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Time is an extremely valuable resource but little is known about the effi-

ciency of time allocation in decision-making. Empirical evidence suggests

that in many ecologically relevant situations, decision difficulty and the rela-

tive reward from making a correct choice, compared to an incorrect one, are

inversely linked, implying that it is optimal to use relatively less time for dif-

ficult choice problems. This applies, in particular, to value-based choices, in

which the relative reward from choosing the higher valued item shrinks as

the values of the other options get closer to the best option and are thus more

difficult to discriminate. Here, we experimentally show that people behave

sub-optimally in such contexts. They do not respond to incentives that

favour the allocation of time to choice problems in which the relative

reward for choosing the best option is high; instead they spend too much

time on problems in which the reward difference between the options is

low. We demonstrate this by showing that it is possible to improve subjects’

time allocation with a simple intervention that cuts them off when their

decisions take too long. Thus, we provide a novel form of evidence that

organisms systematically spend their valuable time in an inefficient way,

and simultaneously offer a potential solution to the problem.
1. Introduction
We all know the phrase ‘time is money’, and yet at some point or another many

of us have caught ourselves agonizing too long even where it makes little differ-

ence what we choose, such as what to order for dinner at a restaurant or what

movie to watch. Far from being a uniquely human problem, many species exhi-

bit such behaviour. Naturally, the question arises whether this phenomenon is

simply an unlucky outcome of an optimal decision-making process, or whether

the process itself is sub-optimal. Much work in decision science has focused on

whether organisms achieve optimal decision outcomes (e.g. [1–4] and much of

the experimental economics literature) but relatively little attention has been

paid to how they allocate their time while making decisions.

The problem arises due to the well-known speed-accuracy trade-off, where

more time invested into a decision yields a more accurate response [5,6]. One

explanation for this phenomenon in many choice contexts is due to the way the

brain gradually accumulates noisy evidence for the different choice options, up

to predetermined thresholds. Theoretical work has shown how speed-

accuracy trade-offs can optimally be resolved [7–9]. For example, when choice

difficulty and the benefit of a correct response are held constant, the drift-diffusion

model (DDM) is known to be optimal [10,11]. By optimal we mean that for a

desired accuracy rate, the DDM minimizes the expected response time (RT)

[12]. Recent years have seen much research showing that organisms including

flies [13], ants [14], bees [15–18], rats [19,20], primates [7,21–28] and humans

[29–34] use sequential sampling model (SSM) processes (like the DDM) to

make many decisions, and that they do respond to speed or accuracy constraints.
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Moreover, these models apply not only to many perceptual

decisions, where there is an objectively correct response, but

also to several value-based decisions, where the correct

answer is based on subjective preference [35–49].

For instance, the house-hunting behaviour of ants and

bees is an example of collective value-based decision-

making where individual organisms evaluate the suitability

of potential nest sites and then recruit and compete with

other members of the group in order to guide the final

choice of the whole colony. Ants recruit by physically lead-

ing, and eventually carrying each other to attractive nest

sites, while bees use a ‘waggle dance’ and head butting to

communicate the location of attractive hive sites and inhibit

bees favouring other sites, respectively. In both cases, these

scouts recruit other colony members more readily for

higher quality sites, and so support builds more quickly for

better options. Once there is enough support for a particular

location, the decision is made and the entire colony picks up

and moves. This collective behaviour is governed by the

speed-accuracy trade-off; colonies may emphasize either

speed or accuracy depending on the urgency of the situation.

More typically, SSMs are applied to individual decision-

making behaviour. For instance, an animal may have to

quickly evaluate the attractiveness of various potential fora-

ging sites based on the likely quantity and quality of food

available, exposure to predators, distance away, etc. [50,51].

An overemphasis on accuracy may demand an unreasonable

amount of time to evaluate the potential foraging sites, while

an overemphasis on speed may lead the animal to a poor site.

