Table 2.
Crude | Adjusted# | ||||||
---|---|---|---|---|---|---|---|
Variables | OR | 95 % CI | p-value | OR | 95 % CI | p-value | |
Site | Colon | 1.00 | 1.00 | ||||
Rectum | 0.82 | 0.73-0.91 | <0.001 | 0.81 | 0.72-0.91 | <0.001 | |
Age group | 50-59 yrs | 1.00 | 1.00 | ||||
60-69 yrs | 0.82 | 0.70-0.95 | <0.008 | 0.76 | 0.66-0.89 | <0.001 | |
70-79 yrs | 0.88 | 0.77-1.02 | 0.087 | 0.77 | 0.67-0.89 | 0.001 | |
Sex | Females | 1.00 | 1.00 | ||||
Males | 0.97 | 0.87-1.08 | 0.562 | 0.96 | 0.86-1.07 | 0.436 | |
SES | Lowest (quintile) | 1.00 | 1.00 | ||||
Low | 0.89 | 0.75-1.06 | 0.208 | 0.90 | 0.75-1.08 | 0.248 | |
Mid | 0.99 | 0.83-1.18 | 0.909 | 0.96 | 0.79-1.15 | 0.636 | |
Low-high | 0.93 | 0.78-1.10 | 0.395 | 0.90 | 0.75-1.08 | 0.268 | |
Highest | 1.08 | 0.91-1.26 | 0.438 | 1.03 | 0.86-1.23 | 0.756 | |
Residence | Inner urban | 1.00 | 1.00 | ||||
Outer urban | 0.85 | 0.70-1.05 | 0.080 | 0.89 | 0.74-1.07 | 0.248 | |
Rural | 1.02 | 0.88-1.20 | 0.717 | 0.99 | 0.83-1.16 | 0.812 | |
Remote | 0.92 | 0.73-1.16 | 0.473 | 0.99 | 0.77-1.26 | 0.912 | |
Private Insurance | No | 1.00 | 1.00 | ||||
Yes | 0.88 | 0.76-0.94 | 0.002 | 0.84 | 0.75-0.95 | 0.003 | |
Co-morbidities | None | 1.00 | 1.00 | ||||
One (not severe) | 1.25 | 1.09-1.44 | 0.002 | 1.25 | 1.09-1.44 | 0.002 | |
Multiple or severe | 1.48 | 1.25-1.76 | <0.001 | 1.50 | 1.26-1.79 | <0.001 | |
Diagnosis year | 2003-2008 (cont) | 0.97 | 0.94-1.00 | 0.024 | 0.97 | 0.94-1.00 | 0.027 |
#Ordinal logistic regression model adjusted for all factors simultaneously – excludes missing stage (n = 328)
Ordinal logistic regression is an extension of logistic regression that incorporates the ordinal nature of the dependent variable (in this case stage at diagnosis). It can be used for modelling a dependant variable that has more than two ordered categories. The method is analogous to a series of binary models predicting the following combinations of binary stage groupings (e.g. stage A v stage B + C + D, A + B v C + D and A + B + C v D)