the effects of division and death almost balance

each other, with a slight bias toward death because of the turn-
over imposed by thymic or bone marrow output. However, at a
given time, a clone that has high affinity for several present an-
tigens will undergo a transient but rapid growth, whereas most
other clones will decay slowly toward extinction. In other words,
locally in time, the antigenic environment creates a unique “fit-
ness” for each clone. Because growth is exponential in time,
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Fig. 1. Experimental clone-size distributions have heavy tails. (A) B-cell zebrafish
experimental cumulative clone-size distribution for 14 fish as a function of the
fraction of the population occupied by that clone from data in Weinstein et al. (2).
(B) Clone-size distribution for murine T cells from Zarnitsyna et al. (11) (data plotted
as presented in original paper). (C) The dynamics of adaptive immune cells include
specific interactions with antigens that promote division and prevent cell death.
New cells are introduced from the thymus or bone marrow with novel, unique
receptors. Division, death, and thymic or bone marrow output on average balance
each other to create a steady-state population. (D and E) Example trajectories from
simulations of the immune cell population dynamics in Eq. 1. The total number of
cells (D) shows large variations after an exceptional event of a large pathogenic
invasion. One or a few cells that react to that specific antigen grow up to a mac-
roscopic portion of the total population, and then decrease back to normal sizes
after the invasion. A typical clone-size trajectory along with its pathogenic stimu-
lation

P
jKijajðtÞ shows the coupling between clone growth and variations of the

antigenic environment (E). Parameters used: sC = 2,000 day−1, C0 = 2, sA =1.96 ·107

day−1, aj,0 = a0 = 1, λ= 2 day−1, p= 10−7, ν= 0.98 day−1, and μ= 1.18 day−1.
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these differential fitnesses can lead to very large differences in
clone sizes, even if variability in antigen concentrations or af-
finities is nominally small. We thus expect to observe large tails
in the distribution of clone size. Fig. 2A shows the cumulative
probability distribution function (CDF) of clone sizes obtained at
steady state (blue curve) showing a clear power-law behavior for
large clones, spanning several decades.
The exponent of the power law is independent of the in-

troduction size of clones (Fig. 2A, Inset) and the specifics of the
randomness in the environment (exponential decay, random
number of partners, random interaction strength) as long as its
first and second moment are kept fixed (SI Appendix, Fig. S3 and
SI Appendix, section C).

Simplified Models and the Origin of the Power Law. To understand
the power-law behavior observed in the simulations, and its ro-
bustness to various parameters and sources of stochasticity, we
decompose the overall fitness of a clone at a given time (its in-
stantaneous growth rate) into a constant, clone-independent part
equal to its average f0 < 0, and a clone-specific fluctuating part of
zero mean, denoted by fiðtÞ. This leads to rewriting Eq. 1 as

dCi

dt
= ½f0 + fiðtÞ�CiðtÞ+BξiðtÞ, [2]

with B2 ≈ ðjf0j+ 2μÞCi.
The function fiðtÞ encodes the fluctuations of the environment

as experienced by clone i. Because antigens can be recognized by
several receptors, these fluctuations may be correlated between
clones. Assuming that these correlations are weak, hfiðtÞfjðt′Þi≈ 0,
amounts to treating each clone independently of each other, and
thus to reducing the problem to the single clone level. The sto-
chastic process giving rise to fiðtÞ is a sum of Poisson-distributed
exponentially decaying spikes. This process is not easily amenable to
analytical treatment, but we can replace it with a simpler stochastic
process with the same temporal autocorrelation function. This au-
tocorrelation is given by hfiðtÞfiðt′Þi=A2e−λjt−t′j, with the antigenic
noise strength A2 = sApa20hK2iλ−1, and where we recall that λ−1 is
the characteristic lifetime of antigens. The simplest process with the
same autocorrelation function is given by an overdamped spring in a
thermal bath, or Ornstein–Uhlenbeck process,

dfi
dt

=−λfi +
ffiffiffi
2

p
γηiðtÞ, [3]

