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Abstract

We examine the hypothesis that the heritability of smoking has varied over the course of recent 

history as a function of associated changes in the composition of the smoking and non-smoking 

populations. Classical twin-based heritability analysis has suggested that that genetic basis of 

smoking has increased as the information about the harms of tobacco has become more prevalent

—particularly after the issuance of the 1964 Surgeon General’s Report. In the present paper we 

deploy alternative methods to test this claim. We use data from the Health and Retirement Study 

to estimate cohort differences in the genetic influence on smoking using both genomic-

relatedness-matrix restricted maximum likelihood and a modified DeFries-Fulker approach. We 

perform a similar exercise deploying a polygenic score for smoking using results generated by the 

Tobacco and Genetics consortium. The results support earlier claims that the genetic influence in 

smoking behavior has increased over time. Emphasizing historical periods and birth cohorts as 

environmental factors has benefits over existing GxE research. Our results provide additional 

support for the idea that anti-smoking policies of the 1980s may not be as effective because of the 

increasingly important role of genotype as a determinant of smoking status.
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1. Introduction

Nearly 400,000 Americans die every year from tobacco-related disease (CDC, 2008). 

Understanding why people initiate smoking is critical to prevention and cessation efforts and 

is thus a public health priority. One important factor in determining smoking behavior is that 

individuals differ in their genetic propensity to smoke. Twin studies have demonstrated that 

smoking is moderately to highly heritable (Li et al., 2003) and recent analyses with 

molecular genetic data have identified a number of single nucleotide polymorphisms (SNPs) 

of interest (Tobacco and Genetics Consortium, 2010). Better understanding this genetic 

*Author can be contacted at bdomingue@stanford.edu. 

HHS Public Access
Author manuscript
Behav Genet. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Behav Genet. 2016 January ; 46(1): 31–42. doi:10.1007/s10519-015-9731-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



propensity for smoking is important because of evidence suggesting that specific genotypes 

tied to the risk of smoking are also risk factors for subsequent smoking-related disease 

(Spitz et al., 2008). Such individuals are doubly at risk–more likely to smoke and more 

likely to develop cancer if they do smoke–so from a public health perspective it would 

clearly be useful to intervene with such individuals with early, effective intervention.

Research based on twins has shown that the genetic influences on smoking have changed in 

predictable ways across historical periods. For instance, Boardman et al. (2010) show that 

the heritability of smoking initiation bottomed out in roughly 1964 and climbed in 

successive periods. They argue that social factors were primarily responsible for smoking 

onset but then, following the surgeon general’s 1964 report “Smoking and Health: Report of 

the Advisory Committee of the Surgeon General of the Public Health Service”, the 

composition of smokers changed such that genetics became a more important determinant of 

smoking status. They followed this study up in an independent sample (Boardman et al. 

2011) and showed that increasingly strict legislation regarding smoking (e.g., taxes, limits 

on public smoking, and so on) caused the composition of those who remain in the smoking 

group to be increasingly driven by genetic factors. Specifically, as the social and economic 

cost of smoking rose, those who were more able to leave the pool of smokers did so (e.g., 

those for whom smoking was not driven by biological pathways involving nicotine 

dependence), leaving behind a population of smokers with a potentially different biological 

relationship (partially based on genotype) with tobacco. Vink & Boomsma (2011) attempted 

to examine cohort effects in the heritability of smoking and found no evidence for a change. 

However, there are important differences in both the context (Europe versus the US) and the 

cohorts used in their research versus the earlier research by Boardman and colleagues. Vink 

& Boomsma focus on a younger cohort than the previous work and there are dramatically 

different rates of smoking in the US and Europe that could explain these differences (e.g., 

Cutler & Glaeser, 2009).

These studies are important because they suggest that policies that effectively limited 

smoking behaviors in the 1970s and 1980s—such as restricting public consumption of 

tobacco or increasing its cost—are likely to be less effective in the future, as the 

composition of smokers is fundamentally different now than when compared to smokers in 

the past; that is, smokers who continue to smoke in light of increased costs are the most 

inelastic consumers. The contributions of earlier research are limited in one crucial respect 

as they rely upon samples of identical and fraternal twins to estimate heritability. From the 

perspective of this paper, the key limitation is one of selection bias. Standard twin models 

require that both twins be alive at the time of data collection. Given the strong links between 

smoking and mortality, the selection of identical twins who are both still alive may be highly 

correlated with shared genotype. This form of gene-environment correlation has the 

potential to bias gene-by-period interaction analyses (Boardman & Fletcher, 2015).

