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INTRODUCTION

Fluid-attenuated inversion recovery (FLAIR) is a special 
inversion recovery pulse sequence with a long repetition 
time (TR) and echo time (TE), and an inversion time 
(TI) that effectively nulls signals from the cerebrospinal 
fluid (CSF) (1-3). Although FLAIR images are heavily T2-
weighted images (T2WI), contrast enhancement on FLAIR 
imaging is the result of a mild T1 effect that is produced 
by the long TI; thus, lesions that show enhancement on 
contrast-enhanced T1-weighted imaging (CE-T1WI) also 
show enhancement on contrast-enhanced FLAIR (CE-FLAIR) 
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images. 
Many clinical studies have shown that CE-FLAIR offers 

more information  than CE-T1WI alone. This article describes 
the diagnostic importance of CE-FLAIR imaging for various 
intracranial pathologic conditions, as well as normally 
enhancing structures on CE-FLAIR imaging. Additionally, 
some distinctive conditions detected following gadolinium 
(Gd) administration such as the hyperintense acute 
reperfusion marker (HARM) and Gd encephalopathy related 
to renal failure will be discussed.

Underlying Mechanism of Gadolinium 
Enhancement

Intravenous magnetic resonance (MR) contrast agents 
are frequently used to improve lesion detection and 
characterization of central nervous system (CNS) disorders. 
The commonly used contrast agent, Gd, shortens both 
the T1 and T2 relaxation times of tissues in which it has 
accumulated. However, lesion contrast enhancement is 
caused predominantly by the T1-shortening effect at 
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enhancing T1 effects. In addition, unlike CE-T1WI, CE-
FLAIR images do not show contrast enhancement in 
normal vascular structures and normal meninges (4, 5, 
14). Therefore, CE-FLAIR images are highly effective in the 
detection of sulcal or meningeal infection, inflammation 
and metastases that abut the border of the CSF. However, in 
CE-FLAIR imaging alone, the observed hyperintensity lesion 
may be due to either T2 lengthening or T1 shortening, thus 
limiting the usefulness of the FLAIR sequence. Therefore, 
the FLAIR sequence should be performed with both pre- and 
post-contrast scans (4-6). 

Contrast Enhanced MRI Protocol

In our study, contrast agent (gadobutrol [Gadovist]; 
Bayer Healthcare, Berlin, Germany) was administered 
at the standard dose of 0.1 mmol/kg of body weight. 
Postcontrast images were obtained shortly after contrast 
material administration. For each patient, the MR imaging 
was performed using 1.5T scanner (Avanto; Siemens Medical 
Solution, Erlangen, Germany) or 3T scanner (Skyra; Siemens 
Medical Solution, Erlangen, Germany). The MR imaging 
parameters for the FLAIR images were 4780–9000/93–
124/1745–2497 ms/150°/320–384 x 196–235 (TR/TE/TI/
flip angle/matrix). The other parameters were as follows: 
section thickness of 5 mm with a 2 mm gap, field of view 
of 193 x 220 mm, number of excitations of 2; and the 
acquisition time was 2 minutes 33 seconds and 2 minutes 
42 seconds, respectively. Axial CE-FLAIR imaging in all 
patients was performed immediately after the routine CE-
coronal and axial T1WI. Scanning of axial CE-T1WI and axial 
CE-FLAIR imaging was started at 2 minutes 40 seconds, 
and 5 minutes after the injection of contrast material, 
respectively. Although previous studies suggested some 
benefits of delayed CE imaging (15-17), we did not acquire 
additional delayed FLAIR images.

Normal Enhancement on CE-FLAIR Imaging

Understanding the normally enhancing structures on CE-
FLAIR imaging can provide a reference point for routine 
interpretation (18). However, literature on the evaluation of 
the normal pattern of enhancement on CE-FLAIR imaging in 
the adult brain is rare.

