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Abstract

BACKGROUND—Arterial ischemic stroke occurs most frequently in term newborns than in the 

elderly, and brain immaturity affects mechanisms of ischemic injury and recovery. The 

susceptibility to injury of the brain was assumed to be lower in the perinatal period as compared to 

childhood. This concept was recently challenged by clinical studies showing marked motor 

disabilities after stroke in neonates, with the severity of motor and cortical sensory deficits similar 

in both perinatal and childhood ischemic stroke. The understanding of the triggers and the 

pathophysiological mechanisms of perinatal stroke has greatly improved in recent years, but many 

aspects remain still unclear.

METHODS—In this review, we will focus on the pathophysiology of perinatal stroke and on 

therapeutic strategies that can protect the immature brain from the consequences of stroke by 

targeting inflammation and brain microenvironment.

RESULTS—Studies in neonatal rodent models of cerebral ischemia have shown a potential role 

for soluble inflammatory molecules as important modulators of injury and recovery. A great effort 

has been made and is still in act to try neuroprotective molecules based on the new 

physiopatological acquisition.
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CONCLUSION—In this review we aim to give a comprehensive view of new insights 

concerning pathophysiological mechanism of focal and global perinatal brain injury and its new 

therapeutic approaches.
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INTRODUCTION

Perinatal stroke is defined as “a group of heterogeneous conditions in which there is focal 

disruption of cerebral blood flow secondary to arterial or cerebral venous thrombosis or 

embolization, between 20 weeks of fetal life through the 28th postnatal day, confirmed by 

neuroimaging or neuropathologic studies” 1. The term “focal” underlines the difference 

between this pathology and the more common neonatal hypoxic-ischemic encephalopathy 

(HIE), where injury is more often bilateral and may preferentially affect white or grey matter 

structures depending on regional and cell-type specific vulnerability at the time of the 

insult 2.

Perinatal arterial ischemic stroke (PAIS, Table 1) has an incidence of 1 in 2,300 to 5,000 

births 3-7. It is a subset of perinatal ischemic stroke and it is associated with mortality and 

significant long-term neurologic morbidity. As opposed to white matter injuries, that affect 

typically preterm infants, PAIS occurs more frequently in term neonates. The clinical 

presentation of PAIS depends on the age at diagnosis: in newborns the main symptom is 

seizures, but also lethargy, hypotonia, poor feeding, irritability or apnea 8. Children who 

suffer PAIS typically develop long-term disabilities including motor deficits, epilepsy, 

cognitive and behavior disorders, deficits in language and vision. PAIS and HIE may share 

common risk factors and mechanisms, and can furthermore coexist in the same baby9. Most 

reported risk factors were derived from descriptive epidemiologic studies; thus, their causal 

relationship to perinatal stroke can only be assumed10.

In this review, we will discuss data from rodent models of PAIS and hypoxic-ischemic (HI) 

injury to emphasize some of the common mechanisms of ischemic brain injury in the 

neonatal brain. We will describe potential therapeutic strategies considering that the 

sequence of key events in brain maturation is largely consistent between humans and 

rodents 11.

THE INTEREST OF RODENT MODELS

An elegant work 11 carefully marked the differences between rodents and humans in 

particular when comparing the maturational age of the CNS during normal and disrupted 

development. There is considerable cross-species alignment in terms of key developmental 

milestones, behavioural phenotypes and regional vulnerability to brain injury. It is now 

accepted that the maturation state of the brain, and in particular, specific processes of 

synaptogenesis and myelinisation, rather than chronological age, is the critical determinant 

of outcome after brain injury. Thus, comparisons can be made taking into consideration the 

timing of indices of neurobiological development, to gauge the impact of specific insults at 
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different developmental stages, and best model the process of interest to the investigator. For 

a more detailed explanation of how the postnatal days in the animal model correlate with 

humans please refer to Table 2. Developmentally related differences are of importance not 

only to our understanding of the healthy brain during maturation, but also to predict 

differential responses to injury and potential therapeutics.

In the literature there are sufficient evidences for selection of an age-appropriate rodent 

model that is predicated on biochemical and neuroanatomical changes during early postnatal 

development, as well as the emergence of age-specific behaviors. Ongoing in parallel 

research on cerebral development in both humans and rodents will provide a greater 

understanding of how all these factors interact, and how is the appropriate therapy for 

different injury and ages.

Another important aspect to be mentioned is the choice of the best model of hypoxia-

ischemia. An ideal animal model, in addition to mimic the developmental stage of a human 

being, should also be reproducible and give the smallest variability. An important factor that 

influences variability in lesions obtained, and in related mortality and histopathological 

changes, is the cerebral blood flow supply. Across a wide range of species, two carotids and 

two vertebral arteries supply blood flow to the brain. However, the relative contribution of 

these large conductance vessels is highly variable. The cerebral circulation attempts to 

maintain constant cerebral perfusion despite changes in systemic conditions, due to its 

ability to autoregulate the blood flow. Occlusion of one carotid artery in rodents 

inconsistently results in brain ischemia unless combined with systemic hypotension. The 

combination of these insults in the P7 rat are needed to create a lesion. This is the principle 

used by the most important rodent models of systemic HI injury, which started with the 

Vannucci model in 1981 and that was further modified with the use of different ages and 

animal strands (Table 3). In contrast, a single permanent Middle Cerebral Artery (MCA) 

occlusion in the mouse appears sufficient to create an ischemic lesion. Heterogeneity within 

species observed in cerebral lesion size could be partly explained by collateral recruitment 

through the circle of Willis and/or through the cortical anastomoses between the vascular 

beds of the three terminal cerebral arteries. The lesion created by a single permanent artery 

occlusion is more similar to the lesion that we can have in PAIS, and for this reason is more 

and more used by scientists to investigate the effects of pure ischemia without hypoxia and 

the process of reperfusion injury 12.

TIMING OF ONSET OF INJURY

Patterns of brain injury depend on the gestational age at which they occur 13: injury to the 

periventricular white matter in the preterm infant leads to permanent alterations in cerebral 

myelination, suggesting that oligodendrocytes are a target of injury. Oligodendrocytes 

progress through a phenotypic lineage comprised of successive stages of replication-capable 

progenitors that culminates with the postmitotic mature myelinating oligodendrocyte. 

Mature oligodendrocytes are relatively resistant to injury. During the window of 

vulnerability for periventricular white matter injury (gestational week, GW 23-32), before 

the onset of myelination, the subcortical white matter is populated predominantly by 

oligodendrocyte progenitors. Specifically, late oligodendrocyte progenitors 
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(preoligodendrocytes) represent 90% of the total cells of the oligodendrocyte lineage 

present. Using a rodent model, it has been demonstrated that preoligodendrocytes manifest 

stage-specific vulnerability to one of the common insults occurring in early development, 

hypoxia-ischemia 14. Taken together this data suggests that injury specifically to 

preoligodendrocytes accounts for subsequent myelination defects after periventricular white 

matter injury in the preterm infant. Two mechanisms have been proposed for the selective 

vulnerability of oligodendrocyte progenitors: oxidative stress and excitotoxicity. 

Preoligodendrocyte sensitivity to oxidative stress has been demonstrated in vitro by 

glutathione depletion and exposure to exogenous free radicals, and exogenous antioxidants 

protect preoligodendrocytes from glutathione depletion 15,16. Mature oligodendrocytes, in 

comparison, are highly resistant to oxidative stress, in part because of differences in 

expression levels of antioxidant enzymes and proteins involved in programmed cell death 17. 

