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Abstract Disease-modifying alternatives are sorely needed
for the treatment of neurodegenerative disorders, a group of
diseases that afflict approximately 50 million Americans an-
nually. Immunotherapy is one of the most developed ap-
proaches in this direction. Vaccination against amyloid-f3, «-
synuclein, or tau has been extensively explored, specially as
the discovery that these proteins may propagate cell-to-cell
and be accessible to antibodies when embedded into the plas-
ma membrane or in the extracellular space. Likewise, the use
of passive immunization approaches with specific antibodies
against abnormal conformations of these proteins has also
yielded promising results. The clinical development of immu-
notherapies for Alzheimer’s disease, Parkinson’s disease,
frontotemporal dementia, dementia with Lewy bodies, and
other neurodegenerative disorders is a field in constant evolu-
tion. Results to date suggest that immunotherapy is a promis-
ing therapeutic approach for neurodegenerative diseases that
progress with the accumulation and prion-like propagation of
toxic protein aggregates. Here we provide an overview of the
most novel and relevant immunotherapeutic advances
targeting amyloid-3 in Alzheimer’s disease, «-synuclein in
Alzheimer’s disease and Parkinson’s disease, and tau in
Alzheimer’s disease and frontotemporal dementia.
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Introduction

Neurodegenerative disorders of the aging population, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD) and
Frontotemporal dementia (FTD), are characterized by the pro-
gressive accumulation of misfolded protein aggregates that ini-
tially trigger synaptic damage and network dysfunction, and that
eventually lead to loss of selected neuronal populations [1, 2]. In
AD, the proteins amyloid-f3 (Af3) and tau accumulate in the
neocortex, limbic system, and basal forebrain in the form of
plaques and neurofibrillary tangles [3]. In PD and related disor-
ders such as PD dementia, dementia with Lewy bodies (DLB),
and multiple system atrophy (MSA), the protein o-synuclein (-
syn) accumulates in neuronal and non-neuronal cells in cortical
and subcortical nuclei as Lewy bodies, neuronal cytoplasmic
inclusions, or glial cytoplasmic inclusions [4, 5]. Furthermore,
in FTD (amyotrophic lateral sclerosis spectrum disorder) aggre-
gates of either tau, superoxide dismutase 1, TAR DNA-binding
protein 43 (TDP-43), or fused in sarcoma are found [6, 7]. In
addition, recent studies have shown that «-syn can accumulate
in selected brain regions in AD [8], and that TDP-43 aggregates
are found in the limbic system in AD and DLB [9]. These
findings reinforce the idea that abnormal protein accumulation
is key in most neurodegenerative disorders. Under native con-
ditions, most of these proteins can be found as poorly structured
monomers or as dimers or tetramers associated with the plasma
membrane [10-12]. However, under pathological conditions
such as those associated with AD, PD, and FTD, various mo-
lecular weight aggregates of these protein are detected, ranging
from small oligomers to protofibrils and fibrils [13-17].

Most recent evidence suggests that oligomers and probably
also protofibrils are toxic to neurons by disrupting synaptic func-
tion, membrane permeability, calcium homeostasis, gene tran-
scription, mitochondrial activity, autophagy, and/or endosomal
transport [18-21]. Moreover, recent studies have shown that
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propagation and seeding of Af3, tau, and -syn in a prion-like
manner might also contribute to neurodegeneration [22-28].
Remarkably, there is also evidence that these various protein
aggregates can interact with each other [29]. For example, A3
promotes the aggregation of «-syn and tau in AD and DLB [30,
31], x-syn and tau interact in the brain of patients with PD and
DLB [32, 33], a-syn and A3 can form hetero-oligomers [34,
35], and -syn can modulate the fibrillization state of A3 [36].