Recent advances in statistical genetics extend techniques from the twin literature for 

estimation of trait heritability to the case of measured genetic relationships among unrelated 

persons (Yang et al. 2010). In particular, genomic-relatedness-matrix restricted maximum 

likelihood (GREML), as implemented in software (Genome-wide Complex Trait Analysis; 

GCTA) from Yang et al. (2011), have produced heritability estimates of smoking that are 
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generally smaller than the estimates from twin studies, which is to be expected given that 

estimates derived in Yang et al. (2011) are shown to be attenuated due to regression dilution. 

That is, the lower GREML-based h2 estimates are largely the result of attenuation bias due 

to measurement error. In this case, the common genotyping platforms are picking up SNPs 

that are in incomplete linkage (i.e. not perfectly spatially correlated) with the true causal 

SNPs of genetic effects. Even given these limitations, GREML analyses generally support 

the notion that smoking onset is a moderately heritable phenotype (Lubke et al. 2012).

While the GREML approach largely translates the methodology underlying classical twin 

studies to molecular genetic data (genotypic similarity is associated with phenotypic 

similarity), an entirely new paradigm is possible with molecular genetic data. Genome-wide 

association studies (GWAS) are data mining approaches that tend to use large meta-analytic 

samples to estimate the effect of individual SNPs on an outcome. This approach has been 

applied to a large number of phenotypes in the past decade (Welter et al., 2014). The 

Tobacco and Genetics Consortium (2010) has conducted GWAS for having ever smoked, 

cigarettes per day, and other smoking traits. These findings can be used to create a polygenic 

score (PGS) that begins to quantify an individual’s genetic propensity towards smoking. 

PGSs have been used in studies of several traits including obesity (Belsky et al., 2012) and 

education (Rietveld et al. 2013; Conley et al., 2015) as well as smoking (Belsky et al., 2013) 

and are beginning to contribute to our knowledge of how these phenotypes progress over the 

lifecourse. We believe the replication of heritability-based conclusions about cohort effects 

in genetic influences on smoking using PGSs are important since they help ensure that the 

findings are robust and not due to, for example, subtle confounding of genetic relatedness 

with shared environmental influences (c.f. Conley et al. 2014).

In this study, we utilize a nationally representative sample of older Americans from the 

Health and Retirement Study to evaluate the hypothesis that the relative contribution of 

genotype to smoking differs as a function of birth cohort using genetic information from 

unrelated persons. We focus on two research questions. First, do we observe a pattern in the 

genetic influence on smoking behavior over historical time and, if so, how does it compare 

to prior work? We anticipate that the heritability and association with the genetic risk score 

will have a loosely defined “U-shape” with a minimum for the 1940s cohort but overall, the 

genetic influences on smoking should generally increase over time. The second research 

question asks whether this result may be compromised due to selection bias in the sample. 

Building on the observation that genetic risks may not be randomly distributed across space 

(Rehkopf, 2014), we ask whether genetic risks are randomly distributed across time. In 

particular, given that smokers face increased risks of mortality, we hypothesize that the most 

genetically predisposed towards smoking may be underrepresented in the earlier birth 

cohorts in our study due to premature mortality. Concerns involving selection are explored 

throughout this paper.

2. Data

This study focuses on a set of 9,313 non-Hispanic white respondents from the Health and 

Retirement Study (HRS).1 HRS is a longitudinal survey of older Americans on issues 

related to health and the transition out of the workforce. These respondents were born 
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between 1900 and 1970 with the IQR of birth years spanning from 1930 to 1950. Given the 

sample size limitations shown in Figure 1A, we focus on those born between 1919–1959 

(inclusive) in our analyses (N=8,904). The respondents were majority female (58%) and 

85% and 26% reported receiving more than 12 years or 16 years of education respectively. 

We focus on a binary indicator describing whether a respondent ever smoked. The majority, 

57%, of our sample reported smoking at some point. Figure 1B shows the percentage of 

smokers as a function of birth cohort and demonstrates that the percentage of respondents 

who claim to have smoked has remained fairly constant over time with nearly half of the 

respondents from any given birth year saying they were smokers at one point. Figure 1C 

examines changes in the gender composition of the sample over time. The sample is 

majority female in our focal range of 1919–1959 but becomes predominantly women for 

those born after 1950. This has implications for the analyses we describe below.

