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Abstract

When seeking to reproduce results derived from whole-exome or genome sequencing data that 

could advance precision medicine, the time and expense required to produce a patient cohort make 

data repurposing an attractive option. The first step in repurposing is setting some quality baseline 

for the data so that conclusions are not spurious. This is difficult because there can be variations in 

quality from center to center, clinic to clinic and even patient to patient. Here, we assessed the 

quality of the whole-exome germline mutations of TCGA cancer patients using patterns of 

nucleotide substitution and negative selection against impactful mutations. We estimated the 

fraction of false positive variant calls for each exome with respect to two gold standard germline 

exomes, and found large variability in the quality of SNV calls between samples, cancer subtypes, 

and institutions. We then demonstrated how variant features, such as the average base quality for 

reads supporting an allele, can be used to identify sample-specific filtering parameters to optimize 

the removal of false positive calls. We concluded that while these germlines have many potential 

applications to precision medicine, users should assess the quality of the available exome data 

prior to use and perform additional filtering steps.

1. Introduction

Although the costs of whole-exome sequencing continue to decrease [1], the resources 

needed to identify, enroll, and sequence an entire cohort of interest will remain significant 

for the foreseeable future. This process is especially cumbersome when investigating rare 
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phenotypes, including certain cancers and tumor subtypes. A more convenient alternative 

path is to identify and then repurpose publicly accessible datasets in order to test new 

hypotheses or to reproduce findings of studies performed on independent cohorts. Federal 

policies explicitly promote data sharing and repurposing, by supporting public repositories 

like the database of Genotypes and Phenotype (dbGaP) and the Sequence Read Archive 

(SRA) [2,3]. The challenge, however, is that diverse datasets each developed with different 

goals in mind will often have unique features that require special care before they can be 

pooled together for repurposing. Clearly, the quality of exome variant calls varies by 

platform and depth of the sequencing [4,5] and also depends on the stringency of 

downstream pipelines for SNV identification and variant filtering [6]. Currently, most 

whole-exome quality assessment tools focus on evaluating the quality of the raw input data 

[7,8] rather than on the output calls; moreover, approaches that do assess the output 

generally limit themselves to comparing calls to 1000 Genomes Project or dbSNP variants 

[9,10] without providing recommendations for filtering or even clear conclusions on 

whether the data is acceptable for use. Yet, if a dataset is repurposed inappropriately, 

systematic biases and variability in noise levels may slant results, lower reproducibility, 

yield artifacts, or prevent confirmation of prior findings [11]. This presents a major problem 

for precision medicine in particular, since targeting a falsely called variant may result in 

ineffective treatment.

In order to probe the impact that dataset and variant filtering choices can have on the quality 

of repurposed data, we assessed in detail germline exomes from The Cancer Genome Atlas 

(TCGA) [12]. TCGA currently gathers diverse information from more than 11,000 patient 

samples across 34 cancer types. Final germline variant calls for some cancer types are 

available through the TCGA Data Portal, with additional lower level sequence data also 

available from the CGHub repository (https://cghub.ucsc.edu/). However, the primary goal 

of sequencing cancer patient germline samples was to provide the background information 

that will enable the recognition of somatic variants unique to the tumor. Secondary use of 

these germline exomes to further precision medicine has thus far been uncommon but shows 

the promise of using these germlines to predict response to treatment within a cancer cohort, 

detect genetic differences in individuals who develop cancer, and identify germline 

contributions to the process of tumorigenesis [13,14,15].

Here, we evaluated the quality of TCGA germline single nucleotide variation (SNV) calls in 

a given exome by testing whether two features of their collected variant calls followed the 

known biology of substitution and purifying selection or whether these features were lost 

and suggested that the variant calls were of non-biological origin.

The first feature, called Ti/Tv, has been previously described and is based on the biology of 

spontaneous base substitutions. In the germline, these are more often transitions (from 

purine to purine, or from pyrimidine to pyrimidine) than transversions (from purine to 

pyrimidine or pyrimidine to purine) so the Ti/Tv ratio is normally >3 across an exome, 

whereas for random base changes as one might produce computationally Ti/Tv is equal to 

0.5 [10]; this difference can then serve as a proxy for germline variant call quality 

[10,16,17].
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The second and novel feature, called λ, is based on the biology of purifying selection of 

germline mutations. Fisher’s geometric model [18] predicted in 1930 that the distribution of 

fitness effect of germline mutations would follow a decaying exponential. For the first time, 

a recent study of the Evolutionary Action (EA) of human polymorphisms [19] provides a 

measure for the fitness effect of mutations and for their negative selection, through a decay 

constant λ, which is much larger for biological germline mutations than for random 

mutations.