Cognitive and sensory impairments are associated with periventricular white matter injury 

and are observed with increased frequency with decreasing gestation 18. Cortical visual 

impairment is particularly common in infants with severe injury 19. These observations 

suggest widespread abnormalities of cortical development after periventricular white matter 

injury, especially of the posterior visual pathways. It was determined that subplate neurons, 

cells that play a critical role in normal visual thalamocortical development 20, are selectively 

vulnerable to neonatal hypoxia-ischemia in the postnatal day 2 (P2) rodent model 21. This 

rodent model is particularly relevant to the human preterm infant given the similarities in 

brain development 22, oligodendrocyte lineage progression 23, and the propensity to 

subcortical injury with HI insult 21 (Table 2). Subplate neurons are located beneath the 

developing neocortex 24, near areas of white matter signal abnormality observed on 

magnetic resonance imaging in preterm human infants 25 at risk for the diffuse type of 

periventricular white matter injury. Subplate neurons are a transient cell population that 

undergoes programmed cell death in the first postnatal week in mice 26. In humans, the 

subplate zone peaks at the onset of the developmental window of vulnerability to 

periventricular white matter injury (GW 24), undergoes dissolution during the third 

trimester, and is largely absent after 6 months of postnatal age 27. At its peak of 

development in human, the subplate zone is four times the width of the cortical plate 27. 

Subplate neurons are involved in the formation of area-specific thalamocortical 

connections 26, and early subplate neuron ablation in cat prevents visual thalamo- cortical 

innervation 28. However, periventricular white matter injury in human occurs after 

geniculocortical innervations 29. Subplate neurons become incorporated into mature synaptic 

networks in the developing neocortex 30, and later subplate neuron ablation is linked to a 

disruption in the functional maturation of visual cortical columns, including ocular 

dominance 31 and orientation selectivity 32. Late subplate neuron ablation leads to impaired 

synaptic transmission of visually driven activity from the lateral geniculate nucleus into 

cortical circuits 32, findings consistent with the cortical visual impairment observed in 

preterm humans with periventricular white matter injury 19. In the rodent model, as in 

human, selective subplate neuron cell death after early hypoxia- ischemia occurs after the 

development of the geniculocortical projection, so that visual thalamocortical innervations is 

not disrupted. Rodents do not have anatomically segregated eye-specific thalamic input to 

visual cortex, thus the effects of subplate neuron cell death on patterned visual cortical 

innervation cannot be assessed in this model. However, the development of the patterned 
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somatosensory whisker representation is not affected 21. The mechanism of selective 

vulnerability of subplate neurons to early hypoxia-ischemia is not known. Because neurons 

undergo programmed cell death during normal development to a much greater extent than 

other cortical neurons 33, there may be an enhanced susceptibility to programmed cell death 

after appropriate triggers,a finding observed in certain immature cortical neurons 34. In 

addition, subplate neurons are known to mature earlier than other cortical neurons as 

assessed by the expression of a variety of markers 35, including a developmentally related 

increase in the NMDA-R1 glutamate receptor expression 36 and AMPA and kainite 

receptor 37.

Term human infants demonstrate a predilection for injury to thalamus and basal ganglia after 

hypoxia-ischemia in the neonatal rodent (P7), there are at least biphasic stages of 

neurodegeneration: early (1.5 to 3 hours) in forebrain and late (6 days) in striatum and 

thalamus 38. Recent anatomic studies demonstrate injury evolution and ongoing cell death 

through 168 hours 39 in rat cortex and striatum, as well as in mouse hippocampus 40. The 

nature of this cell death can be complex, and has recently been termed the “apoptotic-

necrotic continuum “ 41. However, late cell death in the thalamus is programmed cell death 

and is selective for sensory thalamic nuclei (lateral geniculate and ventral basal) 42 well 

established that programmed cell death plays a prominent role in normal development 43, 

and this may account for an enhanced susceptibility to programmed cell death after injury in 

different regions of the developing brain. A role for programmed thalamic cell death in 

neonatal hypoxia-ischemia is supported by the observation of Fas death receptor expression, 

cytochrome c release, and cleavage of procaspase 8 44. Fas, a member of the tumor necrosis 

family of receptors, plays a central role in the programmed elimination of lymphocytes in 

the immune system, and upregulation of Fas ligand (Fas-L) has increasingly been 

recognized in neuronal cell death resulting from trophic factor deprivation, injury, or 

stress 45. Similar delayed programmed cell death in the thalamus is observed after 

mechanical injury to the developing visual cortex 46, suggesting that the cell death results 

from target deprivation. HIE in the term human infant is associated with selective injury to 

the deep gray nuclei, especially the basal ganglia. Within the basal ganglia, neuronal nitric 

oxide synthase (nNOS) expressing striatal neurons represent an example of selectively 

targeted cells, and these neurons are mechanistically involved in the selective vulnerability 

of nearby striatal projection neurons that do not express nNOS. nNOS-containing 

interneurons throughout the central nervous system produce nitric oxide (NO) dependent on 

the coupling and activation of the NMDA receptor and calcium entry 47. The enzyme is 

maximally expressed in regions where the immature NMDA-R is expressed, especially the 

basal ganglia 48. When NO is produced in excessive amounts during periods of oxidative 

stress in these regions of abundance, nitric oxide is converted to peroxynitrite, a potent 

mediator of free radical injury 49. nNOS-expressing neurons are resistant to both hypoxia-

ischemia an NMDA-mediated excitotoxicity 50,51, but this selective sparing of nNOS-

expressing striatal neurons to NMDA agonists is limited to young ages (P7 in rodent) and as 

the brain matures this resistance is lost 51. On the other hand, nNOS-expressing neurons are 

vulnerable to AMPA agonists 52. Thus the selective vulnerability of striatal projection 

neurons to neonatal hypoxia-ischemia may result from a bystander effect attributable to their 

proximity to this enriched population of nNOS-expressing neurons. This hypothesis is 
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supported by the selective ablation of nNOS-expressing neurons with AMPA agonists 

before hypoxia-ischemia; a manipulation resulting in reduced injury from HI insult53
. The 

susceptibility to injury of the immature brain was assumed to be lower in the perinatal 

period as compared to childhood 54,55. This concept was recently challenged by clinical 

studies showing marked motor disabilities after stroke in neonates 54,56, with the severity of 

motor and sensory deficits similar in both perinatal and childhood ischemic stroke. Since 

PAIS results mostly from occlusion of the middle cerebral artery (MCA), the functions 

dependent on the brain regions supplied by this vessel (e.g. motor cortex) are more 

frequently affected 57-59. Furthermore, in preterm infants, the structural immaturity of blood 

vessels, which appear thin walled, may predispose to bleeding 60. Previously some studies 

have shown that the immature brain has a large potential to compensate for perinatal injury 

to the motor system 61, 62, but recently this concept has questioned by several authors63,64

PATHOPHYSIOLOGICAL MECHANISMS OF PERINATAL ISCHEMIC BRAIN 

INJURY

Cellular injury and neuronal cell death

Excitotoxicity, free radical formation and activation of the inflammatory cascades are the 

main mechanisms of ischemic brain injury at term (Figure 1). Each of these injury 

components elicits injury independently and they act in concert to aggravate injury.