According to our experience and previous reports in 
children, the choroid plexus, pituitary infundibulum and 
cavernous sinus show relatively intense enhancement, 

clinical doses (4-7). Contrast enhancement in the CNS is the 
result of a combination of 3 processes: for intra-axial brain 
lesions, the blood brain barrier (BBB) must be disrupted 
for Gd to enter the extracellular space; for extra-axial 
lesions, enhancement is observed in lesions with relatively 
high vascularity; and for leptomeningeal regions, contrast 
leakage occurs from vessels into the CSF (8-11). Although 
T1WI is typically used for post contrast examinations, CE-
FLAIR is increasingly used currently. 

The differences in enhancement characteristics between 
CE-T1WI and CE-FLAIR images have been shown in previous 
studies, and can be explained by a combination of a 
different T1-shortening effect at a certain concentration 
of Gd and a different T2 effect according to the vascularity 
of a lesion (5, 10, 12, 13). Although Gd concentration 
alone cannot explain all the phenomena of intracranial 
enhancement in vivo, our phantom study (Fig. 1) showed 
that, the FLAIR sequence was more sensitive to T1 
shortening than T1WI at lower concentrations of Gd, while 
the FLAIR sequence was sensitive to T2 effects at high 
Gd concentrations. This indicates that faintly enhancing 
lesions on CE-T1WI might be depicted more clearly on CE-
FLAIR images, but marked enhancing lesions with large 
Gd accumulation show no enhancement on FLAIR images 
because the signal-reducing T2 effects obscure the signal-

Fig. 1. Phantom study using increasing concentrations of Gd-
DTPA on T1WI and FLAIR imaging. FLAIR imaging demonstrates 
higher signal intensity at 0.02% Gd-DTPA than T1WI and lower signal 
intensity at 0.1%, 0.8%, and 4% Gd-DTPA. These findings indicate 
that FLAIR sequence is more sensitive than T1WI images at lower 
concentrations of Gd. FLAIR and T1WI was obtained using same 
parameters as with patients. T1WI (TE = 9 ms, TR = 1800 ms, TI = 
1745 ms); FLAIR (TE = 124 ms, TR = 9000 ms, TI = 2497 ms). FLAIR = 
fluid-attenuated inversion recovery, Gd = gadolinium, SD = standard 
deviation, TE = echo time, TI = inversion time, TR = repetition time, 
T1WI = T1-weighted imaging
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and the pituitary gland, pineal gland and nasal mucosa/
turbinates are mildly enhanced (Fig. 2). However, unlike 
CE-T1WI, FLAIR enhancement in the pineal gland, pituitary 
gland and nasal mucosa/turbinates can be difficult to 
recognize, or show subtle changes due to intrinsic T2 
prolongation on pre-contrast FLAIR images. On CE-FLAIR 
imaging, most blood vessels do not show enhancement, 
probably due to a T2 effect of the FLAIR sequence. 
Additionally, the degree of enhancement in normal 
intracranial structures on CE-FLAIR imaging appears less 
intense than that on CE-T1WI, probably because of a mild 
T1 effect of FLAIR imaging. 

Parenchymal Lesions

Contrast-enhanced-FLAIR imaging has several advantages 
for the detection of superficial parenchymal lesions and 
brain metastasis. Suppression of the CSF signal, no or 
minimal enhancement of blood vessels, reduction of phase-
shift artifacts derived from enhanced blood vessels or 
dural sinuses, and better detection of peritumoral edema 
make lesions more conspicuous, and these features can 
be exploited in the detection of superficial lesions and 
metastatic tumors over CE-T1WI (5, 19-22).