Genetic data for the HRS is based on DNA samples focus on single nucleotide 

polymorphisms (SNPs) collected in two phases. The first phase was collected via buccal 

swabs in 2006 using the QuiagenAutopure method. The second phase used saliva samples 

collected in 2008 and extracted with Oragene. Genotype calls were then made based on a 

clustering of both data sets using the Illumina HumanOmni2.5-4v1 array. SNPs are removed 

if they are missing in more than 5% of cases, have low MAF (0.01), and are not in HWE 

(p<0.001). We retained 1,698,845 SNPs after removing those which did not pass the QC 

filters.

3. Methods

Traditional behavioral genetics work leveraged the fact that pairs of individuals with known 

biological relationships have expected quantities of alleles shared by descent. For example, 

full siblings share an average of one-half of their alleles by descent and identical twins share 

all of their alleles by descent. In other words, although genetic similarity is unmeasured in 

such cases, the expected genetic covariance between family members of different genetic 

relatedness provides an entry point for understanding the relative contribution of genetic 

variance to overall phenotypic variance in the population. Here, we rely upon the fact that, 

given available molecular genetic data, the genetic similarity of two unrelated individuals 

can be computed. The proportion of alleles shared is assessed by state (IBS) rather than 

descent (IBD) and we use the genetic relationship measure implemented in GCTA (Yang et 

al., 2011). This is essentially a correlation between the count of minor alleles at each loci, 

weighted by the minor allele frequency. We consider only non-Hispanic whites due to the 

fact that these correlations can be problematic measures of genetic similarity when 

considered across racial groups. Consider Figure S5 of Domingue et al. (2014) which 

demonstrates a clear bias in the estimate of genetic similarity for black spouses (e.g., black 

spouses are estimated to be as genetically similar as close relatives). We also note that 

numerous other approaches are possible for computing genetic similarity (Speed & Balding, 

2014 contains an overview of the available approaches).

1Specifically we use the RAND Fat Files (Clair et al., 2011).
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Genetic similarity can then be compared to phenotypic similarity to compute heritability 

estimates (Yang et al., 2011). This technique has been used to study higher-level traits such 

as cognitive abilities (Plomin et al., 2013), alcohol consumption (Vrieze et al., 2013), and 

self-reported health (Boardman et al., 2014). For the non-Hispanic whites in HRS, we find a 

significant estimate for the heritability of having ever smoked (h2=0.22, SE=0.05). This 

result is inline with GREML estimates of smoking initiation among respondents of the 

Netherlands Twin Register Biobank Study who estimate a heritability of .19 for smoking 

initiation and .24 for current smoking (Lubke et al. 2012). Such estimates are narrow-sense, 

additive heritability estimates in that they do not account for dominant or epistatic effects, 

but they are also presumably biased downwards of the true narrow-sense heritability since 

they are focused on only the common variants included in the assay. That is, they suffer 

from attenuation bias to the extent that there is incomplete linkage between the true causal 

SNPs and those that are genotyped.

We also utilize a modified form of the DeFries-Fulker (1985) method to further explore 

whether hypothesized changes in the genetic architecture of smoking are present given the 

selection issues inherent in this sample. For twins, the basic equation underlying this method 

is

(Eqn 1)

where each pair i and j is double-entered (note that we are forcing the intercept to be zero). 

Traditionally, Aij is either 0.5 or 1 for DZ or MZ twins respectively. We now predict the 

phenotype for individual i using the phenotype for all other individuals i′ (where i ≠ i′) via:

(Eqn 2)

We again double-enter all pairs and also mean center yi within the sample. In Eqn 2, Aii′ is 

the estimated genetic similarity from GCTA (standardized across pairs) rather than the IBD 

between twins. Since this approach, which we describe as genome-wide DeFries-Fulker 

(GWDF) has not been previously used with unrelated individuals (to the best of our 

knowledge), we have included a small simulation study in the Appendix demonstrating that 

estimates of b are strongly correlated with GREML heritability estimates.

While the GWDF approach also suffers from attenuation bias due to incomplete linkage 

between causal and genotyped SNPs, there are several advantages to the GWDF approach. 