Failure of ATP dependent calcium pumps results in increased intracellular calcium 

concentration, which is directly toxic to the mitochondria and activates several DNAses, 

proteases and lipases 65. Failure of intracellular metabolism, particularly ATP depletion, 

results in neuronal depolarization and release of glutamate, which activates post-synaptic 

NMDA receptors, and other glutamate receptors, allowing for a greater influx of calcium 

and further cellular injury 65-68. Higher levels of glutamate receptor expression 69, a 

different composition of individual NMDA receptor subunits 70,71, and intrinsic differences 

in the GABAergic system, which is immature and excitatory during early postnatal brain 

development, also contribute to excitotoxic injury 69,72. Nitric oxide synthase (NOS), 

superoxide dismutase (SOD) and NADPH oxidase activated by ischemia form potent 

reactive oxygen species (ROS) 65,67,68.

In rat, ionotropic glutamate receptors undergo rapid maturational changes: NMDAR density 

peaks late in the first postnatal week in many forebrain structures, including hippocampus 

and the neocortex 73, whereas AMPAR density peaks in the second postnatal week at around 

P10 73. Both NMDA receptors and AMPA receptors overshoot adult expression levels, 

resulting in heightened glutamate-mediated plasticity 74,75. Maturational regulation of 

glutamate receptor subunit composition also enhances their ability to mediate activity-

dependent synaptic plasticity in early postnatal life. The maturational regulation of AMPA 

receptor composition and function also enhances glutamate-mediated plasticity in early 

postnatal life. The ratio of GluR2 expression to that of other AMPA receptor subunits is 

significantly lower in immature neocortex and hippocampus compared to the adult 76,77, and 

AMPA receptors that lack a GluR2 subunit exhibit higher Ca2+ permeability than those that 

contain GluR2 78-81. The increased Ca2+ influx through AMPA receptors in immature 
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neurons may trigger mechanisms of plasticity that would not be triggered in the mature 

brain. In addition, the presence of such receptors may provide potential mechanisms for 

excitotoxicity. Glutamate receptors are also developmentally regulated on non-neuronal 

cells. In particular, olygodendrocytes express functional glutamate receptors in vitro, and 

these are exclusively of the non-NMDA subtype 82-84. Glutamate has been shown to be 

toxic to oligodendroglia in vitro by receptor-independent 16,85-87, and receptor-mediated 

mechanisms 88-91.

Reperfusion and associated reoxygenation of the ischemic brain tissue following focal 

ischemic stroke causes a second wave of ROS formation that occurs in activated peripheral 

leukocytes and in multiple cell types in injured brain regions 65,67,68. Inflammation 

associated with ROS triggers production and release of various toxic mediators, including 

cytokines, amplifying injury. As a result, necrotic neuronal death begins occurring almost 

immediately in the “core” of the ischemic region whereas neuronal apoptosis and several 

intermediate cell death states that exhibit features of both necrosis and apoptosis, occur 

within hours to days following ischemia, mostly affecting cells in the penumbral 

regions 92,93.

Zhou et al 94 showed that pyramidal neurons engaged in cortico-cortical connectivity in 

limbic cortex are vulnerable to denervation lesions. At least one trigger of this transsynaptic 

degenerative phenomenon is the activation of inhibitory interneurons in layer I, which are 

induced to upregulate neuronal nitric oxide synthase (nNOS) and release NO.

The improvement of transsynaptic degeneration with AMPA antagonist confirm that 

transsynaptic apoptosis and anoxic/ischemic neuronal necrosis are both glutamatergic events 

that involve the synthesis and release of NO 95. Although the apoptotic or necrotic outcome 

is related to levels of superoxide anion generated with NO release (i.e., apoptosis involves a 

lesser degree of free radical burden 96), the two mechanism have distinct neuropathology. In 

its classical formulation, anoxic-ischemic injury is a necrotic phenomenon that involves an 

early activation of NMDA receptors and the downstream induction of nNOS and 

intracellular toxic release of NO. In contrast, transsynaptic cell death is an apoptotic 

phenomenon that appears to involve the interaction of two neurons, one of which 

upregulates nNOS in response to AMPA signaling and releases NO to the toxic effects of 

which it is resistant because of a concomitant induction of the manganese isoform of SOD, a 

known superoxide anion scavenger in vivo 95,97,98.

On the other hand, the success of therapy with AMPA receptor antagonist in HIE white 

matter injury in P7 rat does not exclude that the transsynaptic mechanism may be involved 

in HI injury, too.

Both caspase -dependent 99,100 and –independent 100,101 pathways contribute to neuronal 

death after brain injury. The abundance of caspases in the neonatal brain, in particular 

caspase-3, may in part account for a more marked caspase-3-dependent cell death observed 

after neonatal brain injury than after similar injury in the adult. Neuronal death and injury 

are preferentially reduced following pharmacological inhibition or genetic deletion of 

PARP-1 in male pups 102, but following caspase-3 inhibition in female pups 100. Hagberg’s 
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work suggests that the degree of PAR accumulation during early (1–4 h) post-HI reperfusion 

was similar in females and males, whereas the drop in NAD+ was only found in males and 

in consequence the degree of mitochondrial impairment may depend on gender. PARP-1-

dependent neuronal injury in vitro has also been shown to rely on translocation of apoptosis 

inducing factor (AIF) from mitochondria to the nucleus103; furthermore, the genes for AIF, 

as well as for several other proteins involved in perinatal hypoxia- ischemia that may be 

related to PARP-1 (e.g.: X-linked inhibitor of apoptosis), are localized on the X-

chromosome and may, in addition to NAD+, be differentially expressed in males and 

females. On the other hand, Renolleau et al. showed that concentration of cytochrome c 

release did not differ between males and females but it appeared as a sharp peak at 12 h 

post-ischaemia in males and then rapidly decreased at 24 h, whereas a regular increase from 

0 h up to 16 h followed by a slight decrease at 24 h was observed in females. This might 

represent a mitochondrial dysfunction in males, but not in females. Recent data 

demonstrated that male neurons displayed a more pronounced translocation of apoptosis-

inducing factor (AIF) and female neurons a stronger activation and cleavage of caspase 

3 104,105. Accordingly, it is also interesting to note a gender-specific neuroprotection by 

iminobiotin, an inhibitor of nitric oxide synthases, via the cytochrome c and caspase 3 after 

HI insult in female P7 rats104, suggesting that the intrinsic apoptotic pathway might 

predominate in females. Sex differences have also been reported for hypothermia, which 

provides more effective long-term neuroprotection in female than in male 7-day-old rats 106.

It also to be considered the importance of calcium in ischemic cell death, calcium 

antagonists came into the focus of ischemic neuroprotection 107. Magnesium prevents 

cellular calcium influx and excitatory aminoacid release in neurons 108 by blockade of N-

type and L-type calcium channels 109, prevents cellular calcium entry through NMDA-

receptor channels 110, reduces calcium-induced mitochondrial dysfunction 111 and preserves 

cellular energy metabolism 112. By these mechanisms, magnesium may inhibit or delay 

ischemic cell death during and after cerebral ischemic events 113. However, despite 

promising results in animal models, magnesium was not found to reduce excitotoxicity 

following adult stroke. A multicenter phase III trial was conducted to determine the effect of 

magnesium therapy on outcome in aneurysmal subarachnoid hemorrhage. A total of 1,204 

patients were administered intravenous magnesium sulfate (64 mmol/day) or placebo and 

evaluated for outcome on the modified Rankin Scale for up to 90 days. No improvement in 

outcome was seen with magnesium treatment versus controls. In addition, a retrospective 

analysis of 2,047 patients from previous trials was also performed and similarly concluded 

that magnesium has no benefit in the treatment of aneurysmal subarachnoid 

hemorrhage114,115.

