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The moa (Dinornithiformes) are large to gigantic extinct terrestrial birds of

New Zealand. Knowledge about niche partitioning, feeding mode and

preference among moa species is limited, hampering palaeoecological recon-

struction and evaluation of the impacts of their extinction on remnant native

biota, or the viability of exotic species as proposed ecological ‘surrogates’.

Here we apply three-dimensional finite-element analysis to compare the bio-

mechanical performance of skulls from five of the six moa genera, and two

extant ratites, to predict the range of moa feeding behaviours relative to each

other and to living relatives. Mechanical performance during biting was

compared using simulations of the birds clipping twigs based on muscle

reconstruction of mummified moa remains. Other simulated food acqui-

sition strategies included lateral shaking, pullback and dorsoventral

movement of the skull. We found evidence for limited overlap in biomecha-

nical performance between the extant emu (Dromaius novaehollandiae) and

extinct upland moa (Megalapteryx didinus) based on similarities in mandibu-

lar stress distribution in two loading cases, but overall our findings suggest

that moa species exploited their habitats in different ways, relative to both

each other and extant ratites. The broad range of feeding strategies used

by moa, as inferred from interspecific differences in biomechanical perform-

ance of the skull, provides insight into mechanisms that facilitated high

diversities of these avian herbivores in prehistoric New Zealand.
1. Introduction
Ratites, together with tinamous, form the palaeognaths, the sister group to all

remaining modern birds. They include the extant ostrich (Africa), emu, cassowaries

(Australia, New Guinea), rheas (South America) and kiwi (New Zealand) [1]. Their

diversity is greatly augmented by recently extinct ratites, including the gigantic ele-

phant birds of Madagascar and the moa of New Zealand [2]. Moa, represented

by nine known species and six genera, went extinct around 550 years ago [3,4].

With mammalian browsers absent from New Zealand, the only other terrestrial

browsers that shared habitat with moa were New Zealand geese (Cnemiornis)
and Finsch’s duck (Chenonetta finschi) [5]. Moa therefore played a particularly

important role in the evolution of New Zealand’s unique and distinctive flora as

‘ecosystem engineers’ [6–8]. The loss of this once abundant, morphologically

diverse taxon probably reduced seed dispersal opportunities for some plant
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species [9–11], triggered the ecological release of others [12],

and caused changes in understorey density, fire frequency and

regeneration patterns.

These large to gigantic avian herbivores (20–200 kg) [13] are

thought to have fed on a range of foods including flowers, fruits,

leaves, shoots and branches of forbs, shrubs and trees, but niche

partitioning among moa is poorly understood [14,15]. Up to six

moa species, and commonly three to four, overlapped in geo-

graphical range [13,16,17], but on the basis of coprolite data

are thought to have partitioned their niches by diet and habitat

preferences [15]. Two apparent extremes in diet are the little

bush moa (Anomalopteryx didiformis) and the coastal moa

(Euryapterx curtus). Anomalopteryx didiformis is thought to

have mostly eaten fibrous material from trees and shrubs

[13,15,18,19] while E. curtus is thought to have fed on leaves

and fruit [18,20]. Coprolite evidence suggests that A. didiformis
was a forest specialist, the heavy-footed moa (Pachyornis
elephantopus) fed in herbfields and grasslands, the upland

moa (Megalapteryx didinus) was a habitat generalist and the

South Island giant moa (Dinornis robustus) fed primarily in

the transition zone between forest and grassland [15].

Clear distinctions in skull morphology among moa [18,21]

may reflect differences in biomechanical performance and

feeding strategies. The crested moa (Pachyornis australis),
A. didiformis and M. didinus have bills that are relatively

narrow in dorsal view compared with D. robustus, and

especially E. curtus. Euryapertyx curtus also has the most

rounded bill-tip in dorsal view. The bill-tip of D. robustus is

rounded relative to other moa included in the present study.

Pachyornis australis and M. didinus, and especially A. didiformis,

have more pointed bill-tips (figure 1). Both P. australis and

A. didiformis have large temporal fossa and mandibles which

are deep in lateral view, suggesting relatively large jaw

adducting musculature. It has been proposed that the sharp-

edged mandible of A. didiformis was well adapted for cutting

twigs, while the skull morphology of M. didinus may have

been limiting in this regard [13,18].

