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Abstract

There are now hundreds of thousands of pathogenicity assertions that relate genetic variation to 

disease, but most of this clinically utilized variation has no accepted quantitative disease risk 

estimate. Recent disease-specific studies have used control sequence data to reclassify large 

amounts of prior pathogenic variation, but there is a critical need to scale up both the pace and 

feasibility of such pathogenicity reassessments across human disease. In this manuscript we 

develop a shareable computational framework to quantify pathogenicity assertions. We release a 

reproducible “digital notebook” that integrates executable code, text annotations, and 

mathematical expressions in a freely accessible statistical environment. We extend previous 

disease-specific pathogenicity assessments to over 6,000 diseases and 160,000 assertions in the 

ClinVar database. Investigators can use this platform to prioritize variants for reassessment and 

tailor genetic model parameters (such as prevalence and heterogeneity) to expose the uncertainty 

underlying pathogenicity-based risk assessments. Finally, we release a website that links users to 

pathogenic variation for a queried disease, supporting literature, and implied disease risk 

calculations subject to user-defined and disease-specific genetic risk models in order to facilitate 

variant reassessments.

Introduction

1.1. Clinical genomics in 2015

Just 15 years since the completion of the Human Genome Project, researchers today can 

sequence a whole genome for less than $1,000. Fundamental advancements in sequencing 

platforms [1] coupled with concerted data-sharing efforts [2] have led to widespread and 

diverse uses of genomic data. Decades before the advent of next-generation sequencing, 
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clinicians and geneticists were using targeted gene testing in diagnosis and prognosis, for 

example in calculating the familial risk of cystic fibrosis [3]. More recently, whole-genome 

and whole-exome sequencing have led to the discovery of causal lesions for numerous 

hitherto unsolved Mendelian disorders [4]. Other common clinical uses of genomic data 

include familial risk stratification for diseases such as hypertrophic cardiomyopathy [5], 

drug targeting based on activating mutations for cancers such as non-small-cell lung 

carcinoma [6], and genetic counseling for disorders such as trisomy 21 using fetal DNA 

circulating in maternal plasma (non-invasive prenatal testing, NIPT) [7].

While these efforts have led to real gains in diagnosis and treatment, it is now a central 

challenge of clinical genomics to sort through an unwieldy literature of genetic associations: 

in aggregate, there are hundreds of thousands of genetic associations across the entire 

spectrum of human disease [8]. The usual scale for summarizing findings to the clinician 

and patient is based on “pathogenicity,” [9], or the capacity of a genomic variant to cause 

disease. Pathogenicity is a qualitative categorical concept, and its usual clinical scale 

consists of the values “Benign,” “Likely Benign,” “Variant of Uncertain Significance,” 

“Likely Pathogenic,” and “Pathogenic” [9].

1.2. Recent inconsistencies between pathogenicity assertions

Although pathogenicity assertions have been in use for decades clinically, only recently 

have systematic reinvestigations of pathogenicity been possible due to the widespread 

availability of large-scale sequencing data from the general population. The typical study 

design involves identifying all pathogenic variants for a given disease and then assessing the 

frequency of this variation in the general population. If the aggregate or individual variant 

frequency exceeds a disease-specific threshold, then pathogenicity for a variant or group of 

variants is challenged. This frequency threshold depends on the mode of inheritance (e.g. 

autosomal dominant), age-of-onset, prevalence in the tested population, molecular 

heterogeneity (fraction of disease due to a given variant), and desired penetrance cutoff 

(probability an individual with the variant expresses disease). For example, for an autosomal 

dominant disease caused by highly penetrant alleles, variant pathogenicity is called into 

question if the aggregate pathogenic genotype frequency exceeds the prevalence of the 

disease.