This literature on the optimality of time allocation has

mainly focused on the simple case where difficulty and the

relative reward for a correct response (compared to an incor-

rect response) are both held constant, but in the real world

these can vary [16,17]. One point that has not been widely

acknowledged is that in many ecologically important

situations, difficulty and relative reward are in fact linked.

In particular, in value-based (economic) decisions where the

individual receives the item that he chooses, the benefit of

making the correct decision decreases as the options get

closer together in subjective value. Simultaneously, as this

occurs, the items become harder to distinguish, and we

know from the SSM literature that mean decision time

increases. As a result, more difficult choices generally take

longer, even though the correct choice yields only a minor

increase in benefit over the incorrect choice. For example, a

foraging animal might find itself torn between two equally

attractive patches, wasting time that could better be spent

quickly sorting the edible items from the rest.

In settings like these, the optimization problem becomes

more complex and there is no clear way to determine whether

decision-makers are behaving optimally. In the case of fixed

difficulty, it is optimal for the decision-maker to accumulate

evidence until the total net evidence reaches a constant

threshold [52]. However, when the relative reward for

making the correct decision is tied to the difficulty level,

the decision-maker can update his/her prior about the sub-

jective-value difference between the options in this

particular trial based on how long the decision has taken so

far. The decision-maker should realize that as time goes on,

the expected relative benefit of making the correct decision

is decreasing. When there is limited time to make many

decisions, time spent on a low-benefit decision represents

an ‘opportunity cost’ [53]. Thus, when the benefit of
making the correct choice differs across choice problems,

the decision-maker should re-allocate time away from the

problems where the relative rewards are small and more

time towards the problems where the relative rewards are

large. Prior work, for instance in similar settings where infor-

mation acquisition is increasingly costly over time [8,54],

indicates that these situations call for the decision thresholds

to decrease over time within a trial [9,52,55–58]. In the neuro-

science literature, collapsing-threshold models (and similar

urgency models [55,59]) have been gaining popularity,

though the behavioural evidence for them is mixed [60,61].

It is critical to note that all these models nevertheless pre-

dict that decisions between similar options (‘hard’ choices)

will on average take more time than between dissimilar options

(‘easy’ choices). Conceivably, it may be that hard choices are

unavoidably slower than easy choices because easy choices

can be made more quickly than they can be distinguished

from hard choices. That is, it may not be possible to quickly

identify the difficulty of a choice problem. Therefore, the obser-

vation of RT differences between easy versus hard decisions is

not by itself sufficient to establish the sub-optimality of time

allocation. Here, we tackle this issue by developing a novel

empirical method for testing the optimality of behaviour.

We begin with an economic task and then also investigate a

perceptual decision-making task that incorporates the diffi-

culty-relative-reward connection that one finds in economic

choice. In each task, subjects made a series of choices where

time was both scarce and valuable. The first uses naturalistic

stimuli and relies on subjects’ own valuations, whereas the

second uses an approach that affords external control of relative

value. While the two studies appear quite different on the sur-

face, they share a very important feature. At the beginning of

both studies, subjects had a ‘baseline’ expected outcome that

they would earn if they did nothing. By making good choices,

subjects could increase their expected earnings from this base-

line level. The amount of this increase varied from trial to

trial, along with the difficulty of the decision.

The results clearly demonstrate that subjects misallocated

their time. We established this by introducing a simple inter-

vention that improved subjects’ performance on both

decision tasks, using only information that they themselves

had available. Importantly, subjects seemed to learn from our

intervention and so some of the benefits remained even in

the subsequent absence of the intervention. Thus we not only

show that decision-makers sometimes wasted their valuable

time, but that it was possible to use simple training to help

them improve.
2. Material and methods
(a) Study 1
Forty-nine subjects provided informed consent and were paid a

flat fee of CHF 30 for their participation, plus possible additional

cash of up to CHF 2.50 from the first part of the study. Subjects

first indicated their willingness to pay (WTP) for 100 different

snack foods, using a Becker–deGroot–Marshak (BDM) mechan-

ism [62], which has the property that it is in subjects’ best interest

to reveal their true WTP (see details below). For each trial,

subjects saw a colour photograph of the item and a slider bar

(with a random starting location) that they could use to select

a WTP from CHF 0 to 2.50, in steps of CHF 0.25. Subjects used

the ‘left’ and ‘right’ arrow keys to move the slider and the ‘up’