Greenwood & Atkinson [21] speculated that moa feeding

involved a clamp and pull, similar to that observed in

ostriches and emus [12]. At least one species of moa, D. robustus,
could either cut off or break off stems of up to 6 mm in diam-

eter [10]. Anderson [22] noted that twig material found in

some moa gizzards appeared to have been sheared from

the branch with the sharp edge of the bill. Moa had larger

neck muscles than living ratites, as indicated by their upper

cervical vertebrae, which may have allowed them to apply

a greater tugging force [13,18,22].

Identifying feeding mechanisms used by moa could yield

insights into how extant ratites may compare in their inter-

action with present-day habitats, impacting on the viability

of proposals for the introduction of non-endemic extant

ratites to New Zealand [8,12,23]. Such ‘rewilding’, whereby

exotic species are introduced into ecosystems they have not

previously occupied to serve as ecological substitutes for

extinct taxa, remains controversial [24–26]; however, islands,

such as those comprising New Zealand, have become a key

target for rewilding projects [23,26,27]. Some have advocated

reintroducing moa ‘reconstructed’ from ancient DNA [28,29].

As the viability of acquiring ancient DNA advances [30,31],

so too does the interest and controversy over resurrecting

extinct species [32].

Although qualitative interpretations have been proposed

[13,18,21], to date no quantitative comparison of skull
biomechanics has been conducted for any moa species, and

the relationships between cranio-mandibular shape and feed-

ing behaviour remain untested [15]. Here we use a three-

dimensional (3D) biomechanical approach, finite-element

analysis (FEA), to investigate the feeding mechanics and be-

haviour of five moa species, comprising representatives

from five of the six known genera (electronic supplemen-

tary material, figure S1). We compare these with two extant

ratites with different feeding behaviours and diets, the

emu (Dromaius novaehollandiae) and southern cassowary

(Casuarius casuarius) [33]. FEA is a computer-based engineering

technique that has been used widely in comparative biomecha-

nics [34,35] and has previously been used to infer diet in living

and extinct taxa, including birds [36–41]. Here we ask (i)

whether there are variations in the magnitudes and distributions

of stress in ratite skulls under specific loading conditions, and

(ii) whether these are indicative of different feeding behaviours

and diets among moa and extant ratites.

As the largest extant bird to inhabit forests and the closest

modern analogue in body shape to moa [18], C. casuarius is

an obvious choice for comparison with moa as most of

pre-Polynesian New Zealand consisted of forested areas

[18]. Cassowaries are the largest living frugivorous ratites

[42–44]. Based on proposed similarities in diet [18], we

predict that E. curtus shared similar feeding behaviour to

C. casuarius. We also include D. novaehollandiae, which has a

broad diet and feeding behaviour similar to the ostrich and

rheas, consisting of invertebrates and plant material

(e.g. grasses, seeds, buds, leaves, herbs and fruit) [45–48].

Dromaius novaehollandiae has been proposed as a potential

‘replacement’ for moa [14,49].
2. Material and methods
(a) Computed tomography and magnetic resonance

imaging scanning
The 3D models of ratite skulls were digitally constructed from

computed tomographic (CT) data of E. curtus (formerly E. gera-
noides or E. gravis), a large Pleistocene individual from South

Island, P. australis, D. robustus, A. didiformis, M. didinus, C. casuar-
ius and D. novaehollandiae (see electronic supplementary material,

table S3 for specimen information). Modelling of jaw adductors

was based on magnetic resonance imaging (MRI) of mummified

M. didinus (figure 2a; see the electronic supplementary material).

Permission was obtained from all museum institutions to use

these specimens for the present study.

(b) Body mass and muscle force estimation
Femoral circumferences were collected for all specimens, and the

allometric relationship between femur circumference and body

mass M ¼ 1.08 � Cf
2.28 + 0.2 (where M is mass and Cf is femur

circumference) was used to estimate specimen-specific body

masses [50]. The use of femoral circumference data to estimate

body mass has been widely used in birds and other taxa

[51,52]. Volumetric methods are potentially more accurate, but

require complete material [53,54], which was unavailable here.