Progressive misfolding and accumulation of neurotoxic Af3,
tau, and -syn have been associated with an imbalance in the
levels of their synthesis, aggregation, and clearance (Fig. 1).
Mechanisms of clearance include proteolysis, autophagy, and
proteasomal degradation [37, 38]. In this context, it has been
suggested that Af3, tau, and x-syn toxic aggregates might be
major therapeutic targets for these neurodegenerative disorders
(Fig. 1). Thus, therapeutic strategies for AD, PD, and FTD
might require reducing the synthesis, preventing the aggrega-
tion and/or enhancing the clearance of Af3, tau, or o-syn.
Numerous strategies directed at reducing the accumulation of
these proteins have been developed, including the use of small
interfering RNA, antisense RNA [39-43], degrading enzymes
(e.g., cathepsin D, neurosin, neprilysin) [44—46], chaperone-
like molecules that modulate aggregation state (e.g., Hsp70,
[3-syn) [47-50], anti-aggregation compounds (e.g., polyphe-
nols) [51-53], and immunotherapy (passive, active, and T-
cell-based) [54]. Moreover, the recent discovery that toxic olig-
omeric forms of «-syn and tau accumulate in the plasma mem-
brane and are secreted to the extracellular environment has
provided further rationale for the development of immunother-
apeutic approaches for PD, DLB, MSA, FTD, and other
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Fig. 1 Mechanisms of action of immunotherapy for neurodegenerative
disorders. The misfolding and accumulation of amyloid-3, «-synuclein,
and tau has been associated with an imbalance in the levels of their
synthesis, aggregation, and clearance. The toxicity of these proteins is
correlated with their ability to adopt specific conformations (oligomers,
protofibrils) and to propagate from cell to cell, leading to
neurodegeneration. Disease-modifying therapeutic strategies may
require reducing the synthesis, preventing the aggregation and/or
enhancing the clearance of amyloid-[3, «-synuclein, and tau. Specifically,
immunotherapeutic approaches are able to target specific conformational
species and inhibit cell-to-cell propagation of these proteins
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neurodegenerative disorders characterized by the abnormal ac-
cumulation of these proteins [24, 26, 55-58].

Among these strategies, the development of immunothera-
peutic approaches targeting Af3, tau, and o-syn has received
considerable attention in recent years. In this sense, both hu-
moral (active and passive) and T-cell-based approaches have
been explored. While active immunization stimulates the im-
mune system to produce antibodies against target proteins,
passive immunization consists in directly administering anti-
bodies that confer temporary protection against the disease. A
third type of immunotherapy involving the activation of reg-
ulatory T-cells has also been explored for the potential treat-
ment of AD and PD [59, 60]. The advantage of humoral im-
munotherapy over other approaches is that it allows for the
generation of antibodies targeting specific conformations of
Af, tau, or a-syn (monomers, oligomers, and/or fibrils)
(Fig. 1). Moreover, antibodies against these proteins can reg-
ulate inflammation and facilitate the clearance of target pro-
teins via autophagy or microglia (Fig. 2) [61-66].
Neurodegenerative diseases are associated with signs of
chronic neuroinflammation and elevated levels of several
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Fig. 2 Antibodies promote microglia-mediated clearance of aggregated
toxic proteins in neurodegenerative disorders. Toxic oligomeric forms of
amyloid-f3 (Af), a-synuclein (x-syn), and tau are released by neurons to
the extracellular environment in Alzheimer’s disease, Parkinson’s
disease, and frontotemporal dementia brains, where they propagate to
neuronal or glial cells leading to neuroinflammation and
neurodegeneration. Antibodies bind extracellular or membrane-bound
toxic oligomeric conformations of AP, x-syn, and tau, and might
accelerate their clearance by microglia-mediated mechanisms, probably
involving interaction with Fcy receptors (FcyR) and autophagy
degradation (bottom panel). MVB = multivesicular body
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proinflammatory cytokines released from microglia, such as
interleukin-1{, interleukin-6, and tumor necrosis factor-o
[67]. Microgliosis, astrogliosis, and peripheral immune infil-
tration contribute to the cognitive and motor deficits, and lead
to a toxic increase in the levels of reactive oxygen species
[68], and to secondary neurodegeneration, characteristic of
late disease stages [69]. Immunotherapy has been shown to
induce a physiological microglial response (M2 type) and re-
duce the production of proinflammatory cytokines [65, 66],
thus exerting an anti-inflammatory effect in neurodegenera-
tive disorders [70, 71]. However, among the disadvantages
of immunotherapy are the potential for autoimmune re-
sponses, nonspecific inflammatory reactions such as
perivascular edema, need for repetitive administration, lack
of response due to senescence of the innate immune system,
and limited penetration of antibodies into the central nervous
system.