Blood-brain barrier (BBB) disruption and contribution of peripheral immune cells

BBB breakdown is a key injury factor in stroke. Both the structure and function of the BBB 

are influenced by a number of relatively independent pathophysiological processes, 

including oxidative/nitrosative endothelial cell damage, cytokine-dependent activation of the 

endothelium, altered phosphorylation and cellular localization of endothelial tight junction 

proteins, and degradation of individual BBB components by activated proteases 116-120. 

Transmigration of peripheral immune cells and retraction of astrocyte endfeet further affect 
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functional integrity of the BBB 121. Paradoxically, functional integrity of the BBB is better 

preserved after acute neonatal stroke than after adult stroke in the rat122. Compared to acute 

adult stroke, the expression of several tight junction proteins (occludin, ZO-1 and claudin-5) 

is better preserved after acute neonatal stroke, which would support the integrity of tight 

junctions in injured neonates 122. However, it is unknown if phosphorylation or subcellular 

distribution of the tight junction proteins following stroke differs between the two ages. The 

higher resistance of the BBB to stroke in neonates is likely related to the maturation-

dependent leukocyte-vascular interaction after injury. Compared to acute adult stroke, 

infiltration of neutrophils and monocytes is low after neonatal HI injury and focal stroke 

despite markedly increased leukocyte chemoattractant levels in injured neonatal 

brain 122,123.

The active pathophysiological role of the systemic inflammation was demonstrated in 

experimental stroke in the adult 124. In newborns with ischemic brain injury, several clinical 

studies showed an increase in cytokine and chemokine serum levels 125. Hu et al 126 showed 

a hypoxia/ischemia-induced alteration of cortical development by proteome analysis of the 

cortex 2h after HI. Of the altered proteins, 14-3-3ɛ and TUC-2, both playing an important 

role in the development of the CNS, decrease after HI events, consistent with an early 

disturbance of cortical development. These observations suggested that changes in 

peripheral levels of individual inflammatory molecules may potentially serve as indicators 

of both cerebral damage and prognosis.

Glial cells and neuroinflammation

Endogenous brain macrophages—microglial cells—are the main cell type that provides 

immuno-surveillance in the brain, but these cells have been traditionally considered 

deleterious after stroke due to production of cytokines, chemokines, ROS, induction of 

proteases in response to injury and ultimate activation of cell death mechanisms and 

degradation of BBB components. However, microglial cells are the source of growth factors, 

and several known mediators produced in microglia/macrophages, such as MMPs, can exert 

dual effects: they can harm during the initial injury stages but enhance neural repair through 

remodeling of the extracellular matrix and the assembly of a neurogenic niche during the 

recovery phase 127.

The microglia/macrophage population is heterogeneous. Microglia is capable of acquiring 

diverse phenotype in response to injury: M1 (classically activated microglia with cytotoxic 

properties in response to infections), M2a (alternate activation and involvement in repair and 

regeneration), M2b (immunoregolatory phenotype), M2c (acquired-deactivating phenotype). 

Functions are known to overlap and be context dependent128,129. It was considered that 

cytotoxic phenotype develops due to insult/injury and the same cell shift to an M2-repair/

regenerative phenotype over time130 and depends on the combination of specific signals 

received from the local microenvironment 131. However the precence of an early M2 

phenotype (preceding M1) has recently been reported in a after hypoxic/ischemic insult in 

vivo132. Furthermore, brain macrophages that originate from invading monocytes may affect 

injury progression differently than activated microglia. It remains still unknown if the 
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phenotypical composition of the microglia/macrophage population is the same during early 

postnatal development and adulthood.

Interestingly, selective depletion of microglia (by intracranial administration of liposomes 

containing clodronate) in neonatal rats does not improve, but worsens brain injury during the 

sub-acute phase after MCAO 133. A larger infarct size in these animals is associated with 

additional accumulation of several pro-inflammatory cytokines and chemokines, including 

TNFα, MCP-1 and MIP-1a 133 and expression of these mediators, which are typically 

produced by microglia, is overcompensated by production in other cells (astrocytes, neurons 

and endothelial cells) when microglia are absent 133. These data indicate that at least a 

subpopulation of microglial cells can exert beneficial effects in injured neonatal brain, likely 

by acting as a “buffering” component in the brain inflammatory response.

Astrocytes actively participate in several pathophysiological stroke mechanisms, including 

excitotoxicity through regulation of the extracellular glutamate accumulation, oedema 

formation through increased aquaporin-4 expression, inflammation through cytokine 

production, and changes in BBB stability due to retraction of astrocyte endfeet from the 

vascular surface 134,135. Compared to astrocyte functions in adult stroke, relatively little is 

known about the role of these cells in injury in the neonate. The finding that expression of 

several cytokines and chemokines in astrocytes is increased after focal ischemia in neonatal 

rats with pre-depleted microglia 133 suggests that astrocytes modulate the inflammatory 

response early after injury. However, genetic deletion of GAFP and attenuated reactive 

gliosis in the developing brain does not affect infarct volume after sub-chronic HI insult 136.

Receptor-mediated and intracellular signalling pathways

Death receptors—Death receptors, such as TNF-α receptor 1 (TNFR1), Fas, and TNF-

related apoptosis inducing ligand (TRAIL) receptors, respond to inflammatory cytokines and 

initiate the extrinsic apoptotic pathway through the oligomerization of the adaptor molecule 

Fas-associated protein with death domain (FADD) with the initiator caspase, caspase-8 137. 

Activated caspase-8 then cleaves and activates effector caspases. Upregulation of Fas 

receptor after neonatal HI injury is concomitant with increased cleavage of Casp-8, -9 and -3 

and neuronal apoptosis 42,138. Genetic deletion of Fas protects 138, in part via increased 

expression of its counteracting protein c-FLIP 139.

Toll-like receptors (TLRs) and scavenger receptor CD36—TLRs are a receptor 

superfamiliy that mediate innate immune responses and activation of microglia in response 

to changed local microenvironment140. TLR intracellular signalling is complex and involves 

the activation of NF-kB and the subsequent expression of different gene sets 140. TLR2 and 

TLR4 are the two most studied members of the TLR superfamily in the context of brain 

ischemia. While TLR4 seems to be purely injurious, TLR2 may elicit context- and tissue-

dependent effects—injurious 141,142 or beneficial 143—based on the types of heterodimers 

that it forms with other TLRs. Administration of selective TLR2 and TLR4 agonists to 

neonatal rats impairs normal postnatal myelination and induces hippocampal neuronal death 

even without stroke 144, indicating that activation of innate immunity is sufficient to 

interfere with normal postnatal development of the white matter. However, the role of TLR4 
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on progression of neonatal HI injury is unclear, since deletion of its intracellular effector 

protein, Myd88, does not result in improve neuroprotection 145. At the same time, TLR2 

deletion does reduce injury 146, suggesting that the particular contribution of each TLR 

subtype to injury differs between adults and neonates.

The scavenger class B receptor CD36 can signal independently as well as in cooperation 

with TLRs. Genetic deletion of CD36 protects against acute injury after MCAO in the 

adult 147,148 but worsens injury in the neonate 149. While the exact mechanisms of such 

striking age-dependant differences are largely unknown, the pattern of changes for CD36 

and its downstream effectors may be important injury modifiers. Genetic deletion of CD36 

is associated with diminished engulfment and phagocytosis of apoptotic neurons that are 

abundant in injured neonatal brain and results in additional accumulation of cleaved 

caspase-3 149. CD36 toxicity depends on superoxide produced through NADPH oxidase 

(Nox) activation, but the relative contribution of individual Nox isoforms 150 and superoxide 

utilization 151 in injured neonates differs from that after focal stroke in adults. A markedly 

increased superoxide accumulation in microglia/macrophages in acutely injured adult 

brain 148, but not in neonatal brain 149, may activate distinct CD36-dependent intracellular 

signalling pathways.