However, the potential pitfall of CE-FLAIR imaging in 

Fig. 2. Normal enhancement on CE-FLAIR imaging. There is 
normally strong enhancement in choroid plexuses (arrowheads), 
pituitary infundibulum (empty arrow) and cavernous sinuses (solid 
arrows). Mild enhancement in pineal gland (curved arrow) is also 
noted. Most blood vessels are poorly enhanced. CE-FLAIR = contrast-
enhanced fluid-attenuated inversion recovery 

Fig. 3. Parenchymal metastasis from breast cancer. 
FLAIR MR imaging is limited regarding enhancing lesions with prominent surrounding edema. CE-T1WI (A) depicts enhancing lesion (arrows) 
in left cerebellar hemisphere more clearly because surrounding edema is hypointense. CE-FLAIR imaging (B) depicts edema (empty arrows) as 
hyperintense, reducing lesion-to-background contrast of metastasis (solid arrow). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion 
recovery, T1WI = T1-weighted imaging

A B
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enhancing parenchymal tumors includes the difficulty to 
differentiate lesion enhancement versus hyperintense lesions 
with long T2 relaxation times. On CE-T1WI, it is easier to 
detect enhancing lesions surrounded by a hypointense 
edematous area. In addition, large Gd accumulated lesion 
may not demonstrate enhancement on CE-FLAIR images 
because the signal-reducing T2 effects obscure the signal-
enhancing T1 effects. Hence, for intraparenchymal tumors, 
CE-T1WI can be superior to CE-FLAIR imaging for detecting 
the breakdown of the BBB (Fig. 3) (5, 6, 12, 20, 23-25).

Leptomeningeal Lesions

Infection
Infectious meningitis is the most common form of CNS 

infection. Although the diagnosis of infectious meningitis 
is still based on CSF examination, imaging studies such 
as magnetic resonance imaging (MRI) have been used 
increasingly not only for imaging diagnosis but also 
for monitoring the associated complications. CE-FLAIR 
imaging is more effective than CE-T1WI because it does not 
demonstrate enhancement in the normal vascular structures 
or normal meninges that can be confused with abnormal 
meningeal enhancement on CE-T1WI. Additionally, CE-
FLAIR is more sensitive to lower Gd concentrations due to 

its extreme sensitivity to minimal modification of the CSF 
composition (Fig. 4) (5, 10, 18, 26-31).

Neoplastic Spread into the Subarachnoid Space (Primary 
and Metastatic Tumors)

Likewise, the most specific diagnostic test for 
leptomeningeal carcinomatosis has been cytologic 
examination of CSF. However, this test often produces 
false-negative results. MRI, particularly CE-T1WI, has been 
used as a reliable technique for confirming diagnoses 
and assessing the extent of a lesion and its response to 
therapy. However, CE-FLAIR images show superiority for the 
detection of leptomeningeal disease (Figs. 5, 6). Therefore, 
the combination of unenhanced FLAIR and CE-FLAIR images 
can be a useful adjunct to CE-T1WI for the evaluation of 
leptomeningeal carcinomatosis (5, 10, 14, 15, 18, 23, 32). 

Sturge-Weber Syndrome 
Contrast-enhanced-FLAIR imaging is helpful in depicting 

leptomeningeal angiomatosis in patients with Sturge-
Weber syndrome. The major advantage of CE-FLAIR imaging 
over CE-T1WI is the lack of enhancement in the normal 
vascular structures. CE-FLAIR imaging also provides better 
visualization of the lesion in Sturge-Weber syndrome with 
more extensive leptomeningeal enhancement than CE-T1WI 

Fig. 4. Viral meningoencephalitis. 
CE-T1WI (A) depicts subtle leptomeningeal enhancement. It is difficult to discriminate between vessels and leptomeningeal lesions. CE-FLAIR 
imaging (B) depicts leptomeningeal enhancement (arrows) more definitely. Follow-up CE-FLAIR imaging 8 days later with acyclovir therapy shows 
remarkable improvement of leptomeningeal enhancement (not shown). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, 
T1WI = T1-weighted imaging

A B
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on the clinically suspected side (Fig. 7). Furthermore, CE-
FLAIR imaging is helpful in detecting mild disease and 
unexpected bilateral disease (18, 33).