The four major jaw closing muscles preserved in the mummi-

fied M. didinus specimen (figure 2b) were used to determine

muscle origin and insertion areas and lines of action for all

ratites. These were Pseudotemporalis superficialis, Adductor externus
medialis, Pterygoideus medialis and Pterygoideus lateralis. Maximum

muscle force of M. didinus was determined for each muscle

subdivision by multiplying an estimated force of 0.3 N mm22
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Figure 1. VM stress contour plots from FEA of ratite crania in dorsal view. The models are subjected to four loading conditions: unilateral clip, pullback, lateral shake
and dorsoventral pull.
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for vertebrate striated muscle by the muscle’s maximum

cross-sectional area taken from MRI data [55] (electronic

supplementary material, table S1).

Prediction of muscle forces was scaled according to body

mass following a two-thirds power relationship, whereby

muscle force is proportional to cross-sectional area while body

mass is proportional to volume [56]. All else being equal,

larger animals have relatively less available muscle force in pro-

portion to body mass compared with smaller animals [57].

Muscle forces were scaled using the following equation [58]:

MFtarget

MFref
¼

BMtarget

BMref

� �2=3

,

where MFtarget is the muscle force of target specimen (subject of

our calculation), MFref is muscle force generated by reference

specimen, BMtarget is body mass of target specimen and BMref
is body mass of reference specimen. The calculations are based

on the premise that when a body is scaled geometrically by a

factor of k in all dimensions, the volume increases by a factor

of k3, but the muscle cross-sectional area scales by a factor of

k2. We used the above equation to determine muscle force gener-

ated by a moa specimen when scaled by the same factor (k) in

all dimensions. Specimen-specific estimated muscle forces of

M. didinus specimen NMNZ S400 were used as MFref to estimate

MFtarget of all other ratite finite-element models (FEMs) during a

unilateral clip.

(c) Finite-element model assembly
Volume meshes of each skull were created in MIMICS (v. 16.0) and

3-MATIC (v. 8.0). All FEMs comprised at least 1.9 million 4-noded

tetrahedral elements (tet4) (electronic supplementary material,

table S2). FEMs were assembled using STRAND7 (v. 2.4.6) following
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Figure 2. (a) Illustration of mummified Megalapteryx didinus NMNZ S400 (credit: Peter Trusler 1985) and (b) digital segmentation of its major jaw closing muscles.
(c) Truss elements inserted to mirror line of action of each muscle subdivision used for each FEM, and position of bite restraint for unilateral clip and H-frame for
extrinsic loads. Landmarks selected on each FEM to measure VM stress were positioned at equidistant points along the (d ) mid-sagittal plane and (e) mandible.
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previously published procedures [37,38,41,58]. All FEMs were

homogeneous and tet4 elements were isotropic. FEMs were

assigned a Young’s modulus (13.65 GPa) and Poisson’s ratio

(0.35) as previously applied to avian cranial FEMs [59]. A gape

angle of 6.4 degrees was applied to all FEMs based on the mini-

mum gape required to fit a 10 mm width twig at the bite point of

M. didinus for an intrinsic load (figure 2c). This species was selected

as a reference because of the exceptional quality of the mummified

soft tissue present for this specimen.
(d) Restraints
Models were restrained at the occipital condyle for all load cases. A

rigid link (infinitely stiff for compression, extension and rotation)

spanning the foramen magnum was created. This was split in half

and restrained at the centre node for all degrees of freedom

(global x, y, z restraint for translation and rotation). This restrains

the FEM of the cranium in virtual space. A network of beams was

tessellated around each of the muscle beam attachment nodes to

minimize stress artefacts arising from single node loadings.
(e) Loading cases
A unilateral clip was applied to simulate the bird clipping a twig

with force concentrated to one side [60]. The restraint was placed

slightly posterior to the median caudal margin of the premaxilla

(figure 2c). Three further load cases were solved for each FEM,

simulating movements of the skull relative to the plant material

being removed: a pullback, lateral shake and dorsoventral

pull. A pullback simulates the bill holding and pulling an

object. A lateral shake simulates the head moving to the side,

while a dorsoventral pull simulates head depression. For all

extrinsic cases loads were 10 times the specimen’s estimated

body mass (electronic supplementary material, table S3). The

factor by which extrinsic loads are multiplied is arbitrary. This
does not influence interpretation in a comparative context if