Therefore, we hypothesized that Ti/Tv and λ related to the substitution and selection 

processes, respectively, should be complementary measures of variant call quality. Our 

findings support this view and also emphasize the importance of using multiple, orthogonal 

quality measures. Using these measures we estimate the fraction of false positive variant 

calls in TCGA exomes and reveal substantial variability in quality by sample, cancer 

subtype, and sequencing source. The methods described in this study provide an easy way to 

assess the quality of germline exome data and suggest, for the first time to our knowledge, 

the importance and feasibility of sample-specific filtering parameters.

2. Methods

2.1. Exome data acquisition

Gold standard germline exome variant callsets were obtained from http://

www.illumina.com/platinumgenomes/[20]. The NA12877 and NA12878, v7 (released 

December 2014) merged callsets were downloaded, and only ‘platinum’ calls limited to 

those with a ‘PASS’ designation in the filter field were considered confident calls in 

subsequent analysis. 1000 Genomes Project [21] Phase 3 exomes were downloaded from 

http://www.1000genomes.org/ on 5/11/15. All cancer germline exomes available on 

10/23/14 were downloaded from TCGA [12] and separated by cancer type and institution.

2.2. Quality Assessment

The Ti/Tv ratios were calculated for each exome variant callset by counting all coding 

purine to purine and pyrimidine to pyrimidine (transition) SNV mutations, and dividing this 

value by the number of purine to pyrimidine and pyrimidine to purine (transversion) SNV 

mutations.

To measure the selection decay λ of variant callsets, the corresponding vcf files were 

annotated with ANNOVAR [22] and the Evolutionary Action (EA) was computed to 

measure the fitness effect of all missense mutations. Histograms of the distribution of EA 

scores, binned by deciles, were fitted to an exponential curve (Eq. 1) using a least-squares-fit 

to estimate λ. In Eq. 1 the ‘x’ values represent Evolutionary Action, ‘y’ represents 

proportion of mutations, and A and λ are constants.

(1)
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2.3. Simulated Variant Callsets

Both Ti/Tv and λ were calculated for 100 datasets with different fractions of computer-

generated false positive variant calls. The fraction varied from 0 to 1, in increments of 0.01. 

Each dataset consisted of 1000 simulated exome files, each of which contained a total of 

10000 missense mutations. The mutations were drawn either from the ‘true positive’ pool of 

variants from gold standards NA12877 and NA12878, or randomly from the ‘false positive’ 

pool of all possible human SNVs in order to create the proper ratio. The average and 

standard deviations of λ and Ti/Tv for each fraction of false positives were calculated, and 

their correlations with percent noise fitted with exponential.

2.4. Application of λ to TCGA cohorts

For each of 21 cancer types, all germline datasets were separated by institutional source, 

curation, and sequencing platform. When multiple variant callsets were available for a given 

cancer type, files marked ‘curated’ were chosen over those which were not marked curated. 

If multiple curated sets were available, λ values were calculated for each and the set with the 

highest average λ was chosen. If no curation was noted on any of the files, λ values were 

calculated for all available sets and the set with the highest average λ was chosen. For each 

sample, the predicted percentage of false positive calls was then calculated from Eq. 2.

3. Results

3.1. Calculating quality measures for ‘gold standard’ germline exomes

First, we calculated the quality scores Ti/Tv and λ (Figure 1) for gold standard germline 

exome calls: Illumina Platinum v7.0 variant calls for samples NA12877 and NA12878 [9]. 

These samples were sequenced to 200× depth on a HiSeq 2000 system, and 15 other 

members of their pedigree were sequenced to 50× depth on the same system. Variant calls 

deemed ‘platinum’ take into account inheritance constraints in the pedigree as well as 

concordance of variant calls across multiple aligners and callers [24,25,26,27,16]. As 

described in Methods, the transition to transversion ratio (Ti/Tv) detects a biological bias in 

the types of mutations that occur in the call set, while the λ shows the purifying pressure 

against coding mutations as a function of their Evolutionary Action (EA) [19]. For the 

platinum whole-exome calls for NA12877 and NA12878, we found the Ti/Tv ratios to be 

3.05 and 3.04 for whole-exome variant calls and 1.97 and 1.96 for missense variant calls 

respectively, while λ was 0.0379 and 0.0380 respectively. These values were also 

reasonably consistent with exome data from The 1000 Genomes Project [21] and were 

independent of ethnic background; the average λ is 0.0379±0.0008 and the average Ti/Tv is 

3.11±0.05 for whole-exome variants and 2.06±0.04 for missense variants. These data show a 

gold standard ‘target’ for these quality parameters that were used to assess other datasets.