First, the estimation is essentially a generalized linear model that can be extended to include 

complex survey designs, sampling weights, and other complicated statistical techniques that 

are not available elsewhere. Others have extended the DeFries-Fulker model to the 

multilevel perspective (Boardman et al. 2008) and the same could be done here. Second, 

because of the flexibility of this model, known factors that may confound or mediate the link 

between genotype and phenotype can be adjusted and complex models of gene-environment 

correlation can be assessed empirically without relying on twins. The goal of this model is 

not to estimate heritability per se but to track changes in b3 when Eqn 2 is estimated in 

different birth cohorts. In particular, we hypothesize that b3 will be the smallest for birth 

cohorts in which smoking was largely driven by social factors but will increase across time 
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for cohorts who were socialized about smoking following the 1964 Surgeon General’s 

Report. Note that individual i is included multiple times on the left-hand side of Equation 2 

and thus there may be a violation of standard regression assumptions. In particular, eii′ may 

not be independent of eii″. This may cause underestimation of the relevant standard errors, 

so we consider models which account for the effect of this clustering within individual 

(Lumley, 2004). For reasons we now discuss, we also consider extensions of Equation 2 in 

which additional controls for both individual i and i′ are incorporated on the right-hand side 

of Equation 2.

An important concern is that the HRS is unlikely to have a consistent sample of respondents 

from the various birth cohorts given mortality effects (e.g., Zajacova & Burgard, 2013). 

Figure 2 shows the change in mean as a function of birth year for several key variables: 

having ever smoked, years of education, height (at wave 8), and mean BMI across all waves. 

The means of all non-smoking variables increase for both males and females as a function of 

birth year. While there are potentially cohort effects that underlie some of these changes, 

there are also known mortality effects within this sample (Zajacova & Burgard, 2013). The 

changes in smoking status are more complicated since they vary by gender. Younger males 

in the sample report smoking at lower rates than older males while the opposite is true for 

women. This gender-specific pattern has been observed in other research (Escobedo & 

Peddicord, 1996). Accordingly, we adjust our models for age and gender.

PGSs were first introduced in 2009 (Purcell et al., 2009) as flexible tools for quantifying the 

genetic contribution to a phenotype. Their prime limitation is that they require much larger 

samples than currently exist to explain anywhere near the full narrow-sense heritability (see 

Dudbridge, 2013). PGSs for lifetime smoking status were calculated for each respondent 

using results from a recent GWAS on smoking (Tobacco and Genetics Consortium, 2010). 

Briefly, SNPs in the HRS genetic database were matched to SNPs with reported results in 

the GWAS. The matched set of SNPs was then “pruned” to account for linkage 

disequilibrium using the clumping procedure (which considers the level of association 

between the SNP and the phenotype, not simply LD) in the second-generation PLINK 

software (Chang et al., 2014).2 For each of these SNPs, a loading was calculated as the 

number of smoking associated alleles multiplied by the effect-size estimated in the original 

GWAS. SNPs with relatively large p-values will have small effects (and thus be down 

weighted in creating the composite), so we do not impose a p-value threshold. Loadings 

were summed across the SNP set to calculate the polygenic score. The score was then 

standardized to have a mean of 0 and SD of 1. Having ever smoked was correlated with its 

PGS at 0.088. We consider the estimated coefficient of the PGS in regression models where 

having ever been a smoker is predicted as a function of the PGS and other control variables.

4. Results

Figure 3A summarizes GREML heritability estimates for smoking from overlapping 12-year 

birth cohorts, the first such cohort centered in 1925 and the last such cohort centered in 

2Clumping takes place in two steps. The first pass is done in fairly narrow windows (250kb) for all SNPs (the p-value significance 
thresholds for both index and secondary SNPs is set to 1) with a liberal LD threshold (r2=0.5). In a second pass, SNPs remaining after 
the first prune are again pruned in broader windows (5000kb) but with a more conservative LD threshold (r2=0.2).
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1953. The pattern observed is comparable to what was shown in the Boardman et al. (2010) 

paper in which the heritability for smoking bottomed out for cohorts born in the early 1940s 

(those who would later be at the peak age of smoking when the Surgeon General’s report 

was released). Specifically, we estimate a heritability of smoking of roughly 0.4 for the 

earliest cohort (1925), a value of 0.13 for the 1939 cohort, and a return to 0.32 for the latest 