with ηiðtÞ a Gaussian white noise of intensity 1 and γ =A
ffiffiffi
λ

p
quantifies the strength of variability of the antigenic environment
(SI Appendix, section D). This is also the process of maximum
entropy or caliber (28) with that autocorrelation function (SI
Appendix, section E and ref. 29).
The effect of the birth–death noise BξiðtÞ is negligible compared

with the fitness variations for large clones and it has no effect on
the tail (SI Appendix, Fig. S5 and SI Appendix, section F). It can
thus be ignored when looking at the tail of the distribution and its
power-law exponent, but it will play an important role for defining
the range over which the power law is satisfied.
The population dynamics described by Eqs. 2 and 3 can be refor-

mulated in terms of a Fokker–Planck equation for the joint abun-
dance ρ of clones of a given log size x= logC and a given fitness f:

∂ρðx, f , tÞ
∂t

=−ðf0 + f Þ ∂ρ
∂x

+ λ
∂ðfρÞ
∂f

+ γ2
∂2ρ
∂f 2

+ sðx, f Þ, [4]

where the source term sðx, f Þ describes new clones arriving at rate
sC with size C0 and normally distributed fitnesses of variance
hf 2i= γ2=λ. This Fokker–Planck equation can be solved numeri-
cally with finite element methods with an absorbing boundary
condition at x= 0 to account for clone extinction. The solution,
represented by the black curve in Fig. 2A, matches closely that of
the full simulated population dynamics (in blue). The power-law
behavior is apparent above a transition point that depends on the

distribution of introduction sizes of new clones and the param-
eters of the model (see below). Intuitively, the microscopic de-
tails of the noise are not expected to matter when considering
long timescales, as a consequence of the central limit theorem.
However, the long tails of the distribution of clone sizes involve
rare events and belong to the regime of large deviations, for
which these microscopic details may be important. Therefore,
the agreement between the process described by the overdamped
spring and the exponentially decaying, Poisson-distributed anti-
gens is not guaranteed, and in fact does not hold in all parameter
regimes (SI Appendix, Fig. S8).
We can further simplify the properties of the noise by as-

suming that its autocorrelation time is small compared with
other timescales. This leads to taking the limit γ, λ→∞ while
keeping their ratio σ = γ=λ constant, so that fiðtÞ is just a Gaussian
white noise with hfiðtÞfiðt′Þi= 2σ2δðt− t′Þ (SI Appendix, section F
and SI Appendix, Fig. S4). The corresponding Fokker–Planck
equation now reads

∂tρðx, tÞ=−f0∂xρðx, tÞ+ σ2∂2xρðx, tÞ+ sðxÞ, [5]

with sðxÞ= sCδðx− logðC0ÞÞ. This equation can be solved analytically
at steady state, and the resulting clone-size distribution is, for C>C0,

ρðCÞ= sC
ασ2

1
Cα+1, [6]

with α= jf0j=σ2 = λjf0j=A2 (details in SI Appendix, section F). The
full solution, represented in Fig. 2A in red, captures well the long-
tail behavior of the clone-size distribution despite ignoring the tem-
poral correlations of the noise, and approaches the solution of the
colored-noise model (Eq. 3) as λ, γ→∞, as expected (Fig. 2A).
The power-law behavior and its exponent depend on the noise

intensity, but are otherwise insensitive to the precise details of
the microscopic noise, including its temporal properties. Fat tails
(small α) are expected when the average cell lifetime is long
(small jf0j) and when the antigenic noise is high (large σ or A).
The explicit expression for the exponent of the power law 1+ α as
a function of the biological parameters can be used to infer the
antigenic noise strength A2 directly from data. The typical net
clone decay rate jf0j≈ 10−3 can be estimated from thymic output
and repertoire size, as discussed earlier. The characteristic life-
time of antigens λ−1 is harder to estimate, as it corresponds to the
turnover time of the antigens that the body is exposed to, but is
probably on the order of days or a few weeks, λ≈ 0.1 day−1. We
estimated α= 1± 0.2 from the zebrafish data of Fig. 1A (2, 10)
using canonical methods of power-law exponent extraction (30)
(see SI Appendix, section G for details), and also found a similar
value in human T cells (31). The resulting estimate, A= 10−2
day−1, is rather striking, as it implies that fluctuations in the net
clone growth rate, A, are much larger than its average f0.
Whereas the distribution always exhibits a power law for large