applied universally [58,61,62].
( f ) Von Mises stress
Relative mechanical performance was assessed on the basis of

visual output in STRAND7 and statistical analysis of Von

Mises (VM) stress distribution for each skull using PAST

(v. 3.06) [63]. Mean ‘brick’ element stresses were compared

between species. For each FEM, ten equidistant points

were selected along the mid-sagittal plane and mandible

(figure 2d,e), following Attard et al. [58] (see the electronic sup-

plementary material) such that the points are homologous [64]

where the outline is the unit of homology, not the individual

point. Differences in geometry and stress distribution in the

mandible are more likely to reflect differences in feeding behav-

iour than are differences in the cranium because it is less

constrained by the need to perform other functions [38,65]. As

this is a comparative study, the stress results are only of value

in this context (i.e. it is relative stress magnitudes that are impor-

tant, not actual values) [34,38,40]. General protocols applied in

this study have been applied and validated previously [38].

Principal component (PC) axes were used to create phylo-

morphospaces following Sidlauskas [66] in the Rhetenor

module of the software MESQUITE [67]. Phylomorphospace

ordinates were scaled by branch length and phylogenetic

relationships for all species were derived from a pruned version

of the total evidence phylogeny constructed by Mitchell et al.
[33]. To quantify phylogenetic signal in stress values for each

loading case, the first three PC axes, as graphed in electronic sup-

plementary material, figures S2–S5, were tested using

Blomberg’s K statistic [68]. Blomberg’s K statistic was calculated

using the R package Picante (v. 1.6–2) [69]. The total evidence

phylogeny of Mitchell et al. [33] was used as phylogenetic frame-

work. Values of greater than 1 for the K statistic indicate that
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close relatives are more similar in stress values under a particular

loading case than expected given the topology and branch

lengths, whereas values of less than 1 indicate less phylogenetic

signal than expected under a BM model.
3. Results
(a) Body mass estimates
Specimen-specific predicted body masses based on long-bone

circumference [50] are listed in the electronic supplementary

material, table S3. All specimens except D. novaehollandiae
were within ranges reported in the literature; however, the

E. curtus and D. robustus specimens were, respectively, relatively

large and small for their species.

(b) Von Mises stress
Visual output of stress for all loading cases is shown in

figures 1 and 3. Extractions of PCs are shown in the electronic

supplementary material, table S4. Results are below and in

the electronic supplementary material. Casuarius casuarius
experienced very low stress along the cranial casque for all

loads (figure 1), preventing meaningful comparison with

other taxa at landmarks 3–10, and it was excluded from

statistical analysis of stress along the mid-sagittal plane.

(c) Unilateral clip (intrinsic loading case)
The distribution and magnitude of stress along the mandible

during a unilateral clip differed considerably between the two
extant ratites and moa species. Both extant ratites experienced

relatively low stress along the mandible, obtaining the lowest

PC1 scores (73.2%; electronic supplementary material, figure

S2) of all species analysed. All moa, except E. curtus, grouped

together with comparatively higher PC1 and PC2 scores

(accounting for variance at landmarks 1 and 10, respectively)

that signified relatively high stress along the mandible

(electronic supplementary material, figures S2 and S3).

Peak stress along the mandible and mid-sagittal plane for

a unilateral clip was highest for E. curtus and M. didinus.

Euryapteryx curtus had the highest PC1 scores along the

mandible of all ratites and along the mid-sagittal plane

among moa (electronic supplementary material, figure S2),

with loading positive overall in both cases (electronic sup-

plementary material, figure S6), suggesting that the skull

of E. curtus exhibits higher stress than the other moa species.

Anomalopteryx didiformis had the lowest PC1 scores among

moa for stress measured both along the mandible and mid-

sagittal plane (electronic supplementary material, figure S2).