(1953) cohort. Despite the convergence of our findings with previously published work, it is 

important to note the very large confidence intervals for each birth cohort estimate. Recall 

that for our total sample of 9,313 we estimate a heritability of 0.22. Using the online GCTA-

GREML power calculator3, the power to detect such a heritability is 1 in the full sample of 

9,313 respondents. But our smallest cohort only contains 2,042 respondents and the estimate 

ranges from nearly zero to 0.6. For this group, we have a power of only 0.34. Accordingly, 

we caution readers to evaluate the pattern of the results from the GREML models in light of 

the fact that we have clearly limited power to detect significant heritability in some 

situations.

To further evaluate the pattern of the results using a different method, Figure 3B presents the 

estimates from the GWDF models. Results in Figure 3B are adjusted for the multiple entry 

of individual outcomes and with controls for the birth year and gender of each individual as 

well as within-individual interactions between birth year and gender. Given that the cohort 

effects might not be linear, we also replaced the birth year terms (both main effect and 

interactions) with set of 3 B-splines (results not shown). Results were virtually identical. 

Although the scale of the dependent variable is very different in the GWDF models, it is 

important to note that we continue to see a similar pattern in which the minimum value of 

genetic influence on smoking behaviors seems to be among those born between 1933 and 

1945.

Figure 4A uses the genetic risk score for smoking to evaluate the correlation between 

specific polymorphisms and smoking behavior as a function of birth cohort. These results 

demonstrate an increase in the bivariate correlation between our PGS and smoking from 

roughly 0.05 in the earliest birth cohorts to above 0.1 in the latest cohorts. We do not 

observe the U-shaped association described in Figures 3A and 3A as well in the Boardman 

et al. (2010) paper but the results continue to support the notion that genetic influences on 

smoking have increased in successive birth cohorts. However, this increase could be 

partially due to the selection issues previously mentioned that are of concern. In particular, 

the most genetically predisposed to smoke from earlier cohorts may have died at higher rates 

due to their having smoked for longer periods. Thus, earlier cohorts would appear (in terms 

of who remains in the sample) less genetically susceptible to smoking. Figure 4B considers 

the average genetic risk score as a function of birth year. While it suggests that there might 

be selection involving the score, it is difficult to say authoritatively (i.e., the increase over 

time is consistent with random fluctuations as indicated by the confidence intervals). Allele 

frequencies for loci linked to smoking should be constant in the population over time 

because the risk for death occurs well after prime fertility years. Thus, we argue that this 

very slight rise may point to systematic bias in our sample such that the most genetically at 

3Available at http://spark.rstudio.com/ctgg/gctaPower/. The method is described in Visscher et al. (2014).
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risk from the earlier birth cohorts are not in the HRS data due to premature mortality or 

sample attrition.

Figure 5 is a refinement of Figure 4A designed to adjust for this selection. Figure 5A shows 

the estimated “probability”4 of smoking based on a model that controls for the PGS, birth 

year, gender, interaction of PGS and birth year, and interaction of PGS and gender.5 Figure 

5B allows for a more flexible main effect of birth year by modeling the three B-splines 

based on birth year while also including an interaction between birth year (modeled directly, 

not as the set of B-splines) and PGS.6 In both models, the interactions of birth year and PGS 

are marginally significant. The interaction between being female and the PGS is also 

significant for both models. Figure 5A shows that the estimated probabilities of smoking for 

males and females are higher for those born in later cohorts who have more genetic risk 

(PGS=1) compared to those with less genetic risk (PGS= −1). The effect is more 

pronounced for females than males. Fitted probabilities based on the more flexible model in 

Figure 5B are more difficult to interpret, but there is again an increasing probability of 

smoking at later birth cohorts, especially for females. Overall, these additional models 

support the notion that the genetic factors linked to smoking behaviors are stronger for more 

recent compared to older birth cohorts.

5. Discussion

In this paper, we use three different statistical methods (GREML, GWDF, and PGS) and a 

nationally representative sample to evaluate the claim that the heritability of smoking has 

changed over recent birth cohorts. Our research relies on genetic inference using genome-

wide similarity among unrelated persons rather than the use of twins as in previous work 

(Boardman et al. 2010; 2011). The most important result to emerge was a consistency with 

the direction and functional form of the work published earlier. Overall, we observe an 

increase in the relative contribution of genotype to explaining variation in smoking behavior. 