Active and passive immunization strategies are being ex-
plored in several clinical trials for AD and PD (Table 1). The
most advanced studies are those on A3 immunotherapy, for
which 2 active immunization and 5 passive immunization
programs are currently underway. For a-syn, there are 2 active
and 2 passive immunization programs in phase I. For
tauopathies, 2 vaccines and 3 antibodies are currently in phase
I studies. Here we will review the most recent contributions
and advances on humoral immunotherapy approaches for AD,
PD, and FTD targeting A3, «-syn, and tau.

Immunotherapy Targeting A3

The A3 peptide is derived from a larger amyloid precursor
protein (APP) by proteolytic cleavage at the 3- and y-
secretase sites, resulting in the formation of A31-38, AP1-
40, AB1-42, and AP 1-43. Patients suffering from AD often
produce the longer forms of A3 (AB1-42, A31-43), which are
more prone to aggregation and exhibit higher toxicity, while
healthy subjects produce more of the shorter A3 varieties [89,
90]. Therefore, developing antibodies against the longer forms
of AP allows for the selective targeting of the more
fibrillogenic and toxic species in therapy.

Immunotherapy for neurodegenerative disorders was first
established for AD by targeting the A3 peptide. The group of
Schenk et al. [91] pioneered active immunization strategies by
vaccinating APP transgenic mice with A31-42 (AN-1792)
and adjuvant, while Solomon et al. [92] developed a passive
immunization approach using monoclonal antibodies against
A and showing that they reduce fibrillization in vitro. More
recent active immunization strategies have included CAD106
[93], vanutide cridificar [94], and AD02, a synthetic peptide
that mimics the N-terminus structure of the A3 peptide
(AFFITOPE; AFFiRiS AG, Vienna, Austria) [95].
Unfortunately, none of these approaches has resulted in

significant clinical improvements. However, one of the place-
bo formulations for AD02 (renamed ADO04) had a greater
benefit on the primary outcome than the other placebo formu-
lation or any of the 3 ADO2 treatment groups in a phase II
study, suggesting that it could be further developed. Although
the composition of this placebo formulation has not been
disclosed, it is possible that includes the adjuvant alum, which
has been shown to boost adaptive immunity and induce uric
acid production [96], a natural peroxynitrite scavenger [97].
Currently, 2 active immunization trials against A3 are under-
going (Table 1). Lu AF20513 consists of 3 repetitions of a
modified A31-12 sequence, in which the natural T-helper cell
epitopes are engineered to reduce the possibility of inducing
harmful autoreactive T-cell responses and to improve the abil-
ity to mount an effective immune response [74]. ACI-24
(Europe, phase I/I) is a liposome vaccine designed to elicit
an antibody response against aggregated A3 peptides without
concomitant proinflammatory T-cell activation. An array of
AP1-15 sequences are anchored to the surface of liposomes
adopting an aggregated [3-sheet structure that acts as confor-
mational epitope. In preclinical studies, repeated subcutane-
ous injection of ACI-24 into AD transgenic mice generated
high titers of anti-A 3 antibodies, decreasing the concentration
of'insoluble A31-40 and A31-42, and of soluble A31-42 [72,
73]. ACI-24 also improved novel object recognition without
triggering proinflammatory responses [73]. Finally, DNA vac-
cines against A31-42 [98, 99], alone or in combination with
protein antigens [100, 101], have shown promising results at
the preclinical stage. DNA-based vaccination utilizes direct
injection of DNA-encoding genes for protein or peptide
antigens, and it does not require the use of adjuvants. Co-
immunization with a mixture of A3 1-42 DNA and protein
is capable of inducing Th2-type A-specific antibodies
while simultaneously suppressing unwanted inflammatory
reactions and avoiding T-cell-mediated autoimmune re-
sponses [100].