arrow key to confirm their choice.
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Subjects then proceeded through five blocks of binary

decisions between pairs of these items. Using these WTPs, we

constructed choice pairs with known valuation differences

between the two items. Each block contained 100 trials, half of

which were constructed as ‘easy/high-stakes’ choices (large

valuation difference) and half ‘hard/low-stakes’ (small valuation

difference). It was impossible to reach every trial in any given

block, since each block’s duration was 150 s, with 1.5 s inter-

trial interval (ITI). Subjects indicated their decision by pressing

the ‘left’ or ‘right’ arrow keys on the keyboard. Critically, subjects

were informed that the computer would randomly make any

uncompleted choices at the end of the 150 s.

At the end of the experiment, subjects were rewarded for one

random trial. This trial could be a BDM trial ( p ¼ 1/6) or a

binary choice trial ( p ¼ 5/6). For a choice trial, subjects simply

received the item that they, or the computer, chose on that trial.

For a BDM trial, the computer generated a random price between

CHF 0 and 2.50. If the random price was equal to or less than the

subject’s WTP for that item, then the subject received the food and

paid the random price (out of an endowment of CHF 2.50). If the

random price was above the subject’s WTP for that item, then

the subject did not receive the food and kept the endowment of

CHF 2.50. In addition to these earnings, all subjects earned CHF

30 for their participation in the study.

The first of the five blocks (T ) was used to obtain an individ-

ual empirical distribution function for the RTs in the task. Four

more blocks followed. Two of these were non-intervention

blocks (N ), which were constructed identically to the first

block, but with different choice pairs. The other two blocks

were intervention blocks (I ), in which subjects were reminded

on screen to ‘choose now’ after a pre-specified amount of time

had passed. If they did not make a choice within 0.5 s of the

message, the choice was randomly made for them, and the

next trial commenced (after the ITI). The mean deadline was

defined for each subject separately, such that it would have

cut off the slowest 30% of their decisions in the T block. For

each subject, there was a 50% chance that they would experience

the sequence T-I-N-I-N, and a 50% chance that they would

experience the sequence T-N-I-N-I.
To assess performance on the task, we created a measure of

surplus that captures the subjective value generated through

making choices and is analogous to the points earned in

study 2. To do this, we used each individual subject’s WTPs to

create the following measure:

choice surplus

¼ ðvchosen � vLÞ �
1

2
ðvH � vLÞ for human choices

0 for computer choices:

8<
:

Here, vchosen is the WTP for the chosen item, vL is the lower of the

two WTPs and vH is the higher of the two WTPs. Thus, choice

surplus represents the degree to which the surplus from actual

human choices outperforms chance. Computer choices were

treated as performing at chance level (zero by construction),

regardless of their actual random realization, to reduce artificial

noise in the measure.

(b) Study 2
Forty-two subjects were recruited through a Princeton University

online subject recruitment system and provided informed con-

sent to participate in this study. Two subjects were excluded

from analysis due to outlier behaviour. These two subjects

scored more than 3 s.d. away from the mean for one of the

two conditions, leaving us with an analysed sample size of

40 subjects.

The instructions were provided on screen. Subjects were

informed that they would be paid $1 for every 1000

points they earned during the study, rounded down to the
nearest dollar. For example, a subject with a score of 17 232

points would receive $17.00. The minimum payment was

set at $12 and the average payment was $18.29 (all results

still hold if we exclude the subset of subjects who scored under

12 000 points).

The task was to indicate, using the keyboard, which side of

the computer screen contained more flickering dots. The differ-

ence in the number of stars between the two sides of the screen

was either 10 (hard trials) or 80 (easy trials), with the mean

number of stars equal to 100 (e.g. a ‘hard’ trial had 95 versus

105 stars, and an ‘easy’ trial had 60 versus 140 stars).