3.2. Quality measures λ and Ti/Tv decrease in a predictable fashion as false positives are 
added to a variant call set

We next calculated the λ and Ti/Tv for SNV sets with varying fractions of false positive 

calls. Using the Illumina Platinum calls as a pool of true positives (TP) and all possible 

human SNVs generated by random nucleotide changes as a pool of false positives (FP), 

1000 simulations of 10000 missense mutations were produced for each of 100 TP:FP ratios. 
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As the fraction of the variant calls composed of random noise increases, both λ and Ti/Tv 

decrease in an exponential fashion (R2 > 0.99) such that

(2)

(Figure 2A). In addition, the two quality measurements were strongly correlated with one 

another (Pearson R = 0.9993, p < 0.0001) (Figure 2B). Use of this simulated data enables us 

to estimate, for a set of real exome variant calls, the degree of contamination by false 

positives in the sample.

3.3. TCGA germline datasets vary in the amount of noise they contain

Next, we estimated the fraction of false positive variant calls in whole-exome germline data 

from TCGA and assessed whether the fraction is consistent within each cancer subtype. 

Germline variants were available through TCGA for 21 cancer types, where they were 

organized by sequencing institution, sequencing platform, and curation level. Some tumors 

were sequenced by multiple institutes, though the extent of this overlap depended on the 

cancer type. We focused on data marked ‘curated’, rather than those marked ‘automated’, 

and when there were still multiple versions we chose the (presumably best) dataset with the 

largest λ (see Methods). The predicted percent of false positive calls for each exome was 

calculated based on Eq. 2, and the distribution for each cancer type is shown in Figure 3A. 

At the extremes, pheochromocytoma and paraganglioma (PCPG) exomes were predicted to 

uniformly contain less than 5% false calls, while most cervical cancer (CESC) exomes were 

predicted to contain more than 35% false calls. The datasets also differed greatly in 

variance, with rectal adenocarcinoma (READ) exomes having less than 10%, and lung 

adenocarcinoma (LUAD) having more than 60% variances. These results do not necessarily 

reflect intrinsic differences between cancer types. Large numbers of variant calls in an 

exome corresponded to lower λ scores and indicated an excess of false positives, as shown 

for LUAD in Figure 3B. However, using the number of mutations as a proxy for the false 

positive rate may be misleading when the cohort consists of individuals with diverse ethnic 

backgrounds; for example, exomes from patients of African ancestry consistently had more 

variants when compared to other exomes with the same λ values (Figure 3B), in agreement 

with data from the 1000 Genomes Project. The estimated number of ‘true’ missense SNV 

calls was consistent between samples of the same ethnic background and fit the numbers of 

missense mutations seen in the 1000 Genomes cohorts. These data show the marked 

heterogeneity of false variant call rates in TCGA germline exomes and highlight the hazards 

of using these datasets as-is.

3.4. Data quality is not consistent across calling centers

In order to test reproducibility of data across sequencing centers, we focused our analysis on 

the chromophobe renal cell carcinoma (KICH) dataset, which consisted of SNV germline 

calls from three separate institutions for the same patients. For each sequencing center, we 

calculated the average Ti/Tv ratio as well as the λ selection decay constant for the germline 

variants of each exome, as shown in Figure 4A. The center with the highest average Ti/Tv 

ratio also had the highest λ, which corresponded to an average of ~5% false positive calls 
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per sample. For the second center, both the Ti/Tv ratio and λ were lower, and λ predicted an 

average of ~12% false positive calls per sample. For Center 3, although the average Ti/Tv 

ratio was nearly as good as the other two centers (2.6 compared to 2.66 and 3.1, 

respectively), the average λ was radically different (0.014 versus 0.032 and 0.036, 

respectively) and suggested that on average 76% of the calls in each sample were false 

positives. Indeed, the average number of missense SNV calls from this center 

(31,000±5,000) was over 3 times higher than the Illumina platinum exomes defined above as 

gold standard, which further supported a false positive rate of at least 70%. The different 

sensitivity of Ti/Tv and λ to lower quality variant calls in this case may be due may be due 

to technical aspects of the calling methods themselves; if the known biological bias toward 

transition mutations was built into the calling algorithm used by Center 3 and it was used as 

a factor in deciding whether to report a variant, even false positive mutations will have a 

high Ti/Tv. In this case, λ detected noise whereas Ti/Tv was equivocal, stressing the 

importance of using multiple quality measures in exome data assessment. For centers 1 and 

3, additional internal filters separated the reported calls into those that ‘pass’ and those that 

do not. Restricting our analysis only to passing calls improved quality but was not sufficient 

to eliminate either the detected noise or the center-specific differences. These data show that 

the germline variant calls of TCGA patients made by different sequencing platforms and 

calling pipelines are sometimes very different and require careful examination by multiple, 

orthogonal quality measures.