Rheumatoid Arthritis-Associated Leptomeningeal 
Disease

Rheumatoid leptomeningitis is a rare but serious 
complication of rheumatoid arthritis. Characteristic 

Fig. 5. Leptomeningeal metastasis from lung cancer. 
CE-T1WI (A) depicts subtle leptomeningeal enhancement, while CE-FLAIR imaging (B) depicts leptomeningeal enhancement (arrows) more 
definitely. CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, T1WI = T1-weighted imaging

A B

A B

Fig. 6. Bithalamic glioblastoma with extensive CSF dissemination. 
CE-FLAIR imaging (A) depicts more definite leptomeningeal enhancement (arrows) than CE-T1WI (B). Bithalamic inhomogeneous enhancing 
masses are noted and confirmed histologically as glioblastoma (not shown). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, 
T1WI = T1-weighted imaging
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MRI findings are high signal intensity lesions in the 
subarachnoid spaces on FLAIR images or diffusion-weighted 
images (DWIs) and meningeal thickening with enhancement 
(Fig. 8). Leptomeningeal abnormalities are relatively focal 
in most cases. The basal cisterns are usually not affected 
in previously reported cases. CE-FLAIR imaging aids in 
the early diagnosis of leptomeningeal abnormalities in 
rheumatoid arthritis patients with CNS involvement because 
it shows more prominent enhancement than CE-T1WI. 
Additionally, the presence of serum anti-cyclic citrullinated 
peptide antibodies may be helpful in making the diagnosis 
(34-36). 

Pachymeningeal Lesions

Normal dura mater shows subtle thin and discontinuous 
enhancement that is prominent at the parasagittal location 
on CE-T1WI due to the lack of sufficient water to generate 
the T1 shortening required for avid enhancement. Abnormal 
meningeal enhancement is usually asymmetrical, thick, 
nodular and continuous, and extends deep into the sulcal 
bases (9, 37, 38). 

Postoperative Changes
Patients who have undergone intracranial surgery show 

A B C
Fig. 7. 14-day-old male with clinically right-sided Sturge-Weber syndrome. 
CE-FLAIR imaging (A) shows more definite leptomeningeal enhancement (arrows) along right cerebral surface than CE-T1WI (B). It is difficult 
to discriminate between vessels and leptomeningeal lesions on CE-T1WI. Follow-up susceptibility-weighted imaging 2 years later (C) shows 
enlarged, tortuous medullary veins (arrows) draining into subependymal veins. CE = contrast-enhanced, FLAIR = fluid-attenuated inversion 
recovery, T1WI = T1-weighted imaging

A B C
Fig. 8. Rheumatoid arthritis-associated leptomeningeal disease. 
CE-T1WI (A) show leptomeningeal enhancement (arrows) along left high cerebral hemisphere. CE-FLAIR imaging (B) shows more diffuse 
leptomeningeal enhancement (arrows) along left high cerebral hemisphere with high signal intensities on DWI (C, arrows). CE-T1WI is inferior 
to CE-FLAIR imaging for detecting enhancement in lesion. CE = contrast-enhanced, DWI = diffusion-weighted image, FLAIR = fluid-attenuated 
inversion recovery, T1WI = T1-weighted imaging
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postoperative dural enhancement. The enhancement is 
smooth and linear and can be seen as soon as 9 hours after 
surgery (Fig. 9). Moderate or marked dural enhancement 
was noted in all patients within 3 months after surgery with 

approximately 50% decrease in enhancement 1–2 years 
thereafter (9, 39, 40). CE-FLAIR images demonstrate more 
extensive and persistent dural enhancement than CE-T1WI.