The study was divided into five blocks. The first of the five

blocks was a 5 min unpaid trial block (T ) to familiarize subjects

with the task, with an ITI of 0.5 s separating trials. The four

remaining blocks each took 10 min, with subjects earning

points that were later converted to cash. On each trial in these

blocks, participants could either gain or lose a specific number

of points, which we refer to as the ‘stake’ for that trial. Subjects

were self-paced and continued to make decisions until the

block time was up. The ITI in the paid blocks was 2 s, plus the

time needed to prepare the next trial, resulting in an average

empirical ITI of approximately 2.2 s.

Subjects were informed that the stakes corresponded to half

the difference in the number of stars between the two sides of

the screen. For example, if there were 105 stars on the left and

95 stars on the right, the stakes were 5 (since (105–95)/2 ¼ 5).

Since subjects did not know the number of dots in advance,

on every trial they had to infer the stakes based on the on-screen

stimuli.

As in study 1, there were two within-subject experimental

conditions: intervention blocks and non-intervention blocks. Par-

ticipants were introduced to the two experimental conditions in

the following way:
On some runs [blocks], there will be a deadline. If you do not
respond by the deadline, the trial will be aborted, and you will
earn no points. A short time before the deadline, the stars will
disappear - respond quickly when this happens!
The mean deadline was determined in the same way as in

study 1. Each trial, the actual deadline was drawn uniformly

from within 50 ms of the mean deadline.

(c) Analysis
The mixed-effects regressions reported for studies 1 and 2 use the

following model: y ¼ bxij þ ni þ 1ij, where b is a vector of coeffi-

cients, xij is the vector of regressors in trial j of individual i, vi is

an individual-specific noise term and 1ij is a general noise term.

For study 2 (electronic supplementary material, table S2, columns

4–6), the dependent variable y is cumulative surplus per block, in

points, since every trial was paid in full (1000 points ¼ 1 USD).

For study 1 (electronic supplementary material, table S2, columns

1–3), the dependent variable y is the blockwise mean surplus, in

CHF per trial. Since there were 100 trials per block, conversion to

the block level requires multiplying by 100. Before regressing,

the data were first collapsed to obtain blockwise mean surplus

for each participant, resulting in four data points per participant

(representing blocks 2–5). The mixed-effects regression models

for both studies were estimated using maximum likelihood. Stan-

dard errors were clustered at the individual level. The first (trial)

block was excluded from all analyses.
3. Results
Here, we report the results of two separate decision-making

studies, one using an economic value-based food-choice task,

and one using a perceptual choice task. Further (consistent)

results from a related third study are reported in the electronic



study 1

choose now

study 2

score: 45
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Figure 1. Task design. (a) Example screen from the value-based food-choice task from study 1. Subjects simply chose the item that they would prefer to consume
at the end of the study. To improve readability, we increased the font and dot size for both panels of this figure. (b) Example screens from the perceptual ‘twinkling-
stars’ task from study 2 (also used in study 3, which is reported in the electronic supplementary material). The dots randomly appeared and disappeared, so that at
any given point in time only approximately 80% of them were visible. Subjects had to decide which of the two fields had more dots. (Online version in colour.)
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supplementary material. In each study, subjects faced a fixed

amount of time to make as many decisions as possible.

In the value-based food-choice task (study 1), subjects

had to decide which of two food items they would prefer

to eat at the end of the experiment (figure 1a). Using the eli-

cited values from a separate valuation task (see Material and

methods), we constructed, for each participant, trials in

which the valuation difference was large (easy trials), and

trials in which the valuation difference was small (hard

trials). In each block, there were more decisions (100) than

could be made in the time available. Any remaining decisions

at the end of the time-limit were made randomly by the com-

puter. At the end of the experiment, subjects received the

chosen food item from one randomly chosen trial. Crucially,

the trial randomly chosen for payment could be a self-made

or computer-made decision. Thus the subjects had an incen-

tive to make as many of their own choices as possible, to

reduce the chance of receiving a randomly chosen food item.

