Skip to main content
. 2016 Jan 20;17:44. doi: 10.1186/s12859-016-0893-0

Table 8.

Pseudo-code of informative genes selection

Algorithm 1 Informative gene selection (Dateset, GRank)
Require: Dateset is a binary-class training dataset with n samples
Require: GRank is the order of all p genes {GRank1, GRank2,…, GRankj,…, GRankp}
Ensure: Returns the binary-discriminative informative genes subset of Dateset
1: ture_Y ← class lable of training samples
2: j ← 1; MCCbenchmark ← 0; B ← 100
3: repeat
4: S ← GRankj # introducing GRankj
5: if |S| ≤ 1 then
6: for i = 1 to n do # leave-one-out cross-validation
7: Y i ← +
8: get RS GRankj(+)
9: Y i ← −
10: get RS GRankj(−)
11: if RS GRankj(+) > RS GRankj(−) then pred_Y i ← +
12: else pred_Y i ← −
13: end for
14: MCCbenchmark ← get MCC (true_Y, pred_Y) from formula (14)
15: else
16: for i = 1 to n do # leave-one-out cross-validation
17: Y i ← +
18: get RS-net(+) from formula (15)
19: Y i ← −
20: get RS-net(−) from formula (15)
21: if RS-net(+) > RS-net (−) then pred_Y i ← +
22: else pred_Y i ← −
23: end for
24: MCC ← get MCC (true_Y, pred_Y) from formula (14)
25: end if
26: if MCC > MCCbenchmark then MCCbenchmark ← MCC
27: else delete GRankj
28: until j > B
29: retrun S