clones, this behavior does not extend to clones of arbitrarily
small sizes, where the details of the noise and how new clones are
introduced matter. We define a power-law cutoff C* as the smallest
clone size for which the cumulative distribution function differs
from its best power-law fit by less than 10%. Using numerical
solutions to the Fokker–Planck equation associated with the
colored-noise model, we can draw a map of C* as a function
of the parameters of the system. In Fig. 2 B and C we show how
C* varies as a function of the introduction size for different
values of the dimensionless parameter related to the effective
strength of antigen fluctuations relative to their characteristic
lifetime at fixed power-law exponents. In principle, one can use
this dependency to infer effective parameters from data. In
practice, when dealing with data it is more convenient to con-
sider the value of the cumulative distribution at C*, rather than
C* itself. For example, fixing C0 = 4 and fitting the curve of Fig.
1A with our simplified model using λ as an adjustable pa-
rameter, we obtain λ≈ 0.14 day−1 (SI Appendix, section G),
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which corresponds to a characteristic lifetime of antigens of
around a week. Although this estimate must be taken with care,
because of possible PCR amplification biases plaguing the small
clone size end of the distribution, the procedure described here
can be applied generally to any future repertoire sequencing
dataset for which reliable sequence counts are available.

A Model of Fluctuating Phenotypic Fitness. So far, we have assumed
that fitness fluctuations are identical for all members of a same
clone. However, the division and death of lymphocytes do not
only depend on signaling through their TCR or BCR. For ex-
ample, cytokines are also growth inducers and homeostatic
agents (32, 33), and the ability to bind to cytokines depends on
single-cell properties such as the number of cytokine receptors
on the membrane of a given cell, independent of their BCR or
TCR. Other stochastic single-cell factors may affect cell division
and death. These signals and factors are cell-specific, as opposed
to the clone-specific properties related to BCR or TCR binding.
Together, they define a global phenotypic state of the cell that

determines its time-varying fitness, independent of the clone and
its TCR or BCR. This does not mean that these phenotypic fitness
fluctuations are independent across the cells belonging to the
same clone. Cells within a clone share a common ancestry, and
may have inherited some phenotypic properties of their common
ancestors, making their fitnesses effectively correlated with each
other. However, this phenotypic memory gets lost over time, un-
like fitness effects mediated by antigen-specific receptors.
We account for these phenotypic fitness fluctuations by a

function fcðtÞ quantifying how much the fitness of an individual
cell c differs from the average fitness f0. This fitness difference is
assumed to be partially heritable, which we model by

dfc
dt

=−λcfcðtÞ+
ffiffiffi
2

p
γcηcðtÞ, [7]

where λ−1c is the heritability, or the typical time over which the
fitness-determining trait is inherited, γc quantifies the variability of
the fitness trait, and ηcðtÞ is a cell-specific Gaussian white noise of
power 1. Despite its formal equivalence with Eq. 3, it is important to
note that here the fitness dynamics occurs at the level of the single
cell (and its offspring) instead of the entire clone. The dynamics of
the fitness fiðtÞ of a given clone i can be approximated from Eq. 7 by
averaging the fitnesses fcðtÞ of cells in that clone, yielding

dCi

dt
= ½f0 + fiðtÞ�CiðtÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν+ μÞCiðtÞ

p
ξiðtÞ, [8]

dfi
dt

=−λcfiðtÞ+ 1ffiffiffiffiffiffiffiffiffiffi
CiðtÞ

p ffiffiffi
2

p
γcηiðtÞ, [9]

where ηiðtÞ and ξiðtÞ are clone-specific white noise of intensity 1,
and ν and μ are the average birth and death rates, respectively, so
that f0 = ν− μ (details in SI Appendix, section I). The difference
with Eq. 3 is the 1=