Nuclear factor kappa B (NF-kB)—NF-kB is a ubiquitously expressed transcription 

factor that regulates expression of genes involved in inflammation, cell survival and 

apoptosis and plays a major role in regulation of neuronal death and injury in the ischemic 

brain 152. Activation of several signalling pathways after neonatal brain injury converges in 

the activation of NF-kB. Upon stimulation, dissociation of NF-kB from its endogenous 

inhibitor protein IkB allows NF-kB to translocate from the cytoplasm to the nucleus and 

induce an array of genes in a cell-type and stimulus-specific way. NF-kB activation leads to 

the production of inflammatory mediators, but also induces the expression of pro-survival 

factors including antioxidants, growth factors and antiapoptotic molecules 153,154. This dual 

role of NF-kB may underlie the time-dependent and sometimes opposite effects of NF-kB 

inhibition observed after neonatal HI insult. NF-kB inhibition during the early phase of 

activation (0-3 h) after HI injury limits neuroinflammation, prevents up-regulation and 

accumulation of NF-kB in the nucleus, reduces caspase-3 activation, and leads to marked 

long-term functional neuroprotection 155 and improved cognitive outcome 156. In contrast, 

inhibition over a more extended time period after HI events abolishes the protective effect 

on neuronal apoptosis and exacerbates injury 155. These opposing results suggest that the 

time window of NF-kB inhibition needs to be considered carefully in order to translate these 

results to the clinic.

Individual mediators of injury

Reactive oxygen species (ROS)—Production of superoxide, hydrogen peroxide and 

other ROS is a part of normal brain function 157,158 but excessive accumulation of these 

species and the subsequent formation of hydroxyl radicals, lipid peroxides and peroxynitrate 

contribute to ischemic injury by altering cellular components and intracellular signaling, and 

by disrupting BBB integrity 159,160. The neonatal brain is particularly susceptible to ROS 

accumulation due to a limited activity of endogenous antioxidants and anti-oxidative 
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enzymes 161,162. Consistently, HI injury is diminished in transgenic mice over-expressing 

glutathione peroxidase-1 (GPx) 163,164, or by antioxidants 165,166. However, in contrast to a 

functional neuroprotection in adult stroke, overexpression of SOD-1 exacerbates injury 

following neonatal HI insult 151. These opposite effects are due to a further increase in H2O2 

in injured neonatal brain because of insufficient catalase and GPx activity and the 

consequent metabolism of accumulated H2O2 produced via SOD-1 activation.

NO has dual effects on ischemic injury: it mediates vasodilation and neuroprotection when 

produced by endothelial NOS (eNOS), but is a major mediator of oxidative/nitrosative 

damage when produced by neuronal (nNOS) and inducible NOS (iNOS) 159,167. Genetic 

deletion and pharmacological inhibition of iNOS and nNOS reduce injury associated with 

HI insult 159,168-172. NO produced by iNOS also forms toxic peroxynitrate and increases 

activity of inducible cyclooxygenase (COX-2) 173,174, further propagating neonatal brain 

injury.

Cytokines

Increased cytokine production has been traditionally related to inflammatory states and 

injury progression following brain ischemia in adults. Several cytokines have been shown to 

modulate injury after neonatal HI events and focal stroke, as shown in Table 4. Expression 

of IL-1β is rapidly and locally upregulated after HI injury and transient MCAO in neonatal 

rodents 175,176. Increased CSF levels of IL-1β have been identified as a marker of severe 

injury during the first 24 hours after asphyxia in babies 177,178, but the effects of this 

cytokine in injured neonatal brain are complex. While IL-1β contributes to injury after 

neonatal HI insult 179, genetic deletion of IL-1α or IL-1β, alone or in combination (IL-1αβ 

knockout), does not protect one week after HI events 180, whereas administration of IL-1 

receptor antagonist (IL-1Ra) protects 175,181. Furthermore, the data that brain levels of IL-1β 

remain elevated when pharmacological neuroprotective effects are achieved 182,183, suggests 

that a decrease in IL-1β levels, induced by injury, is not necessarily required for protecting 

brain from focal/global injury. TNF-α and IL-6 mRNA and protein expression are also up-

regulated after neonatal HI injury 175,184. TNF-α induces biological activity via stimulation 

of the tumor necrosis factor receptor (TNFR) 185,186.

Beneficial effects of therapeutic agents against HI damge are often associated with reduced 

brain levels of TNF-α, but the outcomes of inhibition of this mediator and the relative 

contribution of signaling via TNFR1 and TNFR2 remain largely undefined. TNF-α damages 

oligodendrocyte progenitors in vitro 187,188, but genetic deletion of TNF-α leads to impaired 

differentiation of myelinating oligodendrocytes during the postnatal period 189. Recently 

R-7050, a novel cell-permeable triazoloquinoxaline, has been shown to attenuate 

neurovascular injury and improve neurobehavior sequels,by selectively inhibiting TNF-α 

induced cellular signaling 190.

Chemokines

Several studies have suggested an important role for chemokines in cerebral damage in 

models of ischemic stroke, HI and excitotoxic injury 191. In P7 rats, secretion of a 

macrophage inflammatory protein-1α and MIP-1β mediates inflammatory cell recruitment 
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and activation after HI insult 192. Another chemokine, the macrophage chemo-attractant 

protein (MCP)-1/CCL2, is a potent mediator of ischemic cerebral injury in adults 193,194 and 

neonates 195, likely by attracting circulating monocytes. MCP-1 also mediates excitotoxic 

injury in the neonatal rat brain 196, and the genetic 197 or pharmacological 198 inhibition of 

MCP-1-dependent pathways reduces cerebral damage, supporting a role for this chemokine 

in the early phases of the ischemic insult.

The CXC chemokine CINC-1/KC has been recently shown to paradoxically contribute to 

both BBB integrity and reduction of brain injury after MCAO in neonatal rats 122. Changing 

the balance between the CINC-1 levels in plasma and in the brain increases transmigration 

of neutrophils, disrupts vascular function and extends injury 122.

CXCL12 (SDF-1), a chemokine that is upregulated in astrocytes and brain vessels in the 

peri-infarct area following adult stroke, has been shown to mediate the recruitment of 

circulating leukocytes into the brain 199,200. In the neonatal brain, reduced activation of the 

CXCL12 receptor, CXCR4, by dexamethasone, leads to decreased lesion size following HI 

injury 201. Importantly, the sustained induction of SDF-1 after stroke in adult mice but not in 

neonatal mice 202 may indicate a shorter temporal window for SDF-1 -mediated repair in the 

neonatal brain.

MEDIATORS OF CELL SURVIVAL AND RECOVERY

Growth factors and neurotrophins

The pharmacological and histologial neuroprotective effects of Brain Derived Neurtrophic 

Factor have been firmly established in adult experimental stroke 203-205 and at least several 

underlying mechanisms have been identified, including activation of pro-survival 

mechanisms 206, modulation of local inflammation 207, and reduction of excitotoxic 

injury 204,208. In neonates, it protects against HI injury via ERK activation and blockade of 

caspase-3 activation 209,210. BDNF is known to promote endothelial cell survival and 

mediate neurogenesis in ischemic tissue in the adult 211 and is likely to contribute 

angiogenesis in injured neonates.