A B

Fig. 9. Postoperative dural enhancement after surgery of cavernous hemangioma. 
CE-FLAIR imaging obtained 2 days after surgery (A) shows more definite postoperative dural enhancement (arrows) along left craniotomy site 
than CE-T1WI (B, arrows). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, T1WI = T1-weighted imaging

A B

Fig. 10. Abnormal dural enhancement related to trauma. 
CE-FLAIR imaging (A) shows more definite dural enhancement (arrows) along both frontal surface and anterior falx cerebri than CE-T1WI (B). 
There is no evidence of extra-axial hemorrhage on SWI (not shown). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, SWI = 
susceptibility-weighted imaging, T1WI = T1-weighted imaging
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Trauma
Post-traumatic dural enhancement implies considerable 

head injury, although there is no obvious traumatic brain 
lesion on routine sequences. CE-FLAIR images are highly 

effective for detection of dural enhancement in patients 
with acute or chronic head injury, as compared with CE-
T1WI. Even minor lacerations that cause bleeding into 
the CSF are sufficient to induce contrast enhancement on 

A B

Fig. 11. Dural metastasis from breast cancer. 
There is diffuse uneven dural enhancement (arrows) along left cerebral surface on both CE-T1WI (A) and CE-FLAIR imaging (B). Dural metastatic 
lesion demonstrates approximately equal contrast enhancement with both sequences. CE = contrast-enhanced, FLAIR = fluid-attenuated inversion 
recovery, T1WI = T1-weighted imaging

A B

Fig. 12. Meningioma of fibroblastic type, WHO grade 1. 
Peripheral rim enhancement in right parietal extra-axial mass is seen on CE-FLAIR imaging (A, arrows), as compared with homogeneous 
enhancement pattern on CE-T1WI (B, arrows). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, T1WI = T1-weighted imaging, 
WHO = World Health Organization
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CE-FLAIR images (Fig. 10). Radiologists should focus on 
detecting traumatic brain lesions such as a small amount 
of subdural hemorrhage or subarachnoid hemorrhage, 
in cases with abnormal dural enhancement on CE-FLAIR 
imaging. Additionally, this finding could be more important 
in cases of suspected intracranial injury caused by child 
abuse because subdural hemorrhage is the most frequently 
detected form of intracranial abnormality in these patients 
(18, 41, 42). 

Dural Metastatic Lesions
The cancers associated with dural metastases are breast 

cancer, lung cancer, prostate cancer, and lymphoma. Dural 
metastases usually occur as an extension of the tumor to 
the dura from the adjacent calvarial metastases. Isolated 
dural metastases are relatively rare (43-45). Imaging 
findings of dural metastases appear as focal nodular or 
diffuse enhancing dural masses. CE-FLAIR imaging has 
diagnostic potential equivalent to that of conventional CE-
T1WI (Fig. 11) (46).

A B

Fig. 13. Left facial neuritis. 
On CE-T1WI (A), blurred abnormal enhancement (arrows) in canalicular, labyrinthine, and anterior genu segments of left facial nerve is noted. 
CE-FLAIR imaging (B) shows more definite abnormal enhancement of left facial nerve (arrows). CE = contrast-enhanced, FLAIR = fluid-attenuated 
inversion recovery, T1WI = T1-weighted imaging

A B

Fig. 14. Extensive HARM sign related to acute ischemic stroke. 
On CE-FLAIR imaging (A), extensive positive HARM sign (arrows) adjacent to acute infarcted lesions of left centrum semiovale on DWI (B) is 
noted. There is no evidence of significant hemorrhagic transformation on SWI (not shown). CE = contrast-enhanced, DWI = diffusion-weighted 
image, FLAIR = fluid-attenuated inversion recovery, HARM = hyperintense acute reperfusion marker, SWI = susceptibility-weighted imaging
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A