Several recent studies have used this approach to question the quality of pathogenicity 

ratings and reclassify pathogenicity assertions. Testing large-scale non-diseased populations 

has challenged prior pathogenicity assertions for X-linked intellectual disability [10], 

hypertrophic cardiomyopathy [11], non-syndromic hearing loss [12], and several other 

diseases. However, this is a small subset of the thousands of disorders with assertions 

regarding pathogenic genetic variation [8]. There is a critical need to scale up both the pace 

and feasibility of systematic reinvestigations of pathogenic variation using large-scale 

sequencing data from control populations.
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1.3. The need for reproducible, shareable, and disease-specific quantitative investigations 
of pathogenic variation

It is now a central challenge in clinical genomics to reassess a scattered literature of disease-

associated genetic variation as well as the large burden of novel variants discovered in 

whole genome or whole-exome sequencing. After achieving the “$1,000 genome,” we may 

face the “$100,000 analysis.” [13]. Several specific challenges hinder robust interpretation 

of potentially pathogenic genetic variation. First, pathogenicity assertions are typically not 

quantitative risk estimates. Second, it is usually unclear how a pathogenic variant should be 

interpreted in distinct clinical contexts with different prior probabilities (e.g., pathogenicity 

in males versus females or for patients with co-morbid conditions). Third, there is no 

accepted “false discovery rate” for the majority of clinically utilized pathogenic variation 

and, further, multiple recent re-investigations suggest that it is far greater than previously 

appreciated [10], [12], [14]. Fourth, and relatedly, assertions are based on a fragmented 

literature. It remains a challenge to assimilate findings from diverse studies with different 

analytic and design parameters [15]. Such re-investigations have generally concentrated on a 

single disease or closely related set of diseases at a time [10], [12], [14], and have required 

considerable bioinformatics resources to subset, clean, and work with pathogenic variation 

and sequence data. There is a need for a new digital platform to efficiently estimate, analyze, 

and share quantitative disease risk estimates for pathogenic variation.

In this manuscript we develop a shareable computational framework to quantify 

pathogenicity assertions that have been reported in the literature. We release a reproducible 

“digital notebook” which integrates executable code, text annotations, and mathematical 

expressions to enable investigators to study how variation in the general population and 

genetic model parameters dictate risk estimates underneath pathogenicity assertions. This 

notebook is written in the interactive computing environment IPython [16]. We extend 

previous disease-specific reinvestigations of pathogenicity to over 6,000 diseases and 

160,000 assertions in ClinVar [17]. We document how reported pathogenicity assertions can 

mask large uncertainty over a wide range of risk estimates, a critical consideration for 

clinicians and patients using such data for treatment and diagnosis. We link pathogenicity 

assertions to their supporting literature and current ClinVar annotations. Investigators can 

use this platform to carry out rapid disease-specific quantitative analyses for pathogenic 

variants. Disease experts, such as genetic counselors, can tune population parameters (such 

as prevalence and heterogeneity) to expose the determinants of pathogenicity and prioritize 

pathogenicity assertions for reassessment. All code is made freely available.

2. Methods

2.1. Genetic models

Consider a population of n individuals. For simplicity, first consider a single bi-allelic site 

where the reference allele frequency is p and non-reference allele frequency is q = 1 − p. 

Under Hardy-Weinberg equilibrium, genotypes AA (homozygous reference), Aa 

(heterozygous), and aa (homozygous alternate) have frequencies p2, 2pq, and q2, 

respectively. Then the genotype frequency of q, the fraction of individuals who carry at least 

one q allele, denoted G(q), is given by
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For a locus with k distinct alleles (by state) under Hardy-Weinberg equilibrium, this 

equation still holds,

We define the penetrance of a genotype as the conditional probability of expressing disease 

D for an individual possessing the genotype V, P(D|V) = (P(V|D)P(D))/P(V), where h ≡ 

P(D|V) is an indicator of the molecular heterogeneity of the disease, P(D) is the prevalence, 

and P(V) is the genotype frequency. Penetrance is a population-specific parameter—for a 

given variant, penetrance can vary substantially based on clinical context (e.g. general 

population vs. testing laboratory population). We consider autosomal dominant, autosomal 

recessive, additive, and multiplicative genetic risk models. Under these risk models, we can 

write genotype frequencies and relative risks given a non-reference allele frequency q and 

per allele risk γ for a bi-allelic locus as follows:

2.2. Clinical variant annotations

The ClinVar database [www.ncbi.nlm.nih.gov/clinvar] aggregates genotype-phenotype 

assertions across human disease [17]. ClinVar assertions are summarized on a qualitative 

pathogenicity scale: (Benign, Likely benign, Uncertain significance, Likely pathogenic, 

Pathogenic). The database further includes supporting evidence where available, such as in 

vitro and in silico studies of pathogenicity. The database collects submissions from 

investigators around the world and can be used to resolve conflicts [8]. If many investigators 

independently assert the same relationship, this information is used to bolster the evidence 

for a variant-disease relationship. In this manuscript, we use the clinvar_20150629 version 

of the ClinVar database retrieved from ANNOVAR [18].