ffiffiffiffiffiffiffiffiffiffi
CiðtÞ

p
prefactor in the fitness noise ηiðtÞ,

which stems from the averaging of that noise over all cells in the
clone, by virtue of the law of large numbers. Because of this
prefactor, the fitness noise is now of the same order of magni-
tude as the birth–death noise, which must now be fully taken into
account. Taking Eqs. 8 and 9 at the population level gives a
Fokker–Planck equation with a source term accounting for the
import of new clones. We verify the numerical steady-state
Fokker–Planck solution against Gillespie simulations (SI Ap-
pendix, Fig. S6; see SI Appendix, section H for details).
Fig. 3 A and B shows the distribution of clone sizes for dif-

ferent values of the phenotypic relaxation rate λc and environ-
ment amplitude γc. These distributions vary from a sharp expo-
nential drop in the case of low heritability (large λc) to heavier
tails in the case of long conserved cell states (small λc). To quantify
the extent to which these distributions can be described as heavy-
tailed, we fit them to a power law with exponential cutoff,
ρðCÞ∝C−1−αe−C=Cm, where Cm is the value below which the dis-
tribution could be interpreted as an (imperfect) power law. Fig. 3C
shows a strong dependency of this cutoff with the phenotypic
memory λ−1c . The longer the phenotypic memory λ−1c , the more
clone-specific the fitness looks, and the more the distribution can
be mistaken for a power law in a finite-size experimental distri-
bution. Larger birth–death noise also extends the range of validity
of the power law. As a result, and despite the absence of a true
power-law behavior, these models of fluctuating phenotypic fit-
nesses cannot be discarded based on current experimental data.
The model can be solved exactly at the two extremes of the

heritability parameter λc. In the limit of infinite heritability (λc → 0)
the system is governed by selective sweeps. The clone with the
largest fitness completely dominates the population, until it is
replaced by a better one, giving rise to a trivial clone-size distribu-
tion. In the opposite limit, when heritability goes to 0 (λc → +∞),
the Fokker–Planck equation can be solved analytically (SI Appendix,
sections I and J), yielding an exact power law with exponential
cutoff, ρðCÞ∝C−1−αe−C=Cm, with α= −½1+ ðμ+ νÞλ2c=2γ2c �−1 and

A

B C

Fig. 2. Clone-size distributions for populations with fluctuating antigenic, clone-
specific fitness. (A) Comparison of simulations and simplified models of clone
dynamics. Blue curve: cumulative distribution of clone sizes obtained from the
simulation of Eq. 1. Black curve: a simplified, numerically solvable model of ran-
dom clone-specific growth, also predicts a power-law behavior. Red curve: ana-
lytical solution for the Gaussian white-noise model, Eq. 4. Parameters used:
ν= 0.98 day−1, μ= 1.18 day−1, λ=2 day−1, sC = 2,000 day−1, C0 = 2, and
sA = 1.96 · 107 day−1. (Inset) The exponent is independent of the initial clone size.
Results from simulation with different values of the introduction clone size. The
cutoff value of the power-law behavior, represented here as a dot, is strongly
dependent on the value of C0. Parameters are ν= 0.2 day−1, μ= 0.4 day−1, λ= 2
day−1, γ = 1 day−3/2, and sC = 5,000. (B) Value of the CDF at the point of the power-
law cutoff as a function of the introduction clone size C0 for different values of a
dimensionless parameter related to the effective strength of antigen fluctuations
relative to their characteristic lifetime λ3=γ2 for a fixed power-law exponent α. We
use the CDF because it is robust, invariant under multiplicative rescaling of the
clone sizes. This way we do not need to correct directly for PCR multiplication or
sampling. Parameters for B and C are ν= 4.491 days−1, μ= 5.489 days−1, and
α=−0.998. (C) Power-law cutoff as a function of the introduction clone size.
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Cm = ðμ− νÞ−1½ðμ+ dνÞ=2+ γ2c=λ
2
c �. The numerical solution of Fig.

