Skip to main content
. 2016 Jan 20;17:44. doi: 10.1186/s12859-016-0893-0

Table 11.

SVM performances with parameters optimization or not based on informative genes selected by RS

Parameters optimization Kernel Evaluation Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Cancers GCM Average
No (fixed C = 1) linear Fitting 97.37 95.31 100 100 100 97.06 100 100 97.92 98.63
LOOCV 97.37 81.25 98.25 98.41 94.44 94.12 96.55 96 77.78 92.69
Testing 94.12 84.38 93.33 95 93.33 97.01 96.67 87.84 58.7 88.93
Yes linear Fitting 97.37 100 100 100 100 100 100 99 100 99.6
LOOCV 97.37 90.63 100 100 98.15 94.12 100 96 81.25 95.28
Testing 94.12 84.38 100 95 93.33 95.52 96.67 89.19 65.22 90.38
C 0.25 32 0.03125 0.5 0.125 8 0.25 0.25 4
No (fixed C = 1, γ = 1/m) RBF Fitting 97.37 87.50 100 100 100 91.18 100 88.00 45.14 89.91
LOOCV 97.37 79.69 100 98.41 98.15 90.44 86.21 78.00 77.08 89.48
Testing 94.12 78.13 100 95.00 93.33 97.01 93.33 85.14 52.17 87.58
Yes RBF Fitting 97.37 100 100 100 100 95.59 100 100 100 99.22
LOOCV 97.37 90.63 100.00 98.00 98.15 94.12 100 98.00 82.64 95.43
Testing 94.12 84.38 86.67 90.00 93.33 95.52 90.00 87.84 52.17 86.00
C 8 2048 0.125 0.25 0.5 2 1 32768 32
γ 0.0125 0.0075125 0.25 0.125 0.25 0.0625 0.25 0.00390625 0.0625

C is penalty parameters and C∈[2−5, 215]; γ is gamma parameter in kernel function and γ∈[2−15, 23]; m is features number of each SVM models