2.3. Allele frequency data from the general population

We incorporated allele frequency data from the NHLBI Exome Sequence Project (ESP) [19] 

and the Broad Exome Aggregation Consortium (ExAc) [20]. These data include allele 

frequencies from 6,503 individuals (ESP) and 60,706 individuals (ExAc). Both databases 

contain frequency data separated by population groups (e.g. in ESP, allele frequency data is 

provided separately for the 2,203 African Americans and 4,300 European Americans that 

constitute ESP). ExAc has been filtered for known causes of severe pediatric diseases, as it 

is intended for use as a “general population” resource to filter variants [20].

2.4. Open source software stack

The analysis in this manuscript is performed entirely in the interactive computing 

environment IPython [16]. IPython combines text annotations, executable code, 

mathematical expressions (LaTeX), and embedded HTML in a single digital notebook. We 

also built a D3 visualization [21] to allow users to explore pathogenicity assertions in the 
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browser along with supporting evidence and user-controlled genetic model parameters to 

compute penetrance. Genomic sequence data and ClinVar annotations were retrieved using 

both ANNOVAR [18] and the ClinVar website [17].

3. Results

3.1. A reproducible and shareable workflow for quantifying pathogenicity assertions

We developed a reproducible and shareable platform for clinical genomics annotations 

(Figure 1). We have released a digital notebook written in the interactive computing 

environment IPython [16] that integrates executable code, text annotations, mathematical 

expressions, and embedded HTML. Investigators can freely download this IPython 

notebook file, reproduce all data-gathering steps, choose any disease from ClinVar, and 

specify the prevalence, heterogeneity, and genetic model to estimate the penetrance of all 

ClinVar variants for the selected disease. All sensitivity analyses described in this 

manuscript can be reproduced and customized in the IPython notebook. Further, 

investigators can add cells of their own code and text to specify different disease-specific 

genetic risk models and assumptions required to compute penetrance. The analysis steps and 

final risk summary information, whether quantitative risks or qualitative assertions, can be 

stored alongside supporting data and assumptions in a single document. Customized disease-

specific notebooks can be shared with collaborators to be run and customized locally.

3.2. A diseaseome-wide investigation of pathogenicity assertions

We used our computational framework to perform a diseaseome-wide analysis of 

pathogenicity assertions in ClinVar (Figure 2). Using the clinvar_20150629 version of 

ClinVar retrieved from ANNOVAR, we observed 132,584 distinct variants, as defined by 

unique values of (Chromosome, Start Position, Stop Position, Reference Allele, Alternate 

Allele) tuples in hg19 coordinates. These 132,584 variants gave rise to 160,487 distinct 

pathogenicity assertions about disease. As such, the majority of variants—114,107 out of 

132,584 variants (86%)—were included in only a single pathogenicity assertion (Figure 2a). 

The 160,487 total assertions spanned 6,427 distinct disease names, although 42,761 

assertions (27%) had disease names of “not specified” or “not provided.” Of the 117,726 

remaining assertions, just five out of 6,425 diseases (Lung Cancer, Malignant Melanoma, 

Hereditary Cancer-Predisposing Syndrome, Familial Cancer of Breast, Lynch Syndrome) 

accounted for 59,829 assertions (51%). 1,524 out of 6,425 diseases (24%) had at least five 

assertions (Figure 2b). Of the 160,487 total assertions, 85,455 (53.2%) were either 

“unknown” or “untested”; 37,871 (23.6%) were “pathogenic”; 15,483 (9.6%) were 

“nonpathogenic”; 11,357 (7.1%) were “probable-non-pathogenic”; 6,189 (3.9%) were 

“probable-pathogenic”; 3,964 (2.5%) were “other”; and 168 (0.1%) were classified as “drug-

response” (Figure 2c).