The Kruskal–Wallis test revealed that interspecific differ-

ences were not significant (mandible: x2 ¼ 3.69, p ¼ 0.71;

mid-sagittal plane: x2 ¼ 2.33, p ¼ 0.80).
(d) Pullback (extrinsic loading case)
Mandibular stresses during a pullback differed greatly bet-

ween the extant ratites. Dromaius novaehollandiae experienced

two points of peak stress while C. casuarius experienced one

(electronic supplementary material, figure S3). Before Bonfer-

roni correction, mandibular landmark stress was significantly
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higher in D. novaehollandiae compared with C. casuarius (x2 ¼

11.31, p ¼ 0.05). Dromaius novaehollandiae and A. didiformis
were the only pairwise comparison between an extant and

extinct ratite to show significant differences in mandibular

stress values during a pullback before Bonferroni correction

(x2 ¼ 11.31, p ¼ 0.04). Stress was comparatively higher in

D. novaehollandiae (figure 3).

A pullback along the mid-sagittal plane revealed greater

similarities in stress between moa species compared with

D. novaehollandiae along PC1 (84.8%; electronic supplemen-

tary material, figure S3). Before Bonferroni correction, stress

values for D. robustus along the mid-sagittal plane were

significantly greater than for M. didinus and D. novaehollandiae
(x2 ¼ 29.07, p ¼ 0.02–0.03), and values for E. curtus were

marginally greater than in M. didinus (x2 ¼ 27.09, p ¼ 0.05).

Interspecific differences were not significant along the mand-

ible or mid-sagittal plane after Bonferroni correction

(electronic supplementary material, table S5).

(e) Lateral shake (extrinsic loading case)
Surprisingly, D. novaehollandiae and M. didinus shared similar

mandibular stress distributions and magnitudes during a

lateral shake, grouping together in the PCA plot. Although

E. curtus had similar PC scores to these two species, the

output of stress distribution displayed in the line graph

revealed discrete differences (electronic supplementary

material, figure S4), suggesting similarities in biomechanical

performance for D. novaehollandiae and M. didinus under

this loading. As overall stress along the mandible for a lateral

shake was highest in these two species (excepting E. curtus),

neither D. novaehollandiae nor M. didinus appear well

adapted to acquire food in this manner (figure 3; electronic

supplementary material, figure S4).

Pairwise comparisons for mandibular stress after Bonferroni

correction showed P. australis exhibited lower stress than

M. didinus and D. novaehollandiae (x2 ¼ 26.57, p ¼ 0.03–0.05;

electronic supplementary material, figure S4). Before Bonferroni

correction, P. australis was distinguished from all species (x2 ¼

26.57, p , 0.01) except E. curtus and C. casuarius.
Pachyornis australis also had the lowest relative mean ‘brick’

stress in the mandible (electronic supplementary material,

figure S7). Anomalopteryx didiformis and D. robustus grouped

together on the PCA, and exhibited lower mandibular stresses

than other moa, except P. australis (electronic supplementary

material, figure S4). Dromaius novaehollandiae was signifi-

cantly different from C. casuarius, P. australis and D. robustus
(x2 ¼ 26.57, p ¼ 0.002–0.02) after Bonferroni correction.

( f ) Dorsoventral pull (extrinsic loading case)
The distributions and magnitudes of stress varied

considerably between moa species along the mandible for a

dorsoventral pull. Pachyornis australis had the lowest overall

magnitudes, excepting A. didiformis, before Bonferroni correc-

tion (x2 ¼ 14.88, p , 0.02; electronic supplementary material,

figure S5), and had the lowest mean ‘brick’ mandibular stress

(electronic supplementary material, figures S5 and S7).

Pachyornis australis was significantly different only from M.
didinus after Bonferroni correction (x2 ¼ 14.88, p ¼ 0.03). Dor-

soventral and unilateral loading cases both show K . 1,

indicating significantly more signal than expected under

Brownian motion, yet p-values were only significant

for mandibular stress during a dorsoventral pull for PC1
( p ¼ 0.01) and PC2 ( p ¼ 0.03; electronic supplementary

material, table S4).
4. Discussion
As skulls are most resistant to loads applied through their pre-

ferred loading regime [70], differences in stress magnitudes

and distributions probably reflect differences in biting and

feeding styles of extinct moa. Phylogenetic signal in stresses

shown in PCA plots was only significant for a dorsoventral

pull based on Blomberg’s K statistic values, and results from

comparative FEA suggest considerable differences in mechan-

ical performance between moa species. This may reflect food

partitioning among sympatric species to reduce competitive

interactions. Results further suggest that the skull of A. didifor-
mis was better adapted to a unilateral clip, supporting the

proposition that its relatively short, sharp-edged bill was

better suited to cutting than those of other moas [18].