3B is close to this limit. Note that even with a negligible exponential
cutoff, the predicted α< 0 contradicts experimental observations.

Discussion
The model introduced in this paper describes the stochastic
nature of the immune dynamics with a minimal number of pa-
rameters, helping interpret the different regimes. These param-
eters are effective in the sense that they integrate different levels
of signaling, pathways, and mechanisms, focusing on the long
timescales of clone dynamics. We assumed that they are general
enough that different cell types (B- and T cells) or subsets (naive
or memory) can be described by the same dynamical equations
despite their differences. How do refined models including these
differences affect our results?
Naive and memory cells differ in their turnover rate, i.e., their

death rate, memory cells being renewed at a pace 10 times faster
than naive ones (34). In our model, this difference is reflected in
a higher birth–death noise for memory cells. We have shown that
this noise had no effect on the tail of the clone-size distribution for
clone-specific fitness (SI Appendix, Fig. S5), whereas it was im-
portant for the case of a cell-specific fitness, where birth–death
noise contributed to the distribution to the same extent as fitness
fluctuations. However, some repertoire datasets mix both naive
and memory sets, and one could wonder whether our results hold
for such mixtures. To examine this question, we simulated a simple
two-compartment model where naive cells get irreversibly con-
verted into memory cells when their stimulation is above a certain
threshold (see SI Appendix, section K for details). We found that
when fitness was clone-specific, the clone-size distribution of the
mixture and that of memory cells alone still follow a power law,
whereas that of naive cells only does so when conversion to
memory upon stimulation is partial (SI Appendix, Fig. S12). Re-
peating the same analysis for the cell-specific fitness model, we
found that clone-size distributions for each phenotype differed
according to their respective birth–death noises, with a longer tail
for memory cells as expected from their higher turnover rate.
The main difference between B- and T cells ignored by our

model is that BCRs accumulate hypermutations upon pro-
liferation. We studied this effect by allowing proliferating clones
to spawn new clones with slightly modified affinities to antigens
(SI Appendix, section L). The resulting clone-size distribution

still follows a power law (SI Appendix, Fig. S13), although with a
slightly smaller exponent due to increased stochasticity.
Another simplifying assumption of our model is that the dy-

namics reaches a steady state. This may be challenged by the
decay of the thymic output sC with age. To estimate the impor-
tance of this effect, we simulated the model of a clone-specific
fitness with an exponentially decaying source term, combined
with a decreasing jf0j chosen to keep the population constant on
average (SI Appendix, section M). The clone-size distributions at
different points in time, shown in SI Appendix, Fig. S14, still
follow a power law. Interestingly, the exponent α is predicted to
decrease with age, consistent with α∝ jf0j.
We showed that the relevant sources of stochasticity for the

shape of the clone-size distributions fall into two main cate-
gories, depending on how cell fate is affected by the environ-
ment. Either the stochastic elements of clone growth act in a
clone-specific way, through their receptor (BCR or TCR),
leading to power-law distributions with exponent ≥1, or in a cell-
specific way, e.g., through their variable level of sensitivity to
cytokines (and more generally through any phenotypic trait af-
fecting cell fitness), leading to exponentially decaying distribu-
tions with a power-law prefactor. These two types of signals
(clone-specific and cell-specific) are important for the somatic
evolution of the immune system (21, 32, 33, 35–37) and our
analysis shows that the shape of the clone-size distribution is
informative of their relative importance to the repertoire dy-
namics. It provides a first theoretical setting and an initial sys-
tematic classification for modeling immune repertoire dynamics.
Our method applied to high-throughput sequencing data can be
used to quantify how much each type of signal contributes to the
overall dynamics, and what is the driving force for the different
cell subsets. For example, although it is reasonable to speculate
that clone-specific signals should dominate for memory cells
(through antigen recognition), and cell-specific selection for
naive cells (through cytokine-mediated homeostatic division),
the relative importance of these signals for both cell types is yet
to be precisely quantified, and may vary across species. A clear
power law over several decades would strongly hint at dynamics
dominated by interactions with antigens, whereas a faster
decaying distribution would favor a scenario where individual
cell fitness fluctuations dominate. Applying these methods to
data from memory cells can give orders of magnitude for the