A common practice to address such inconsistency in reproducibility is either to merge the 

available data or to use their intersection. In the first case, combining the calls from all 

centers would add substantial noise from Center 3. Using the intersection of all three 

centers, on the other hand, would result in high quality but roughly two thousand true 

positive calls per exome would be left out. Restricting to calls made by at least two of the 

centers may seem like a reasonable middle ground, but even this may not be the optimum 

solution. Figure 4B shows that calls made by Center 1 alone were still predicted to be of 

higher quality than calls agreed upon by Centers 2 and 3. These data demonstrate the caveats 

of ‘common sense’ filtering and highlight the importance of examining data quality 

carefully before integrating information from multiple sources.

3.5. Appropriate filtering parameters for SNV calls are sample-dependent

Having used λ to detect and quantify the presence of noise within these datasets, we next 

explored whether λ can be used for filtering false positive SNV calls. For illustration, we 

used exome data from two head and neck squamous cell carcinoma (HNSC) cancer patients. 

Each SNV in these data was associated with an average base quality for reads supporting 

alleles (BQ value) and a Phred-scaled quality score (QUAL value), amongst other features. 

For each patient, missense mutations were partitioned by BQ value and QUAL value in turn 

and each bin was assessed for λ. We found that λ depended on the BQ score with a 

sigmoidal relationship (R2 > 0.9), which indicated that below a BQ cutoff the SNV calls 

became random (Figure 5A). Strikingly, this cutoff is specific to each exome, even those 

sequenced on the same date, by the same center, on the same sequencing platform, and using 

the same SNV calling pipeline. For example, SNVs with a BQ of 25 appeared to retain high 

quality in one patient but to be comprised entirely of noise in the other (see blue curve in 

KOIRE et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5A). We also found that λ depended on the QUAL value of SNVs, such that the fraction 

of true positive calls was lower for QUAL values near zero and gradually increased with 

QUAL value till it reached a plateau at about QUAL=40 (Figure 5B). For the two exomes of 

Figure 5b the QUAL value did not correspond to the same fraction of false positive data, 

since the two exomes reached different maximum λ values. These sample-dependent 

differences suggested that BQ and QUAL values should only be interpreted as relative 

measures within the context of a given exome, and that filtering parameters should be 

customized for each exome using λ in order to achieve optimal separation of true and false 

positive calls.

4. Discussion

Assessing the quality of genetic variant calls has great practical importance to precision 

medicine, since various sequencing platforms, coverage depths, and bioinformatics pipelines 

to call variants result in the inclusion of an unknown number of false positive calls. This 

becomes a major concern when naïve users access and repurpose publically available exome 

data assuming all reported calls are reliable. Here, we call attention to the hazards of this 

assumption by applying two measures of exome data quality, the transitions-to-transversions 

ratio and the purifying selection pressure (λ) of variant calls, to publically accessible data. 

As a test system we used germline exomes of 21 cancer types available through TCGA, 

which were generated with the primary purpose of being a reference for calling somatic 

mutations. We found considerable variation in data quality between and within cancer types, 

such that repurposing these data as-is may mislead scientists to conclude a lack of 

reproducibility and unsuccessful validation of previous findings, which would hinder the 

progress of precision medicine as a field.

As a gold standard of true germline variants we used the Illumina Platinum samples, 

NA12877 and NA12878, which are the current state-of-the-art high-confidence variant calls. 

However, this gold standard may still include some false calls, and future developments may 

allow for even more accurate sequencing and variant calling. These estimates, however, 

have great practical importance in comparing the calling confidence of two or more exomes. 

Indeed, the large differences in the average fraction of false positive calls between TCGA 

germline exomes of different cancer types, as well as the surprising variability within a 

cancer cohort, underscore the need to examine all data carefully before reuse in order to 

improve the reproducibility of results.

When we compared the germline variants called from three different sequencing centers for 

the same patients, we found a considerable lack in reproducibility between centers. 

However, classifying variant calls by their concordance across centers was revealing. 