3.3. Uncertainty in the disease risk conveyed by pathogenic variation

The penetrance of a pathogenic variant—the probability that individuals with the variant 

express disease—depends on the allele frequency in both case and control individuals, mode 

of inheritance, age-of-onset, heterogeneity, and prevalence of the disease. To study this 

dependence, we analyzed the disease hypertrophic cardiomyopathy (HCM), and documented 
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how penetrance values across all pathogenic single nucleotide variants (SNVs) for HCM 

vary under clinically plausible parameter values (Figure 3). We retrieved 81 distinct 

pathogenic SNVs with frequency data available in ExAc or ESP for HCM. We used the 

widely-accepted prevalence of 1:500 individuals [22] and varied the molecular 

heterogeneity parameter from conservative values (h = 0.1, 10% of HCM is explained by a 

single variant) to a more accepted model (e.g. h = 0.001) given that greater than a thousand 

causal variants have been identified for HCM [5]. All variants display substantial variability 

based on the input genetic model parameters (Figure 3), however, several pathogenic 

variants have consistently low penetrance due to their elevated non-reference allele 

frequency.

3.4. Frequency of ClinVar variants in the general population

We studied the frequency of pathogenic variation in ClinVar by disease. Many diseases had 

pathogenic variants with summed minor allele frequencies that were incompatible with even 

moderately penetrant causal alleles (Figure 4). Considering only pathogenic SNV variation, 

110 distinct disease terms in ClinVar had a summed minor allele frequency greater than 0.05 

(Figure 4). The five highest frequency diseases were Neutrophil-Specific Antigens NA1/

NA2, Severe Combined Immunodeficiency Autosomal Recessive T-Cell Negative B-Cell 

Positive NK-Cell Positive, Metachromatic Leukodystrophy, Trimethylaminuria, and 

Trimethylaminuria Mild.

3.5. User-directed investigations of pathogenicity

We built a website to enable investigators to conduct disease-specific analyses of pathogenic 

variation. After selecting a disease and specifying a genetic model, the investigator is 

provided with all ClinVar entries for variants with questionable pathogenicity as governed 

by the user-controlled parameters, as well as the supporting literature for these variants. 

Investigators can set genetic model parameters based on, for example, genetic testing 

laboratory experience from other patients with the same disease. Investigators are then 

provided with implied penetrance values for each variant under these assumptions as well as 

supporting literature references in order to efficiently prioritize pathogenic variants for 

reassessment.

4. Discussion

4.1. Summary of findings

We developed a reproducible and shareable computational framework to quantify 

pathogenicity assertions across disease. We used this platform to extend previous disease-

specific reinvestigations of pathogenicity to over 6,000 diseases and 160,000 assertions in 

ClinVar. For investigators wishing to conduct disease-specific quantitative reassessments of 

pathogenic variation, we released a digital notebook written in the interactive computing 

environment IPython that integrates executable code, text, and mathematical expressions to 

specify explicit genetic model assumptions and quantify pathogenicity assertions. We 

documented the uncertainty in disease risk estimates for pathogenic variants using, as an 

example, all pathogenic SNV variation for the inherited condition hypertrophic 

cardiomyopathy. We released a website that allows users to quickly explore pathogenic 
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variation for individual diseases, prioritize variants for reassessment, and obtain ClinVar 

records and supporting literature for variants that fall below an adjustable clinical threshold 

for penetrance.

4.2. Disease-specific reassessments of pathogenicity

Bottom-up approaches to reassessing pathogenicity allow investigators to specify genetic 

model assumptions and filter pathogenicity assertions tailored to the individual disease in 

which they have expertise. The clinical utility of genomic sequence data depends heavily on 

prior probabilities and genetic model parameters [23], and as such it is critical to incorporate 

these quantities into clinical decision-making. Expertise from clinical genetic testing 

laboratories in measuring genetic heterogeneity and other parameters will improve 

reassessments going forward. It will be increasingly important to quantify our understanding 

of the uncertainty of pathogenicity assertions, and share these data widely to collectively 

improve clinical decision-making.