In the twinkling-stars task (study 2), subjects had to decide

which side of the computer screen contained more dots. The

dots disappeared and reappeared at random, giving the

appearance of twinkling stars (figure 1b), but the underlying

number of stars on each side of the screen remained constant

throughout a trial. In each trial we varied the difficulty of the

task by changing the difference in the number of stars between

the two sides of the screen. Analogous to study 1, a negative

link between choice difficulty and relative reward was also

induced in study 2. Here, participants received points accord-

ing to the difference in the number of stars between the two

sides of the screen.

Crucially, in both studies 1 and 2, there is more to be gained

from making the correct choice in easy trials than in hard trials.

By construction, trials with a high relative reward are both

easier to answer accurately and have a larger impact on the

expected earnings, thus constituting a better investment of

time than the trials with a low relative reward.

Despite this reasoning, we found that subjects spent signifi-

cantly more time on trials with a low relative reward than they

did on high relative reward trials in both the food-choice task

(figure 2a) and the twinkling-stars task (figure 2b). In the

twinkling-stars task, the average, across individuals, of

median RT in hard trials was 1.02 s, compared with 0.58 s in
the easy trials. A non-parametric Wilcoxon matched-pairs

signed-ranks test rejects the hypothesis that these two values

are equal at p , 0.0001. In the food-choice task, there is a

clear association between the absolute difference in willing-

ness to pay ðjDWTPj) and RT. We see that a CHF 1 increase

in jDWTPj corresponded, on average, to a decrease in

log(RT) by 0.218 units ( p , 0.001, mixed-effects regression,

see the electronic supplementary material, table S1).

The RT pattern displayed in figure 2a,b is suggestive, but

to truly identify whether behaviour is sub-optimal, more

direct evidence is needed. To convincingly demonstrate the

sub-optimality of this pattern, it is sufficient to demonstrate

that unrestricted performance can be improved upon without

using any additional information. Specifically, we hypoth-

esized that it might be possible to improve subjects’

performance in these tasks by imposing a per-trial deadline

on decision-making.

In both studies, subjects were informed that there would

be five blocks of decisions and that each block was time-

limited. They were also told that in some blocks there

would be within-trial deadlines. Being cut off only occurred

in 1.60% and 2.14% of intervention block trials, in studies 1

and 2, respectively. In what follows, we will refer to the

blocks with deadlines as intervention blocks (I ), and those

without as non-intervention blocks (N ).

Comparing the performance on the intervention blocks to

the non-intervention blocks (excluding the first blocks), we

found that the effect of the intervention was beneficial for

80% of participants in study 1 and 60% of participants in

Study 2. The intervention helped subjects earn significantly

more points in the twinkling-stars task (t39 ¼ 22.2215, p ¼
0.032, paired) and significantly more value (see Material

and methods) in the food-choice task (t48 ¼ 24.1973, p ,

0.0001, paired).

Since we have repeated measures, and each subject went

through a total of five blocks, it is possible that gaining experi-

ence with the task improved performance. To rule out this

possible confound, blocks 2–5 were run either in sequence

N-I-N-I or in sequence I-N-I-N. Figure 3 shows mean task per-

formance block by block for studies 1 (panel (a)) and 2 (panel

(b)). To analyse the benefit of the intervention while statistically

controlling for the sequence of blocks, we regressed blockwise
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difference in number of stars (study 2).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20151439

5

performance from blocks 2–5 on both a dummy variable for

the intervention blocks, as well as an integer variable (2–5)

that encoded the block number. The mixed-effects regression

results (see the electronic supplementary material, table S2)

show that, all else being equal, with each additional block,

earnings increased by 61.86 points (z ¼ 5.90, p , 0.0001) in

the twinkling-stars task. In the food-choice task, value per

block increased by CHF 1.33 (z ¼ 6.69, p , 0.0001) (if all the

trials had been realized; in reality only one trial was realized

since we could not give a subject 500 food items to eat). How-

ever, the positive effect of the intervention remains significant

when we control for experience, with subjects earning an aver-

age of 76.28 points more in an intervention block of the

twinkling-stars task (z ¼ 22.11, p ¼ 0.035) and a value of

CHF 1.69 more in an intervention block of the food-choice

task (z ¼ 23.75, p ¼ 0.0002).