Angiogenesis is essential for long-term repair, but recent findings show that in contrast to a 

relatively rapid induction of angiogenesis in the adult brain after MCAO, within days, in the 

neonate, increase in angiogenesis does not seem to occur for at least 10-14 days after 

MCAO 212. Experimental studies from the adult brain suggest that the “early” up-regulation 

(between 1 h and 3 h post-MCAO) of VEGF could be associated with alterations in BBB 

permeability and contribute to exacerbating injury 213. In both neonatal and adult models 

following hypoxia, intracerebroventricularly injection of VEGF 48h after Ischemia resulted 

in reduced brain injury, decreased infarct volume and decreased apoptotic cells without 

increasing BBB permeability. Both studies suggest this is related to the activation of the 

Akt/ERK pathway 214, 215. Inhibition of VEGFR-2 has also been shown to decrease 

endothelial cell proliferation, increase cell death and worsen injury following neonatal 

stroke in rodents 216. Taken together, these results indicate that VEGF-dependent 

angiogenesis is important for recovery of a neonatal stroke.
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Another key hypoxia inducible gene is erythropoietin (EPO) that increases the capacity of 

red blood cells to supply oxygen following hypoxia 217,218. Hypoxic up-regulation of EPO 

is regulated by HIF-1α and HIF-2α in vivo and in vitro 217,219,. EPO is widely expressed in 

the brain by astrocytes, neurons, microglia, and endothelial cells 218,220. Following cerebral 

ischemia, endothelial cells are the first to increase EPO expression, which could implicate 

that EPO mediates angiogenesis, probably by stimulating the expression of VEGF and its 

receptors on endothelial cells 221,222. In vitro, EPO can also modulate angiogenesis by 

stimulating endothelial cell migration and proliferation 223. Suggested to be neuroprotective 

following hypoxia, increased EPO expression has also been shown to increase anti-apoptotic 

gene expression and promote survival in oligodendrocytes, neurons, astrocytes, and 

microglia 217,218. Treatment with recombinant human EPO following focal hypoxia-

ischemia in neonatal rats results in enhanced revascularization, neurogenesis, endothelial 

cell and neuronal survival and increased Glut-1, Tie-1, and angpt-2 expression which 

resulted in enhanced neurovascular unit repair 221,224. EPO treatment following neonatal 

stroke in rats has also shown significant neuroprotection ,225-227, after neonatal HI injury 228 

and MCAO 229,230.

Mediators with dual effects

Some of the mediators that are upregulated and are injurious during the acute injury phase, 

such as NO, MMPs, MIP-1a, MCP-1, and complement, may be beneficial and mediate the 

repair. Activation of MMPs, MMP-9 in particular, after stroke is thought to contribute to 

acute brain injury 231, but MMPs are critically involved in the remodelling of extracellular 

matrix and migration of immature neurons from the SVZ into the striatum 232. Galectin-3 

(Gal-3), a multifunctional carbohydrate-binding protein that controls numerous cell 

functions, has been identified as an angiogenic factor in adult stroke 233. Like MMP-9, 

Gal-3 may have dual roles after stroke—harm initially but promote long-term repair. Anti-

inflammatory agents may protect in part by reducing a subpopulation of microglia/

macrophages with upregulated Gal-3. Genetic deletion of Gal-3 exacerbates injury and 

increases apoptosis after MCAO in the adult 234 but reduces hippocampal injury after HI 

insult 235. Microglia-mediated IGF-1 production 234 and increased endothelial 

proliferation 233 were suggested as mechanisms of Gal-3-mediated remodeling after adult 

stroke. Gal-3 expression is rapidly increased after HI injury in the neonate 235, but its role in 

brain repair has not yet been explored in neonates.

TRANSLATIONAL ASPECTS AND TREATMENTS

In the past two decades, a broad range of therapeutic agents were used in neonatal ischemic 

brain injury models to target the excitotoxic, oxidative and inflammatory injury components, 

but, like in adult stroke, the results of the protective efforts have been mixed. Both broad-

spectra and relatively selective anti-inflammatory treatments, including allopurinol 166, 

deferoxamine 236, N-acetylcysteine 237, melatonin 238-241, and minocycline 242, 

demonstrated beneficial effects but many studies revealed several limits in neuroprotection. 

As an example, the neuroprotective effect by minocycline is either short-lived or contingent 

on genetic background 183,243. Targeting NF-kB signalling with peptide-based inhibitors 

showed that while sustainable neuroprotection can be achieved, the timing of administration 
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and the length of inhibition are crucial and that prolonged treatment can exacerbate 

injury 155,244. Non-psychotropic cannabinoids have been considered as therapeutics based 

on numerous reports that demonstrated neuroprotection against neurodegenerative 

conditions 245,246, including not only neonatal rodent models 182 but HIE models in larger 

animals, newborn piglets and fetal lambs 247-250.

The HI white matter injury at P7 rats could be significantly attenuated by post-insult 

treatment with the AMPA receptor antagonist 6-nitro-7-sulfamoylbenzo(f)quinoxaline-2,3-

dione (NBQX)251. Likewise, intracerebral injections of AMPA (in combination with the N-

methyl-d-aspartate receptor antagonist MK-801) demonstrated greater susceptibility of 

olygodendrocytes to injury at P7 than in younger or older pups and this injury was 

attenuated by systemic pretreatment with the AMPA antagonist NBQX. The AMPA 

receptor antagonist NBQX was effective at attenuating immature white matter injury in 

vivo, due either to direct receptor activation or hypoxia/ischemia. NBQX blocked the injury 

at P7 due to AMPA injections, consistent with the results of others in adult brain 88,91,252, 

and suggesting a receptor-mediated cause of injury. Notably, the acute seizures and the long-

term enhanced seizure susceptibility are blocked by systemic administration of the AMPA 

receptor antagonist NBQX, whereas there is no effect of NMDA receptor antagonists 

(MK-801), GABA agonists (lorazepam and phenobarbital), or the conventional AED 

phenytoin 253.

The overactivation of NMDA receptor in immature rats are used as target of therapy of 

white matter injury 254: the uncompetitive NMDA antagonist memantine attenuates in vivo 

acute loss of the developing oligodendrocytes cell surface marker O1 and the mature 

oligodendrocyte marker MBP(myelin basic protein), and also prevents the long-term 

reduction in cerebral mantle thickness seen at postnatal day 21. These protective doses of 

memantine do not affect normal myelination or cortical growth as previously observed for 

uncompetitive MK-801.

Attempts to protect the neonatal brain by inhibiting caspase-3 dependent apoptosis also 

showed mixed results. Pancaspase inhibitors and casp-3-selective inhibitors showed 

pharmacological neuroprotective effects in several 255-257 but not all 258,259 rodent studies 

of neonatal brain injury. While the age at the time of insult and the limited ability of 

individual inhibitors to distribute within the brain might affect injury outcome 259,260, 

caspase inhibition may activate caspase-independent cell death pathways, undermining 

neuroprotective efforts. Yet, targeting individual caspases upstream of Casp-3 may be 

promising 261, as was demonstrated by the potent neuroprotective role of a Casp2 inhibitor 

against perinatal ischemic brain damage in rodents 262.

Recently, the pluripotent capacity of stem cells from the human umbilical cord blood 

provides simultaneous targeting of multiple neuropathologic events initiated by a HI insult. 