4.3. The publishable unit

Digital notebooks such as IPython/Jupyter [16] offer several advantages as a method of 

documenting research progress. These notebooks combine executable code divided into 

understandable blocks with text markup, the precision of mathematical notation, figures, and 

embedded HTML in an easily shareable and coherent document that lets each user tailor 

code and analyses for their goals. Building off of IPython, the Jupyter project (https://

jupyter.org) is language agnostic, enabling users to contribute to analysis workflows such as 

the Pathogenicity Notebook using other popular programming languages for data analysis. 

Using these tools, findings can be delivered alongside the underlying data and assumptions. 

For pathogenicity reassessments, a digital notebook could serve as a new publishable unit of 

analysis.

4.4. Future work

It is important to stress that frequencies retrieved from ExAc and ESP are estimates of 

population parameters. Future work could incorporate this uncertainty into disease-specific 

reassessments and study the generalizability of penetrance estimates across different 

ethnicities using these databases. It is also important to note that using frequency data from 

the general population will not reclassify very rare variation that is erroneously classified as 

pathogenic. Additionally, a low penetrance for a particular variant does not eliminate the 

possibility that the variant acts in concert with other variants to impact disease. Future 

investigators could extend the IPython notebook published here with new data sources and 

genetic models for their diseases of interest. The feasibility of quantitative pathogenicity 

reassessments will grow both with the availability of large-scale control sequence data as 

well as with domain expertise to specify quantitative parameters needed to compute 

penetrance (e.g. heterogeneity, prevalence). The future of decision theory in clinical 

genomics is bright if we rigorously vet pathogenicity assertions using shared data and 

assumptions.
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Figure 1. A reproducible and shareable workflow for quantifying pathogenicity assertions
Screenshot from the IPython “digital notebook” that accompanies this manuscript. The 

interactive computing notebook combines executable code (written in blocks), mathematical 

expressions, and text annotations. Code is provided to retrieve ClinVar annotations, PubMed 

references, and frequency data for any disease in ClinVar. The user can explicitly specify 

genetic model assumptions to compute penetrance and perform sensitivity analyses. 

Available at: https://github.com/manrai/Pathogenicity_Notebook.
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Figure 2. A diseaseome-wide investigation of pathogenicity assertions in ClinVar
(a) Distribution of 160,487 pathogenicity assertions across 132,584 distinct variants. 86% of 

variants had exactly one assertion. (b) Truncated distribution of pathogenicity assertions by 

disease. (c) Clinical significance values for assertions in ClinVar. 85,455 (53.2%) of the 

160,487 total assertions were either “untested” or “unknown.” “Pathogenic” assertions were 

the second largest overall group.
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Figure 3. Uncertainty in the disease risk conveyed by pathogenic variation
Shown are the 81 pathogenic SNVs from ClinVar for hypertrophic cardiomyopathy with 

ExAc or ESP frequency data available. We computed a range of penetrance values for each 

variant by varying heterogeneity linearly in the range [0.001, 0.1]. Several variants have 

consistently low penetrance given their elevated non-reference allele frequency. Variants 

that were lower than the 50% penetrance cutoff throughout these simulations are colored in 

red.
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Figure 4. Summed frequency of pathogenic SNVs by disease
Many diseases have summed pathogenic SNV minor allele frequencies that far exceed the 

prevalence of the disease. 110 distinct disease terms have a summed minor allele frequency 

greater than 0.05.
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Figure 5. Exploring pathogenicity ratings
Screenshot from a website that enables users to explore disease-specific pathogenic 

variation. The user can select the disease, prevalence, heterogeneity, cohort used for 

frequency data, and penetrance threshold, and run an analysis for matching ClinVar variants. 

The user is linked to variant assertions in ClinVar to re-evaluate pathogenicity assertions 

systematically. A live version of this site can be found at http://people.fas.harvard.edu/

~manrai/pathogenicity_explorer.
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Table 1

Genetic risk models. q denotes the non-reference allele frequency, γ is the per allele risk.

Genetic model Affected genotype frequencies (relative risk)

Autosomal dominant q2 + 2pq (γ)

Autosomal recessive q2 (γ)

Additive q2 (2γ), 2pq (γ)

Multiplicative q2 (γ2), 2pq (γ)
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