Initial active immunization using AN-1792 (full-length
A1-42) highlighted the risk of autoimmune responses when
using this type of therapeutic strategy, as 6 % of the patients in
that study suffered with meningoencephalitis associated with
T-cell infiltration [102]. Since then, numerous efforts have
been devoted to reduce antigen-induced inflammatory T-cell
activation, including the use of multiple small fragments of
AP instead of the full sequence (e.g., CAD106, vanutide
cridificar), and the use of small synthetic peptides that mimic
the original epitope without carrying its sequence (ADO02).
However, the marginally positive effects observed with active
immunization against A3 suggest that other type of ap-
proaches might be more beneficial for patients with AD. In
this sense, the use of antibodies directed against specific epi-
topes or conformations of A3 has yielded promising results.
Passive immunization approaches using monoclonal antibod-
ies against A 1-40 [103], AB1-42 [104], pyroglutamate A3
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Table 1  Current clinical trials on immunotherapies for neurodegenerative diseases

Drug Trial phase Epitope Sponsor Reference(s)
Ap
Active immunotherapy: vaccines
ACI-24 v 1-15 aa AC Immune SA [72, 73]
Lu AF20513 I 1-12 aa, modified H. Lundbeck A/S [74]
Passive immunotherapy: antibodies
BAN2401 I Protofibrils Eisai Inc. [75]
Crenezumab I 12-23 aa Genentech [76]
Flebogamma it Immnunoglobulin Instituto Grifols, S.A. [77]
Gantenerumab 1 Conformational Hoffman-La Roche [78-80]
Solanezumab I 13-28 aa Eli Lilly [81, 82]
«-Syn
Active immunotherapy: vaccines
AFFITOPE PDO1A I NP Affiris [66, 83]
AFFITOPE PD0O3A I NP Affiris [66, 83]
Passive immunotherapy: antibodies
BIIB054 I NP Biogen
PRX002 I C-terminus Prothena Biosciences [84]
Tau
Active immunotherapy: vaccines
AADvac-1 I 294-305 aa Axon Neuroscience SE [85]
ACI-35 I Fragments (pS396, pS404) AC Immune SA [86]
Passive immunotherapy: antibodies
BMS-986168 1 eTau Bristol-Myers Squibb [87]
C2N-8E12 1 NP C2N Diagnostics
RG7345 1 pS422 Hoffmann-La Roche [88]

Information regarding clinical trials was found at clinicaltrials.gov and alzforum.org as of October 2015

A = amyloid-f3; -Syn = a-synuclein; NP = not provided; aa = amino acids

[105], oligomers [106], or protofibrils [107—109] have been
developed. Currently, clinical trials with the antibodies
BAN2401 (recognizing protofibrils) [75], crenezumab (aggre-
gated species) [76], gantenerumab (fibrils) [78—80], and
solanezumab (A3 mid-domain) [81, 82] are ongoing
(Table 1). However, other programs using antibodies such as
bapinezumab (N-terminus) [110] and ponezumab (C-
terminus) [111] have been discontinued as they did not meet
expected goals. Finally, owing to the lack of significant dis-
ease modification in phase II and III trials, the use of nonspe-
cific strategies such as intravenous immunoglobulin
[Gammagard (Baxter Healthcare Corp., Deerfield, IL, USA),
Octagam (Octapharma, Hoboken, NJ, USA), Flebogamma
(Instituto Grifois SA, Barcelona, Spain) [77]] is relatively los-
ing momentum for the treatment of AD [112]. These findings
suggest that passive immunization against A3 holds promise
for disease modification in AD; however, more research is
needed to improve the outcome of the immunotherapeutic
treatments. This might include using immunotherapy as a pre-
ventive approach prior to the onset of symptoms, co-
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immunizing with both anti-A 3 and anti-tau antibodies in clin-
ical trials, developing antibodies with better specificity to the
toxic forms of A3, and boosting antibody penetration into the
brain [113].