For the results based on genetic similarity (GREML and GWDF), the increase was from 

1939 to 1953 whereas results from PGS approach were focused on an estimated increase 

over the entire timespan from 1919 to 1959. Confidence intervals for the genetic similarity 

results are quite large and limit our ability to make authoritative claims. Results based on the 

risk score analysis are stronger, although there are potential limitations for these findings as 

well. For example, it could be that the later birth cohorts are more comparable to the 

samples used in the TAG (2010) GWAS and that this is the reason for apparent rise in 

association between genotype and phenotype. Thus, we cannot say why the two sets of 

results differ, though we do want to emphasize that the upward trend is consistent across the 

middle of the twentieth century in both analyses.

Our work has implications for the gene-environment interaction literature. Our results 

suggest that the environment—birth cohort in our case—is critical for understanding genetic 

4We used linear regression models instead of logistic regression models so as to ease interpretation of the relevant coefficients.
5Estimates for PGS and its interaction with birth year and being female were 0.010 (p=0.43), 0.001 (p=0.06), and 0.026 (p=0.01) 
respectively.
6Estimates for PGS and its interaction with birth year and being female were 0.010 (p=0.50), 0.001 (p=0.05), and 0.026 (p=0.01) 
respectively.
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contributions to a particular health behavior. We hypothesize that those with the relevant 

genetic risk factors for smoking are smoking as a function of the genetic risk in a fairly 

consistent manner in all cohorts. However, those without genetic risks are responding to 

social cues that are changing over time. The environment is not causing genes to operate 

differently, rather the environment simply clarifies or masks when genotype is associated 

with smoking phenotype at a population level. Boardman et al. (2012) make a similar claim 

when they show that the link between the risky e4 allele in the ApoE gene more strongly 

predicts cognitive decline in the most organized and safe neighborhoods and has very little 

to do with cognitive decline in the most disorganized neighborhoods. Some have called this 

the social push perspective (Raine 2002). As the name suggests, when the environment is 

pushing the phenotype, such as for smoking amongst those born in the 1920s and cognitive 

decline for those in disorganized neighborhoods, genotype-phenotype associations are 

harder to observe.

Our guiding hypothesis has been that as more information and evidence emerged about the 

dangers of smoking during the second half of the Twentieth century, the biology of tobacco 

use become more salient since those who were able to heed the novel information (i.e. were 

less biochemically or behaviorally drawn to nicotine) dropped the habit or did not start, 

leaving those most biologically prone to smoke in the dwindling group of tobacco users. In 

this dynamic, the release of information like the 1964 Surgeon General’s Report on the 

dangers of smoking would have leveled the environmental playing field. That is, post-1964, 

we begin to see a general reduction in the environmental variation responsible for smoking, 

leaving a greater proportion of the overall variation to be explained by genetics. An 

alternative dynamic is that as the dangers of smoking became increasingly well known, this 

increased variance in information available to potential smokers (c.f., the fundamental cause 

hypothesis of Link and Phelan [1995]). Under this scenario heritability should fall over time 

as the variance in environment (i.e. information about smoking) increases. As shown here, 

we did not find evidence for this alternative scenario.

That does not mean, however, that multiple dynamics are not driving changes in heritability 

over time in our data. In addition to the changing informational landscape, other relevant 

aspects of the environment may be increasing or decreasing in salience (such as relative 

income shares and the cost of tobacco products). Furthermore, it could be the case that those 

who were the most biologically prone to smoking may also experience higher mortality 

incidence in our sample due to cigarette consumption. This would most likely lead to an 

underestimation of the increase in heritability that we document since those with the 

strongest genotypic influences are not observed due to premature death. However, if the 

same genotype that draws individuals to smoke more also increases their robustness to the 

ill-effects of tobacco products, the effect of selective mortality could work in the opposite 

direction: reducing the number of “environmentally induced smokers” earlier so that we do 

not observe them, leaving those who have the pro-smoking, pro-survival genotype in our 

sample. Thus, disentangling these forces across birth cohorts is a difficult task. We hope that 

the present paper has started on that worthy endeavor, and the issues we raise deserve 

further attention in future research.
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Finally, the findings specific to females are worth further attention. Specifically, we show 

that there has been a larger divergence in the predicted smoking behavior of a genetically 