C

B

D
Fig. 15. HARM after stent insertion for severe stenosis of right ICA bulb. 
Initial pre-stenting conventional angiography and CE-FLAIR imaging (A, B) and post-stenting conventional angiography and immediate post-
stenting CE-FLAIR imaging (C, D). Filter-based embolic capture guidewire was used to prevent cerebral embolization. On post-stenting CE-FLAIR 
imaging, diffuse leptomeningeal enhancement (arrows) overlying right cerebral hemisphere was newly detected. Patient showed mild left side 
motor weakness, which showed complete recovery at follow-up. CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, HARM = 
hyperintense acute reperfusion marker, ICA = internal carotid artery
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Meningioma
Meningiomas are the most common extra-axial tumors 

in the brain. CE-FLAIR imaging demonstrates a typical 
peripheral enhancement pattern related to the dual vascular 
supply of the tumor that is more commonly seen in larger 

meningiomas (> 2 cm in diameter). The highly vascular 
central part of the meningioma, supplied by meningeal 
arteries, enhances strongly on CE-T1WI, while a high 
concentration of Gd in the central part induces signal loss 
on CE-FLAIR imaging. The less vascular capsule, supplied 
by pial arteries, may have a lower concentration of Gd, 
resulting in peripheral contrast enhancement on CE-FLAIR 
imaging (Fig. 12). However, in tumors less than 2 cm in 
diameter, this effect is masked and only homogeneous 
enhancement is shown (47-49).  

Cranial Nerve Lesions

Diagnosis of Facial Neuritis
Contrast-enhanced T1WI plays a limited role in the 

evaluation of facial neuritis due to prominent normal 
facial nerve enhancement. The geniculate ganglion, 
greater superficial petrosal nerve, and proximal tympanic 
and mastoid segments of the normal facial nerve can 
be enhanced due to the flux of contrast material in the 
arteriovenous plexus (AVP) along the facial nerve (50, 51). 
Thus, evaluation of the pathologic enhancement of the 
nerves from the breakdown of the blood nerve barrier can 
be inhibited. CE-FLAIR imaging has an advantage over the 
CE-T1WI in the evaluation of the pathologic enhancement 
of the facial nerve because prominent enhancing AVP 
surrounding the normal facial nerve is no longer visible on 

Fig. 16. Diabetic retinopathy. CE-FLAIR imaging depicts obvious 
left ocular enhancement (arrow) with no significant visual symptom. 
CE-FLAIR = contrast-enhanced fluid-attenuated inversion recovery

A B

Fig. 17. Seizures associated with nonketotic hyperglycemia. CE-FLAIR imaging (A) depicts focal subcortical hypointensity with overlying 
prominent cortical and leptomeningeal enhancement (arrows) in left parietal area. CE-T1WI (B) shows inferior enhancement (arrows) to CE-FLAIR 
imaging. Follow-up CE-FLAIR images 6 weeks later show remarkable resolution of subcortical hypointense lesion and abnormal enhancement (not 
shown). CE = contrast-enhanced, FLAIR = fluid-attenuated inversion recovery, T1WI = T1-weighted imaging



138

Lee et al.

Korean J Radiol 17(1), Jan/Feb 2016 kjronline.org

CE-FLAIR imaging due to flow-related signal loss and high 
Gd concentrations in the AVP. Therefore, enhancement of 
the canalicular and anterior genu segments are significantly 
correlated with the presence of facial palsy on CE-FLAIR 
images (Fig. 13) (52, 53).

Hyperintense Acute Reperfusion Marker 
(HARM)

Hyperintense acute reperfusion marker describes an 
imaging phenomenon of enhancement of the subarachnoid 
CSF space, not enhancement of the parenchyma, on FLAIR 
imaging, and is caused by leakage of Gd through a disrupted 
BBB. It has been described in various clinical conditions, 
including acute ischemic stroke, endovascular treatment for 
severe carotid artery stenosis and cardiac surgery. 

HARM Sign after Acute Ischemic Stroke
Hyperintense acute reperfusion marker was found in 

30–40% of patients with acute stroke and approximately 
20% of patients with transient ischemic attack without 
DWI lesions (Fig. 14). It is reportedly associated with 
age, reperfusion, thrombolysis, endovascular procedures, 
increased matrix metalloproteinases, higher Gd dosage and 
reduced kidney function (13, 54-61). While some studies 
show an increased risk of hemorrhagic transformation in 
patients with HARM (54, 56), recent studies do not show 
this association (61, 62). 