Immunotherapy Targeting «-Syn

«-Syn is a synaptic protein involved in synaptic transmission
and vesicle release that is specifically upregulated in a discrete
population of presynaptic terminals during acquisition-related
synaptic rearrangement [114, 115]. «-Syn was initially iden-
tified in AD brains associated with plaque formation and neu-
rodegeneration [116, 117]. The abnormal aggregation of o-
syn is correlated with the neuropathological changes observed
in PD and other synucleinopathies [13, 118], and therefore
inhibiting «-syn aggregation would be a key mechanism for
preventing its toxicity.

Initial immunotherapeutic studies were performed using
vaccination with the full human o-syn protein [119]. Active
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immunization of x-syn transgenic mouse models of LBD de-
creased accumulation of aggregated x-syn and reduced neu-
rodegeneration [119]. Furthermore, antibodies produced by
immunized mice promoted the degradation of «-syn aggre-
gates, probably via lysosomal pathways [119]. These results
suggested that o-syn vaccination is effective in reducing neu-
ronal accumulation of o-syn aggregates and that further de-
velopment of this approach might have a potential role in the
treatment of synucleinopathies.

Other active immunization approaches using AFFITOPEs
(AFFiRiS AG) that mimic abnormal conformations of «-syn
have been studied in animals model of PD and MSA [65, 66].
AFFITOPEs that mimic the C-terminus region of x-syn are
able to elicit an immune response specific to o-syn oligomers
[66]. Vaccination with one of these AFFITOPEs (AFF 1) re-
sulted in high antibody titers against x-syn aggregates, de-
creased accumulation of a-syn oligomers, reduced degenera-
tion of tyrosine hydroxylase fibers in the caudoputamen nu-
cleus, and improved motor and memory deficits in 2 x-syn
transgenic models [66]. Moreover, when administered to a
transgenic model of MSA, AFF 1 also induced a reduction
in neurodegeneration and demyelination in neocortex, stria-
tum, and corpus callosum [65]. The clearance of x-syn in-
duced by AFF 1 involved activation of microglia, increased
anti-inflammatory cytokine production, and reduced spread-
ing of o-syn to astroglial cells [65, 66]. These studies sug-
gested that vaccination with AFFITOPEs could help amelio-
rate the neurodegenerative pathology in synucleinopathies. In
this sense, phase I clinical trials with the AFFITOPEs PDO1A
and PDO3A for PD and MSA, respectively, are currently on-
going (Table 1).

Passive immunization approaches using antibodies against
a-syn are also being actively pursued. Different groups have
investigated which region of the «-syn protein is the best
target for the development of disease-modifying monoclonal
antibodies. We and others have observed that antibodies that
recognize an epitope in the C-terminus of x-syn are more
effective at ameliorating the pathology in transgenic mouse
models of PD, as they clear intracellular aggregates, inhibit
a-syn propagation, and prevent C-terminus cleavage of the
protein, which may lead to increased aggregation [54, 84,
120, 121]. However, other groups have reported that antibod-
ies against the N-terminus are also effective at clearing o-syn
aggregates, reducing their propagation, and diminishing mo-
tor dysfunctions [122, 123]. Together, these reports support
the value of immunotherapy with antibodies directed against
a-syn for PD, and in this sense the C-terminus antibody
PRX002 (AFFiRiS AG) and the antibody BIIB054 (Biogen,
Cambridge, MA, USA) are currently being tested in phase I
clinical trials (Table 1).

Interestingly, and as mentioned before, antibodies against
«-syn may not only reduce x-syn levels, but also reduce its
oligomerization and fibrillization in living cells, thus reducing

the pathology in mouse models of PD [66, 124, 125].
Furthermore, antibodies may also prevent cell-to-cell propa-
gation of «-syn and facilitate the clearance of extracellular oc-
syn [84, 121, 122] (Fig. 2) . Importantly, both aggregation and
cell-to-cell propagation are intimately related to -syn toxicity
and PD pathology, suggesting that these processes are prom-
ising therapeutic targets for immunotherapy.