Umbilical cord blood contains a mixture of mononuclear cells and other blood components, 

including red blood cells and platelets. The mononuclear cell fraction contains white blood 

cells, as well as progenitor and stem cells at an amount comparable to or exceeding that in 

bone marrow. Progenitor cells are defined as cells that can divide, producing more than one 

type of cell. Stem cells are defined as dividing cells that can differentiate into more mature 
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cell types. Studies on human blood samples showed that, compared with bone marrow-

derived stem cells, umbilical cord blood cells are reported to display lower immunogenicity 

and risk of rejection 263 and an eightfold greater proliferative potential 264,265. These 

features are advantageous for transplantation, and furthermore their acquisition does not 

require painful donor extraction procedures.

HIE neonatal models that have received systemic injections of umbilical cord blood cells 

commonly display human cells in the lesioned side of the brain and variable improvement in 

morphologic or functional outcome 266. Pimentel-Coelho et al. 267 described a region-

specific effect of mononuclear umbilical cord blood cells in a neonatal rat model of HIE. Is 

not clear if neurofunctional improvements are related to an anti-inflammatory effect of cord 

blood cell transplantation, as suggested by decreased microglial activation in the ischemic 

cortex at 7 days after injury, or they are due to cytokine or growth factor release from human 

cord blood cells. Further improvement in functional outcomes after brain injury has been 

achieved via adjunctive therapies268-272. EPO administration enhances neurogenesis and 

promotes functional recovery after neonatal HI injury 228 and MCAO 229,230 in rodents. 

While a single EPO dose has been found to be beneficial over a short time period, multi-

dose EPO treatment markedly improves structural and functional outcomes over several 

months 230. Its safety profile and beneficial effects via activation of multiple pathways 

makes EPO a good candidate as a treatment of newborns with brain injury. However, the 

combination of EPO with hypothermia showed no benefit over EPO alone after HI insult in 

neonatal rats 270, reinforcing the importance of proper timing for adjunctive therapies. 

BDNF and IGF-1 seem to be promising therapeutic approaches, but few data are available to 

date.

More recently, cell based therapies, including mesenchymal stem/progenitor cells (MSCs), 

have been shown to improve, in rats, functional outcomes after stroke 273-278 and traumatic 

brain injury 279 in the adult and after HI event in the neonate 280-284. Intravenously 

administered MSC reduce apoptosis, promote endogenous cell proliferation 273, and reduce 

the expression of inhibitory factors in astrocytes, including a broad array of 

glycoproteins 285, but they increase production of VEGF and BDNF 274. MSC may 

stimulate angiopoietin1 and VEGF signaling and amplify angiogenesis, a process necessary 

for vessel remodeling and neuroblast migration 274. Intranasal MSC administration in mice 

was shown to markedly reduce infarct size, facilitate formation of new neurons and 

oligodendrocytes, and improve sensorimotor outcome following HI injury 281,282. Although 

initially long-lasting neuroprotection by MSC against HI damage was attributed to 

replacement of dead neurons, the survival of MSC appeared to sharply decline to only 1% 

by 18 days after delivery whereas the beneficial effects continued 283. This data, along with 

marked effects of MSC on gene expression of growth factors and inflammatory 

molecules 283, has suggested that engrafted cells stimulate the microenvironment, which, in 

turn, permits remodelling and improvement of neurological function.

While further proof of the latter mechanism is needed, data that MSC that overexpress 

BDNF are even more potent in repair than MSC themselves supports the notion of a critical 

role of the changing microenvironment by MSC. One recent work 286 showed that Intranasal 

delivery of MSC- and MSC-BDNF significantly reduces infarct size and gray matter loss in 
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comparison with vehicle-treated rats without any significant difference between MSC- and 

MSC-BDNF– treatments. Treatment with MSC-BDNF significantly reduced white matter 

loss with no significant difference between MSC- and MSC-BDNF–treatment. Motor 

deficits were also improved by MSC treatment when compared with vehicle-treated rats. 

MSCBDNF–treatment resulted in an additional significant improvement of motor deficits 14 

days after MCA occlusion, but there was no significant difference between MSC or MSC-

BDNF 28 days after occlusion.

To date, all these translational treatments have been tested only in animal models.

As of today, hypothermia is the only neuroprotective treatments of proven efficacy in 

humans for injury resulting from perinatal HIE. Recent multicenter clinical trials 

demonstrated the effectiveness of hypothermia, when initiated within the first 6 hours in 

neonates with moderate HIE, eventually reducing the risk of major neurological 

disabilities 287,288. However, approximately 40% of cooled infants died or survived with 

significant impairments. Selective brain cooling was shown to potentially induce anti-

inflammatory effects 289. The beneficial effects of hypothermia seen in experimental models 

of ischemia are the result of a wide range of biological effects, as outlined in Table 5. 

Hypothermia can protect by preserving energy metabolism 290, reducing proteolysis 291,292 

and ROS production 292,293, as well as by affecting vascular integrity and 

neuroinflammation 294,295. It has the potential to minimize secondary injury to vulnerable 

areas 296,297. Although clinical and experimental studies show functional improvement after 

hypothermia in injured neonates, there is still the need to better understand the optimal 

depth, timing and duration of hypothermia in order to maximize beneficial effects and 

reduce long-term neurologic morbidity.

CONCLUSIONS

Global/Focal perinatal brain injury represents a complex disease, frequently occurring in the 

perinatal period and resulting in neurological sequelae. The various clinical and pathological 

outcomes in neonates could be associated with either post-ischemic processes or other 

insults occurring during neural development. The data is emerging that neuroinflammation 

plays a role not only in short-term injury outcomes, but in modulating the long-term repair 

after perinatal stroke and enhancing the effects of adjunctive therapies. Pharmacological 

inhibitors, in particular glutamate-receptor antagonists and caspase inhibitors that target 

neuro-inflammatory mediators, and cell based therapies, in association with hypothermia 

represent the most promising therapeutic options for trials in humans in the near future.
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Figure 1. The mechanisms of injury in perinatal stroke and HIE
A. A representative MRI demonstrates a focal ischemic lesion in perinatal stroke. B. 

Schematic representation of the major mechanisms contributing to neuronal death in post-

ischemic neonatal brain. Excitotoxicity, oxidative damage and neuroinflammatory processes 

are the main mechanisms of injury (shown as (1)). These mechanisms of injury can 

independently lead to spectra of neuronal death mechanisms (2), but also feed and potentiate 

each others effects (3), further exacerbating brain injury.
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Table 1

Risk factors for PAIS.

Maternal Factors Fetal/neonatal factors Others

Blood, homocysteine and lipid disorders Inherited thrombophilias Catheter-related complications

Thrombotic state during pregnancy Twin tot twin transfusion Male gender

Previous pregnancy related disorders Systemic infections Race and ethnicity

Primiparity, twin-twin pregnancy Meningitis Dehydration

Pre-eclampsia Perinatal asphyxia Trauma

Gestational diabetes Congenital heart diseases ECMO

Chorioamnionitis Hypoglycemia (in preterm) Emergency cesarean section

Labor and delivery complications ELBW

Autoimmune disorders Polycythemia

Drug abuse (cocaine)

Infertility and its treatment
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Table 2

Summary of key developmental processes across comparable ages in humans and rodents.

Human Rodent Developmental milestones Reference (s)

23–32 wk
gestation
(pre-term
infant)

pnd 1–3

Oligodendrocyte maturation state
changes—pre-dominance of mitotically
active pre-OLsa.