Finally, we investigated whether subjects learned from

the intervention and so improved in subsequent non-

intervention blocks. In order to test for this, while controlling

for the effects of experience, we ran a mixed-effects regression

(see the electronic supplementary material, table S2, specifica-

tions 2 and 5) that included a block-number regressor, as

well as dummy variables for intervention blocks and for

pre-intervention blocks. The regression results show that

performance in post-intervention non-intervention blocks

was higher than in pre-intervention blocks, though the

effect was only significant in the food-choice task. In the

twinkling-stars task, pre-intervention blocks fared 26.32

points worse than the non-intervention blocks that followed

(z ¼ 20.40, p ¼ 0.68), while in the food-choice task, pre-

intervention blocks fared the equivalent of CHF 3.55 worse

(if every trial had been realized) than the post-intervention

ones (z ¼ 24.20, p , 0.0001). While intervention blocks

continued to outperform post-intervention non-intervention

blocks (see the electronic supplementary material, table S2,

specifications 3 and 6), this effect was only marginal with a
remaining performance increase of 69.58 points per block in

the twinkling-stars task (z ¼ 1.64, p ¼ 0.1) and CHF 0.75 per

block in the food-choice task (z ¼ 1.33, p ¼ 0.18).
4. Discussion
Here, we have shown that decision-makers are consistently

sub-optimal at investing scarce decision time, but that this

can be mitigated using a simple intervention where we

impose choice deadlines. We observed behaviour that failed

to maximize earnings when subjects had to decide how to allo-

cate their time across many binary choices. This finding

replicated across two separate studies, one involving a food-

choice task, the other involving a perceptual decision-making

task. These two studies tell a consistent story, in which

people apparently misallocate their time, spending too much

on those choice problems in which the relative reward is low.

These findings are economically counterintuitive because

we find that imposing an additional constraint (a deadline)

onto individual decisions actually improves the overall

outcome. Theoretically, the same constraints could have

been self-imposed by the subjects. The fact that our interven-

tion improved performance thus means that behaviour was

not optimized to maximize earnings in these settings.

This work highlights the fact that the classic speed-

accuracy trade-off is an oversimplification of the typical

trade-offs faced by organisms in their natural environments

[16,17,51]. Each choice is not equally important and so

rather than trying to maximize accuracy, organisms should

be looking to maximize the relative benefits from their

decisions. Optimally behaving organisms should know the

relationship between strength of preference and RT, and so

infer over time that the current decision is less and less

worth making correctly. This idea is captured by the well-

known paradox of Buridan’s ass, where an ass that is equally
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participants did better than the average from blocks 2 – 5, and vice versa for negative bars. Performance in I is always higher than in the previous N trials. The
higher performance in I trials also holds when we control for experience.
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hungry and thirsty is placed halfway between a stack of hay

and a pail of water, and unable to choose between them, dies.

In the SSM framework, collapsing decision thresholds (along

with noise in the decision process) allow the organism to

avert this deadlock. For example, Seeley et al. [15] describe

how bee colonies are able to avoid deadlock when deciding

between two equally attractive new hive sites. Others have

used SSMs to argue that rats, monkeys and humans use col-

lapsing thresholds, urgency signals or nonlinear dynamics to

avoid indecision [20,55,57–59,63–67]. On the other hand,

Hawkins et al. [61] have argued that the evidence for such be-

haviour is not quite so clear and that it may be present only in

extensively trained animals.

In any case, even when such mechanisms are present, it

remains unclear whether they simply serve to break deadlock

or whether they produce optimal time allocation. There has

indeed been some suggestion that time allocation is not optimal.