Immunotherapy Targeting Tau

In AD and other tauopathies such as FTD,
hyperphosphorylated tau accumulates within neurons in the
form of neurofibrillary tangles [126—131]. Importantly, as
cognitive impairments closely correlate with the extension of
tau pathology [132, 133], removing neurofibrillary tangles has
become one of the main therapeutic goals for the treatment of
AD and FTD [134, 135]. In this regard, it has been shown that
both active and passive immunization against tau reduce its
accumulation and slow or prevent behavioral deficits in trans-
genic mouse models of tauopathy [135-142].

Active immunotherapy using phosphorylated tau epitopes
has shown promising results in animal models [136, 142], and
2 tau vaccines are currently in phase I trial for AD, AADvac-1,
and ACI-35 (Table 1). AADvac-1 consists of a synthetic pep-
tide derived from amino acids 294-305 of the tau sequence,
although the precise molecular nature of the antigen has not
been disclosed. ACI-35 is a liposome-based vaccine that
elicits an immune response against pathological conformers
of phosphorylated tau without mounting autoimmune B- or T-
cell responses against physiological tau conformations. The
vaccine contains 16 copies of a synthetic tau fragment phos-
phorylated at S396 and S404, and anchored into a lipid bilay-
er. In the tau P301L transgenic mice, ACI-35 injection rapidly
generates high titers of polyclonal antibodies specifically di-
rected against phosphorylated tau. The resulting antibodies
bind neurofibrillary tangles in mouse brain tissue sections
and are able to reduce soluble tau, as well as insoluble, aggre-
gated tau in brain extracts [86].

Antibodies against phospho-tau and tau oligomers have
also been developed and tested at preclinical levels.
Mechanistically, these antibodies seem to act either by pro-
moting microglial clearance (Fig. 2), or by blocking neuronal
uptake of the protein [143]. Passive immunization with anti-
phospho-tau antibodies reduce tau pathology and functional
deficits [137, 144-146], and antibodies targeting tau oligo-
mers have also shown promise in transgenic models [136,
147], including a concomitant upstream reduction in A3 pa-
thology [148]. In this sense, there are 3 anti-tau antibodies
currently being studied in phase I trials (Table 1). BMS-
986168 targets extracellular, N-terminally fragmented forms
oftau (eTau) that can induce an increase in A3 production and
contribute to the spreading of the pathology [87]. This
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antibody reportedly neutralizes eTau toxicity in mouse models
of FTD. RG7345 is a humanized monoclonal antibody
targeting phospho-tau (pS422). Phosphorylation of tau at
S422 has been linked to the relocalization of tau away from
microtubules and toward the somatodendritic compartment of
the neuron [149]. It has been shown that targeting the pS422
tau epitope with active vaccination decreases levels of insol-
uble phosphorylated tau and improves behavioral perfor-
mance in transgenic mouse model of tauopathy [142].
Moreover, in a transgenic mouse model of AD, anti-tau
pS422 antibodies are able to reduce accumulation of tau and
induce its clearance via lysosomal pathways [88]. Anti-tau
antibodies are internalized by neurons with tau aggregates
via interaction with Fcy receptors, and this internalization
leads to the clearance of tau pathology in primary neurons
[150], a mechanism that is probably shared with antibodies
against oc-syn (Fig. 2) [121]. Finally, the recombinant human-
ized anti-tau antibody C2N-8E12 has recently begun a phase I
clinical study in patients with progressive supranuclear palsy.