A

B C

Fig. 3. Clone-size distributions for populations with
a cell-specific fluctuating phenotypic fitness. (A) Cu-
mulative distribution of clone sizes for moderate
phenotypic heritability (λ−1c ). The distribution is
power-law–like for small clone values and drops
above a cutoff around 0.01 of clone-size probability.
An experiment that does not sequence the reper-
toire deeply enough could report a power-law be-
havior (see zoom). Parameters are ν= 0.17 days−1,
μ= 0.3 day−1, λc = 0.4 days−1, and γc = 0.5 days−3/2.
C0 =2 for all three graphs. (B) An example of a dis-
tribution of clone sizes from a cell-specific model
with very low environmental noise, close to the pure
birth–death limit. The distribution is flat (α= 0) and
then drops exponentially. It does not resemble ex-
perimental data. Parameters are ν= 0.1 days−1,
μ= 0.3 days−1, λc =2 days−1, and γc = 5 days−3/2.
(C) Value of the cumulative distribution at the ex-
ponential cutoff as a function of the speed of envi-
ronment variations λc, for different birth–death noise
levels. Parameters are f0 =−0.998 days−1 and
f0λ2c =γ

2
c = 0.998.
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division and half-life of memory lymphocytes, as well as the
typical number of cells C0 from a clone that are stored as
memory following an infection.
The application of our method to data from the first immune

repertoire survey [BCRs in zebrafish (2)] suggests that clone-
specific noise dominates in that case, allowing us to infer a re-
lation between the dynamical parameters of the model from the
observed power-law exponent ≈ 2. However, there are a few is-
sues with applying our method directly to data in the current
state of the experiments. First, the counts (i.e., how many cells
have the same receptor sequence and belong to the same clone)
from many high-throughput repertoire sequencing experiments
are imperfect because of PCR bias and sampling problems. New
methods using single-molecule barcoding have been developed for
RNA sequencing (8, 38, 39), but they do not solve the problem
entirely, as the number of expressed mRNA molecules may not
faithfully represent the cell numbers because of possible expres-
sion bias. In addition, most studies (with the exception of ref. 40)
have been sequencing only one of the two chains of lymphocyte
receptors, which is insufficient to determine clone identity un-
ambiguously. As methods improve, however, our model can be
applied to future data to distinguish different sources of fitness
stochasticity and to put reliable constraints on biological param-
eters. Studying clone-size distributions in healthy individuals al-
lows us to characterize signatures of normally functioning immune
systems. By comparing them to the same properties in individuals

suffering from immune diseases or cancer, our approach could be
used to identify sources of anomalies.
Thanks to its generality, our model is also relevant beyond its

immunological context, and follows previous attempts to explain
power laws in other fields (41–43). The dynamics described here
corresponds to a generalization of the neutral model of pop-
ulation genetics (44) where thymic or bone marrow outputs are
now reinterpreted as new mutations or speciations, and where
we have added a genotypic or phenotypic fitness noise (receptor
or cell-specific noise, respectively). It was recently shown that
such genotypic fitness noise strongly affects the fixation proba-
bility and time in a population of two alleles (45, 46). Note that,
because new thymic or bone marrow clones are unrelated to
existing clones, there are no lineage histories, in contrast with
previous theoretical work on evolving populations in fluctuating
fitness landscapes (47–49). Our main result (Eq. 6) shows how
fitness noise can cause the clone-size distribution (called “fre-
quency spectrum” in the context of population genetics) to fol-
low a power law with an arbitrary exponent >1 in a population of
fixed size, whereas the classical neutral model gives a power law
of exponent 1 with an exponential cutoff (as shown in our exact
solution with γc = 0). Our results can be used to explain complex
allele frequency spectra using fluctuating fitness landscapes.
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