Variants called by all three centers were assessed to contain only about 3% of false positive 

calls; in contrast, variants called by just one of the three centers had deviant λ values that 

matched the simulated introduction of up to 100%, 87% and 37% false positives. For each 

given center, unique variant calls were predicted to contain more false positives than those 

also called by at least one of the other centers; still, we found that depending on the relative 

data quality between centers even the unique variants of a single center may contain less 

noise than variants agreed upon by the other two centers. This calls into question the 
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common practices of merging data or using the overlap of calls from different centers, which 

may include many false positive calls or exclude true positive calls, respectively. While it 

was useful to exclude variants that were not annotated with “PASS” in vcf files, this filter 

was not able remove all or even most false positive calls. Thus, the use of λ selection 

pressure analysis presents a rational, quantitative approach to determining which data should 

be used in association studies.

Features of the SNVs, such as quality scores, can also be used to filter out false positive 

calls. This basic principle is already established in post-processing variant calls, but many 

users apply ‘hard filters’ to all samples and express uncertainty regarding the appropriate 

filters to use. Using arbitrary cutoffs for all TCGA exomes without considering quality 

assessment will cause some samples to retain substantial numbers of false calls and others to 

lose many true calls. Our results suggested that BQ value produced the most effective 

separation between predicted true and false positives, and that the appropriate BQ value 

cutoff was different for each exome, even when the data were produced by identical 

procedures. This analysis allows users to leverage the relationship between λ and BQ in 

order to choose for each exome the optimum cutoff, allowing them to repurpose these 

datasets with confidence and improve the reproducibility of their results.

Assessing the quality of germline variant calls is a pressing issue both to improve their 

intended use as well as to facilitate their repurposing for secondary goals, and since an 

increasing amount of exome data is being deposited in public databases. Here, we show that 

elementary evolutionary considerations provide a general and simple approach to detect 

random sequencing errors. Whereas high quality data contain variant calls that follow an 

invariant and known distribution of Evolutionary Action, false positive variant calls 

recognizably distort this Action distribution. Remarkably, this distortion can classify 

sequenced genomes by quality and also separate variant calls by quality within single 

exomes on a case-by-case basis. This work reveals wide quality disparities in sequencing 

data but also demonstrates how this can be overcome through the use of the Evolutionary 

Action concept. In the future it should therefore be possible to apply, pool and repurpose 

public genome sequencing data with full confidence in their quality leading to better 

correlations with clinical phenotypes and enhancing reproducibility in precision medicine.
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Fig. 1. 
Illustration depicting the steps taken to calculate λ and Ti/Tv parameters from exome data.
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Fig. 2. 
Simulated noise in exome SNV calls. (a) Effect of increased noise on λ and Ti/Tv values. 

Shaded regions indicate the standard deviation around the mean. (b) Correlation between λ 

and Ti/TV.
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Fig. 3. 
Application of λ to TCGA cohorts. (a) Predicted noise across 21 TCGA cancer types. The 

data are represented in a box-and-whiskers plot that uses the center line to indicate median, 

the box to indicate quartiles, and the whiskers to indicate range. Cancer types are ordered by 

median. (b) Exponential relationship between λ and number of missense SNVs in Lung 

Adenocarcinoma. Associated open-access clinical data provided by TCGA was used to 

separate patients by their self-identified race. The average lambda/number of missense 

mutations for the 1000 Genomes Project Caucasian (CEU) and African-American (ASW) 

cohorts are noted with a blue and red star, respectively.
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Fig. 4. 
KICH SNV calls for three centers (a) λ and Ti/Tv of calls. For each patient assessed by each 

center, λ and Ti/Tv were calculated and the average and standard deviations of these values 

are displayed by institution. For centers 1 and 3, internal ‘pass’ filters were available and are 

displayed as well. (b) Predicted percentage of true calls for calls agreed upon by 1, 2, or 3 

institutions. For 65 KICH patients assessed by all three centers, all calls regardless of 

internal filtering were separated by the institution(s) that identified them. The average 

number of missense mutations per patient, as well as the predicted percentage of true 

positive calls derived from the λ value of the call set, is shown for each possible 

combination of sites.
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Fig. 5. 
Relationship between SNV features and λ for two HNSC patients. (a) Relationship between 

BQ and λ. For each patient, all missense SNVs were partitioned by BQ value such that every 

bin contained at least 50 calls; points represent the λ and average BQ of the bin. Solid lines 

represent sigmoidal fits. (b) Relationship between QUAL and λ. For each patient, all 

missense SNVs were partitioned by QUAL value such that every bin contained at least 50 

calls; points represent the λ and average QUAL of the bin. Solid line represents fit to 

equation . For display purposes values of QUAL higher than 200 were not 

shown.

KOIRE et al. Page 14

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