Developing New Technologies for Inmunotherapy

Passive immunization using immunoglobulins, voluminous
proteins that do not easily cross the blood—brain barrier
(BBB) and recognize a limited variety of epitopes, may yield
only modest results. Therefore, efforts have recently been fo-
cused on the development of therapeutic single chain antibod-
ies [single chain variable fragment (scFv)], fusion proteins of
the variable regions of the heavy and light chains of immuno-
globulins connected with a short linker peptide of 10-25 ami-
no acids. scFvs retain antigen-binding properties and can be
easily screened for desired affinities using phage display
methodology. Using this type of approach, scFvs that detect
individual conformational species of a-syn have been identi-
fied [151-153], and could be potentially used to discriminate
among protein conformers for the differential treatment of
synucleinopathies or for diagnostic purposes [154].
Moreover, scFvs can be further modified to increase BBB
penetrability and facilitate the clearance of o-syn. In this
sense, a fusion protein comprising a scFv against «-syn plus
the low density lipoprotein domain of apolipoprotein B was
recently studied in a transgenic model of DLB. The brain-
targeted fusion antibody easily crosses the BBB and gets in-
ternalized by neurons using the endosomal sorting complexes
required for transport (ESCRT) pathway for enhanced degra-
dation of a-syn aggregates [151], thus attenuating neuronal
degeneration in vivo. Similarly, a fusion protein comprising a
scFv and a specific protease can further aid in the clearance of
aggregation-prone proteins [155]. Finally, the use of gene
therapy with intracellular scFv (intrabodies) is also being ex-
plored for the detection and clearance of intracellular o-syn
aggregates [156—158].
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Preclinical and clinical studies suggest that immunotherapy
against A3, x-syn, and tau is a promising approach for the
treatment of AD, PD, and FTD. Furthermore, as these proteins
may co-aggregate and/or regulate each other [29, 30,
159-161], immunization against one of them could reduce
the aggregation or toxic modification of the others. For exam-
ple, immunization against A3 might be helpful at reducing «-
syn and tau if administered at early disease stages [62]; like-
wise, o-syn antibodies might also be helpful in AD [162], and
immunization against tau might be useful for PD [161, 163].
In this sense, identifying and targeting polyvalent antigens or
using single-chain polyvalent antibodies targeting simulta-
neously Af3, tau, and «-syn could have synergistic effects,
as it occurs with polyvalent vaccines for certain cancers and
infections [164, 165]. In the case of AD, targeting both Af3
and tau at the same time might improve the outcome of im-
munotherapeutic clinical trials, as it is likely that both proteins
synergistically contribute to the progression of the pathology.
Unfortunately, owing to the fact that accumulation of toxic
proteins is an early event in neurodegenerative diseases, it is
possible that immunization would be more successful as an
early or preventive strategy rather than therapeutic one.
Therefore, clinical trials using active or passive immunization
may yield better results if performed in non-diseased or early-
stage patients. Immunotherapy also has anti-inflammatory ef-
fects, probably by reducing extracellular levels of proinflam-
matory antigens, stimulating microglial clearance of toxic pro-
tein aggregates, and attenuating microglial inflammatory re-
sponses, leading to neuroprotective effects that may be also
beneficial in late disease stages. As many of the antibodies
described here have been developed against specific patholog-
ic conformers of A3, «-syn, or tau, these antibodies could also
be used as biomarker tools for diagnosis. In this sense, it has
been suggested that autoimmune reactions towards specific
proteins involved in the disease pathology can be used as
biomarkers of neurodegeneration in both AD and PD, espe-
cially in early disease stages [166—168]. Antibodies that rec-
ognize conformational epitopes specific of amyloid fibrils
have been found in sera of healthy and diseased patients
[169], suggesting that autoimmune reactivity can play a role
as an amyloid clearance mechanism in both health and dis-
ease. Many neurodegenerative diseases have similar symp-
toms as they result from the aggregation of the same pro-
tein(s), making diagnosis challenging at times [2]. Using the
antibodies developed against specific conformations of these
proteins as diagnostic tools would allow the clinician to make
accurate decisions about which therapy to prescribe
[170-172], greatly benefiting the therapeutic regimen and tru-
ly opening the door for personalized medicine. Moreover, it
will probably be the case in the future that several immuno-
therapeutic options will be available for each disease, so ther-
apy customization will become crucial. Finally, proteins other
than A3, a-syn, and tau do accumulate in neurodegenerative
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disorders and are potential targets for immunotherapy as well.
These include (3-secretase [173], presenilin-1, leucine-rich re-
peat kinase 2 (LRRK?2), superoxide dismutase-1 [174—176],
TDP-43, and fused in sarcoma, among others. It is possible
that simultaneously targeting these proteins would drastically
improve the outcome of the immunotherapeutic approach.
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