Craig et al. (2003), Lodygensky et al.
(2010), Dean et al., 2011a and Dean et
al., 2011b

Immune system development. Holsapple et al. (2003)

Establishment of the blood-brain barrier. Engelhardt (2003), Daneman et al.
(2010)

36–40 wk
gestation
(term
infant)

pnd 7–
10 Peak brain growth spurt. Dobbing and Sands (1979), Bockhorst

et al. (2008)

Peak in gliogenesis. Catalani et al. (2002),
Kriegstein and Alvarez-Buylla (2009)

Increasing axonal and dendritic density.
Cowan (1979),
Bockhorst et al. (2008), Baloch et al.
(2009)

Oligodendrocyte maturation state
changes–switch to a pre-dominance of
immature OLs.

Craig et al. (2003), Dean et al.,
2011a and Dean et al., 2011b

Consolidation of the immune system. Holsapple et al. (2003)

2–3 year
old

pnd 20–
21 Brain reaches 90–95% of adult weight.

Dobbing and Sands,
1973 and Dobbing and Sands, 1979,
Dekaban et al. (1987), Giedd et al.
(1999)

Peak in synaptic density at 50% > adult
levels.

Huttenlocher (1979), Micheva and
Beaulieu (1996)

Peak in myelination rate. Keshavan et al. (2002)

Neurotransmitter and receptor changes. Hedner et al. (1986), Romijn et al.
(1991)

4–11 year
old

pnd 25–
35

Fractionation/specialization of prefrontal
cortex neural networks (structural
maturation).

Tsujimoto (2008)

Maximum volume of grey matter and
cortical thickness.

Sowell et al. (1999), Bansal et al.
(2008)
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Table 3

Systemic hypoxia-ischemia (H-I) and ischemia-reperfusion rodent models

HUMAN
PATHOLOGIC
CONDITION

ANIMAL USED
AND AGE OF THE
ANIMAL

TYPE OF
DOMMAGE

REFERENCE

H-I models P7 Wistar rats Permanent
occlusion of the
Middle Cerebral
Artery (MCA),
pMCAo + O2 8%

Rice et al. 1981

Rice’s model
adapted to other
rat’s ages

“ Derugin et al 1998, Oshima
2012

Derugin 2005

Mouse P7 Blockade
of the past
External Carotid
Artery- Internal
Carotid Artery
(ECA-ICA)
bifurcation,
external-internal
carotid artery Oshima 2012

Mouse P8 Permanent
occlusion of the
Middle Cerebral
Artery (MCA),
pMCAo + O2 8% Hagberg 2004

Mouse P10 “ Tsuji 2013

Mouse P12 “

Ischemia-
Reperfusion
Models
(=Stroke-Like
lesions)

Wistar Rat P7 pMCAo +bilateral
transient
Common Carotid
Artery (tCCAo)
occlusion

Renolleau 1998

Wistar Rat P10 “ Mitsufujii 1996

CB17 Mouse P12 pMCAO Tsuji 2013
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Table 4

Pro- and anti-inflammatory mediators involved in the ischemic cascades.

Mediators Post ischemia Neuroprotection Treatment CK target Effect

IL-1 upregulated in H-I
in mice

IL1Ra ↓ brain injury

IL-18 upregulated in H-I
in mice

IL18 KO mice ↓ brain
injury in neonate

TNFα • upregulated in 
mice,

• ↓ survival/
maturation 
olygodendrocyte 
progenitor

?

R-7050 TNFα Attenuate
neurovascolar
injury

IL-2 ? ?

IL-6 upregulated in H-I
in mice

?

IL-8 ? ?

IL-9 induce histamine
release→cell injury

inhibit post-mitotic
neuronal apoptosis in
the newborn mouse
cortex

IL-10 ? exogenous IL10
therapy

IL-4 ? in adult stroke

INFγ ? IL4/ INFγ ↓ apoptosis
in oligodendrocyte
progenitors and
astrocytes

NFkB dual role pro-anti
apoptotic

Precoce (0-3 h)
inibhition ↓
neuroinflammation
and Casp 3 activation

Minocycline NF-kB Attenuation of
the postischaemic
inflammatory
response and ↓
in white matter
damage in the
immature rodent
brain (HI model)

MIP upregulated in H-I
in mice

Estradiol MIP-2; CCR7 MIP-2; CCR7

MCP/CCL2 upregulated in H-I
in mice

Genetic deletion/
pharmacological
inhibition

vMIP-II
chemokine
analogue peptide
acting as
antagonist
against several
chemokines and
chemokine
receptors.

Various
chemokines
(CCL2, CCL3)
and
chemokine
receptors
(CCR1,2,3,4,5,8;
CXCR3,4).

Attenuation of
brain infarction in
mice
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Mediators Post ischemia Neuroprotection Treatment CK target Effect

Dimemorfan
sigma-1 receptor
agonist.

CCL2 ↓ of infarct size
and glutamate-
mediated
excitotoxicity in
rats

Rosiglitazone
agonists of ligand-
activated
transcription
factors (PPAR)-γ.

CCL2; CXCL8 ↓ of infarct size
and improved
functional
outcomes in mice

RANTES upregulated in H-I
in mice

?

H2O2 injure neonate
mice/rats after H-I

? N-acetylcysteine Oxygen radical
scavenger

↓ in cerebral
oxidative stress
and cerebral
injury;
improvement
in myelin
expression and
neurological
outcome in
neonatal rats
(combined with
hypothermia) (HI
model)

Melatonin Oxygen radical
scavenger

↓ in white matter
damage and
promotion of
repair by
induction
of axonal
regrowth or
sprouting in
newborn mice
(ibotenate-
mediated
excitotoxic brain
injury).
↓ in oxidative
damage
mediators in 7-
day-old rats (HI
model)

NO nNOS, iNOS eNOS
inhibition of nNOS, i-
NOS

2-iminobiotin Selective nNOS
and iNOS
inhibitor

Improvement in
cerebral energy
state, ↓ in
vasogenic
oedema
and neuronal
death (HI model)

7-nitroindazole Selective nNOS
inhibitor

Suppression of
both two peaks of
NO metabolites
(in hypoxia and
re-oxygenation
period) (HI model)

Aminoguanidine Selective iNOS
inhibitor

Suppression only
theNOmetabolites
peak in the re-
oxygenation
period. ↓ in
cerebral injury in
a neonatal rats (HI
model)
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Mediators Post ischemia Neuroprotection Treatment CK target Effect

COX-2 upregulated in H-I COX2 inhibition ?

CXC increased in
periphery and in
the brain in
neonatal MCAO;
protect BBB early
after injury

CXC12L→improvement
of neurogenesis,
neuroblast migration,
vasculogenesis

JWH-133
Synthetic
cannabinoid 2
receptor agonist

CXCL2 Inhibition
neutrophil
migration CXCL2 -
mediated in
ischaemic brain in
mice

Candesartan
angiotensin AT1
receptor blockers.

CXCL1 Down regulation
of CXCL1 and 
TNF-
α expression
and reduction of
cerebral infarct
size in rats

Pioglitazone
thiazolidinediones

Galectin-3 upregulated in H-I
in mice

Gal3 KO mice ↓ injury
in neonate

Caspases markedly
upregulated; cross-
talk between
inflammatory
mediators and
apoptosis pathways

• inhibition 
casp2

• inhibition 
casp3 – 
mixed effects
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Table 5

Mechanisms of action by which hypothermia can limit ischemic damage.

Reduced metabolic demand

Reduced proteolysis

Cell membrane stabilization

Inhibited spreading depolarization

Decreased excitotoxic damage

Lower lactate and tissue acidosis

Reduced free radical and reactive oxygen species formation

Altered proapoptotic signals

Reduced neuronal calcium influx and toxicity

Reduced ischemia-associated gene expression

Inhibited inflammation and cytokine production

Reduced disruption of the blood brain barrier

Preserved cerebral autoregulation
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