HARM after Carotid Stent Insertion
Hyperintense acute reperfusion marker was found in 

approximately 60% of patients after carotid artery stenting 
(CAS) (Fig. 15). The physiologic mechanism of delayed CSF 
enhancement after CAS is not obvious. However, previous 
studies have suggested that changes in BBB integrity due 
to sudden poststenting hemodynamic changes or reperfusion 
injury resulting from ischemic intolerance may be related to 
BBB disruption and the development of delayed CSF space 
enhancement after CAS. The majority of HARM after CAS is 
transient and not associated with the sudden development 
of neurological symptoms (63-65). 

HARM after Cardiac Surgery
Hyperintense acute reperfusion marker was found in 

approximately 50% of patients after cardiac surgery, 
and 75% of the patients have acute lesions on DWI. The 
proposed mechanisms for BBB disruption after cardiac 

surgery are ischemia due to hypoperfusion, activation 
of inflammatory cascades and proteolytic enzymes. The 
incidence of HARM was higher in patients who received Gd 
during the first 24 hours after surgery (66, 67). 

Diabetic Retinopathy

Contrast-enhanced FLAIR images can demonstrate ocular 
enhancement that is most commonly associated with 
diabetes. In patients with diabetic retinopathy, blood 
vessels in the retina may swell and leak fluid, presumably 
inducing contrast enhancement (Fig. 16). Despite the 
few studies on the clinical importance of this ocular 
enhancement, it might correspond to the development of 
diabetic retinopathy (5).

Hyperglycemia-Induced Seizures

Patients with seizures in nonketotic hyperglycemia may 
have transient MRI abnormalities that are characterized 
by subcortical T2 hypointensity with overlying cortical 
or leptomeningeal enhancement in addition to cortical 
swelling. Enhancement of the leptomeninges likely occurs 
due to seizure-induced dilatation of leptomeningeal 
vasculatures, and cortical enhancement is believed to be 
the result of seizure-induced hypoxia and acidosis with 
alteration of vascular permeability and breakdown of the 
BBB (68, 69). CE-FLAIR is superior to CE-T1WI for the 
detection of focal cortical or leptomeningeal enhancement 
because CE-FLAIR images do not show contrast 
enhancement in normal vascular structures and normal 
meninges (Fig. 17). 

Gd Encephalopathy Related to Renal Failure

Following Gd administration, patients with renal 
insufficiency can show CSF hyperintensity on FLAIR imaging 
due to diffusion of Gd into the CSF. Gd chelates are excreted 
mainly by glomerular filtration. In patients with renal 
impairment, the mean elimination half-life increases in 
relation to the degree of renal compromise. Because free 
Gd is a potent toxin, commercial MR contrast agents use Gd 
complexed with chelates to minimize free Gd levels in the 
serum. However, complexes undergo dissociation to release 
free Gd if they are retained for a prolonged duration in the 
circulation. Therefore, if renal function is compromised, Gd 
can accumulate to toxic levels and produce neurotoxicity 
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(seizures or headache), although the reported rate of Gd 
neurotoxicity in patients with renal failure is < 1%. The 
recognition that patients with renal failure can show 
increased signal intensity in the CSF may prevent diagnostic 
errors such as subarachnoid hemorrhage, meningitis, 
meningeal carcinomatosis or leptomeningeal metastasis 
(70-75).

CONCLUSION

Contrast-enhanced FLAIR imaging has many advantages 
for intracranial disease manifestations. CE-FLAIR imaging 
may be used as a primary or adjunctive sequence to 
CE-T1WI in equivocal cases to increase the diagnostic 
confidence and improve patient care. 
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