predisposed female to smoke versus a female without the same genetic predisposition than 

when compared to men (Figure 5A). That is, the role of genotype on smoking behavior is 

stronger for women compared to men and, more importantly, this association seems to have 

increased over time. These findings are somewhat contradictory to other research showing 

that genetic risk factors for substance use phenotypes are stronger for men compared to 

women (Hamilton et al. 2006; Perry et al. 2013). The GxE literature has found evidence for 

two very different mechanisms behind these somewhat contradictory results. The social 

trigger mechanism would anticipate that differences in norms and social roles played by men 

and women, trigger otherwise latent genetic tendencies to respond to stress with 

externalizing behaviors like cigarette smoking (Jackson et al. 2010). In this manner, genetic 

associations should be stronger for men. On the other hand, the social distinction perspective 

(Boardman, Freese, and Daw 2013) anticipates that cigarette smoking is driven by social 

factors for men more than women and thus genetic sensitivity to nicotine dependence may 

have a stronger signal among women compared to men. This is in line with the results that 

we present here. While this does merit further attention, the increase in smoking amongst 

later-born females in Figure 2 may also suggest that it may be due to the selection in our 

sample. That is, the increasing rates of smoking among women in our sample, compared to 

the decreasing rates of smoking among men, points to increasingly select groups of smokers 

who may differ by gender. We examined the sensitivity of our results to this type of attrition 

based selection (based on our models controlling for birth year, especially those which used 

the B-splines), but it is also possible that this pattern reflects a far more complicated story 

about the selection into the smoker status, the role of genes, the role of gender, and the role 

of broad and complex social structures. This should be the grist of future scholarship.
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Appendix: GWDF Validation

We conducted a simulation to demonstrate a correspondence in relatively simple settings 

between GREML heritability estimates and the b estimate from Eqn 2. This simulation was 

based on a random sample of 5,000 respondents from the full set of respondents and random 

sample of 200,000 SNPs. Based on this set of respondents and SNPs, we simulated three 

sets of phenotypes using GCTA. The sets differed only in the true heritability of the 

phenotypes. The true heritabilites for the three sets were 0.25, 0.5, and 0.75. For each level 

of heritability, we simulated ten phenotypes. Thus, we have 30 simulated phenotypes in 

total.

Genetic similarities from the full set of markers (not the reduced set of 200,000 used to 

simulate the phenotypes) were then used to compute GREML heritability estimates as well 

as the b GWDF coefficient. Results are shown in Figure A1. Figures A1A and A1B show 
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that the GREML heritability and GWDF coefficient estimates both increase along with the 

true heritability. The GREML heritability estimates and GWDF b3 estimates are correlated 

with the true heritabilities at 0.91 and 0.86 respectively. More importantly, the heritability 

estimates were strongly correlated (0.92) with the GWDF b3 estimates. The convergence of 

these results using two very different statistical techniques enhances our confidence in the 

validity of the GWDF approach and the empirical results that we present in the paper.

Figure A1. 
Comparison of true heritability (which is known since phenotypes are simulated), GREML 

estimates, and b3 estimates from GWDF models.
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Figure 1. 
(A) Sample size, (B) % ever smokers, and (C) % female in our sample as a function of birth 

year cohort in HRS.
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Figure 2. 
Changes in means by gender (along with fitted trends) for various variables as a function of 

birth year.
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Figure 3. 
(A) Estimated heritability, adjusted for gender and birth year, of having ever been a smoker 

in HRS in overlapping birth windows centered at years show on x-axis. (B) Genome-wide 

DeFries-Fulker coefficients (b3 from Eqn 2) includes adjustments for multiple entry of 

individual outcomes and with controls for the birth year and gender of each individual as 

well as within-individual interactions between birth year and gender.
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Figure 4. 
(A) Bivariate correlation between genetic risk of smoking and ever smoking. (B) Mean 

genetic risk for smoking as a function of birth year.
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Figure 5. 
Estimated probability of ever smoking as a function of PGS, gender, and birth year. (A) 

includes controls for PGS, birth year, gender, interaction of PGS and gender, and the 

interaction of PGS and birth year. (B) includes controls PGS, main effects for three splines 

based on birth year, gender, interaction of PGS and gender, and interaction of PGS and birth 

year. Estimates for females are indicated via the darker gray confidence intervals.
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