For all loads, we found that E. curtus exhibited the highest

stresses along the mid-sagittal plane, and highest or second

highest mandibular stresses relative to all other species.

This suggests that E. curtus had a relatively weak skull and

a diet more limited in breadth, as previously hypothesized

[18]. Cross-sections of its bill [13] show that the bone in the

mandible of this species is relatively thin and near the tip is

more dorsoventrally flattened. It is much thinner than that

of Dinornis species, in which the whole bill is far more dorso-

ventrally flattened, and in lateral view the tip is clearly more

deeply curved than in all other ratites considered in this

study. The rounded bill-tip of E. curtus appears better-

adapted to plucking soft leaves and fruit directly from veg-

etation or from the ground, whereas more pointed bills of

other moa appear better suited to clipping and pulling

fibrous leaves and twigs. These findings support the conten-

tion that E. curtus acted as fruit seed dispersers, as do

cassowaries in North Queensland [71,72]. Biomechanical

limitations of the skull, reflecting a narrower dietary niche,

may have compelled E. curtus to travel further than other

moas in the search for suitable food. It may also explain

why this species was limited to lowland grassland–

shrubland–forest mosaics, where fruiting shrubs and forbs

are abundant and diverse.

Our results point to means whereby moa species

once considered to be dietary generalists (e.g. P. australis,

M. didinus and D. robustus [15]) were able to coexist. Pachyor-
nis australis was best suited to performing a lateral shake and

dorsoventral pull (see electronic supplementary material,

figures S4 and S5). Anomalopteryx didiformis was better

adapted than all ratites at performing a pullback based on

overall low stresses. Of loads investigated in this study,

M. didinus appears best suited to perform a pullback, while

D. robustus was better adapted to perform a lateral shake.

The distribution of mandibular stresses in C. casuarius for

a lateral shake and pullback was very different to that of all

moa, being relatively low and more evenly distributed.

Ratites with beaks that are more cylindrical in cross-section,

particularly M. didinus and D. novaehollandiae, might be

better adapted for specialized twisting motions, because of

increased versatility and precision, as suggested for other

avian groups [73,74].

Our results also show dissimilarities in cranio-mandibular

mechanical performance between living ratites and moa,
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indicating that moa used different feeding mechanisms to

fulfil different ecological roles. In particular, stress distri-

bution patterns along the mandible for a unilateral clip and

dorsoventral pull separated both extant ratites from the

moas, suggesting that most moas were better adapted to

withstand forces generated through clipping vegetation or

head depression to remove foliage.

It has been argued that deer, introduced to New Zealand

between 1851 and 1926 [75,76], have similar feeding prefer-

ences to extant ratites and may, in part, perform as

ecological surrogates for moa [77]. However, coprolite evi-

dence shows that moa ate a high proportion of plant taxa

that are typically avoided by ungulates, including some

toxic to mammals [78]. Ratites may be less likely to cause

damage to litter-dwelling microfauna and their habitat

through trampling than hard-hoofed deer [77], but notwith-

standing some evidence for overlap in biomechanical

performance between the emu and a single moa species (M.
didinus), our results suggest that extant ratites would be

poor replacements for moa. At best, this could only partially

fill ecological roles of moa and would not restore ecosystem

function. A similar conclusion has been reached on the

basis of trace fossil data [15]. Introducing extant ratites to

New Zealand may pose a higher risk compared with intro-

ductions involving smaller herbivores, as extant ratites have

relatively large home ranges [79,80], making them harder to

manage [26]. Other concerns include introduction of exotic

diseases that may spread to native species [81].
5. Conclusion
Our results suggest a broad range of browsing behaviours

among moa genera based on biomechanical simulation,
and, further, that moa deployed feeding strategies that were

generally distinct from those of extant ratites. The diversity

of moa communities was likely to have been sustained by

partitioning of resources, facilitated, at least in part, through

differences in feeding behaviour consistent with differences

in cranio-mandibular mechanics.
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