For example, in the domain of bee colour discrimination,

researchers have found that in some laboratory settings, bees

will overemphasize accuracy and improve their flower colour

discrimination by an order of magnitude compared to what is

typically observed in the field. This enhanced accuracy comes

at a substantial time cost; one that is probably higher than the

cost of visiting poorly rewarded flowers [51]. Indeed, in an

analysis of bee heterogeneity in the flower colour discrimination

task, Burns found that the fast, inaccurate bees performed better

(in terms of nectar collection rate) than the slow, accurate bees

[68]. In another example involving a mouse odour discrimi-

nation task, the researchers found that their mice exhibited

evidence-sampling times that were independent of the difficulty

of the decisions, when instead they might have done better skip-

ping through the difficult trials [69]. However, this evidence is

limited both in quantity and in the conclusions that one can

draw regarding sub-optimal behaviour.

Our results provide a new source of evidence supporting

the view that whatever deadlock-breaking mechanisms exist,
they are not maximizing reward rate. While we cannot say

whether decision thresholds are collapsing or not, we can

say that they are clearly not collapsing optimally. Thus our

findings support the view that organisms may be less capable

of dealing with these trade-offs than we might have expected.

Future research could use a similar choice-deadline pro-

cedure to test for sub-optimal time allocation in other

species or in highly trained decision-makers.

It is worth noting that we purposefully implemented our

intervention soft-handedly. We did this to enable subjects to

retain agency and avoid being cut off by the computer.

While this procedure clearly improved subjects’ outcomes,

it is unclear whether the intervention worked primarily by

serving as a cue to terminate the decision process, or by alter-

ing subjects’ thresholds. The comparison between pre- and

post-non-intervention blocks suggests that in fact the inter-

vention may have had different effects in the two studies.

In study 1, the intervention led to an improvement in

non-intervention blocks, suggesting a change in subjects’

thresholds, while in study 2, this effect was not significant.

The lingering effect of the intervention even in its aftermath,

somewhat weakens the normative case for sustaining the

intervention.

Also, while the data show that the intervention enhanced

the material benefit of the subjects, it is beyond the scope of

the current research to evaluate its subjective benefits, all

things considered. For example, it is possible that some organ-

isms assign an intrinsic value to being correct [32]. Indeed,

research in signal detection theory has demonstrated that

people tend to overemphasize accuracy [3,4]. If this intrinsic

value was higher for hard problems, as research on achieve-

ment motivation indeed suggests (e.g. [70]), this could explain

why subjects might allocate more time to them. However,

note that this cannot explain why subjects’ behaviour improved

post-intervention (nor can it explain the lack of a difference

between payment schemes documented in study 3, which is
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reported in the electronic supplementary material). Addition-

ally, a common explanation for the overemphasis on accuracy

is that throughout their lives people are reinforced for making

correct decisions. However, in our study 1, there is technically

no ‘accuracy’, only consistency with the prior WTP for the

different items. In similar ‘real world’ settings, organisms

are not typically given feedback about the accuracy of such

preference-based decisions, since preferences are subjective.

One might wonder if it matters whether the opportunity

costs are certain or uncertain. In study 1, subjects were com-

pensated for one randomly selected trial and so it is possible

that their motivation to optimize performance was reduced.

However in study 2, subjects were compensated for all

of their decisions and yet sub-optimal behaviour remained.

So while probabilistic outcomes may reduce motivations

to optimize, they do not seem to be necessary to observe

sub-optimal behaviour.

Taken together, our research here demonstrates a new,

simple way to test for sub-optimal behaviour. Rather than

taking the traditional modelling approach to derive what opti-

mal behaviour might look like, we instead used experimental

manipulations and behavioural interventions to show that sub-

jects’ unrestricted behaviour is not pay-off maximizing. Of

course, it was the modelling literature that first suggested to
us that such inefficiency might exist. We thus close with the

hope that this work highlights the important complementarities

between theory, modelling and experiments.
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